Abstract
Apolipoproteins are important structural components of plasma lipoproteins that influence vascular biology and atherosclerotic disease pathophysiology by regulating lipoprotein metabolism. Clinically important apolipoproteins related to lipid metabolism and atherogenesis include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a). Apolipoprotein B-100 is the major structural component of VLDL, IDL, LDL and lipoprotein(a). Apolipoprotein B-48 is a truncated isoform of apolipoprotein B-100 that forms the backbone of chylomicrons. Apolipoprotein A-I provides the scaffolding for lipidation of HDL and has an important role in reverse cholesterol transport. Apolipoproteins C-II, apolipoprotein C-III and apolipoprotein E are involved in triglyceride-rich lipoprotein metabolism. Apolipoprotein(a) covalently binds to apolipoprotein B-100 to form lipoprotein(a). In this Review, we discuss the mechanisms by which these apolipoproteins regulate lipoprotein metabolism and thereby influence vascular biology and atherosclerotic disease. Advances in the understanding of apolipoprotein biology and their translation into therapeutic agents to reduce the risk of cardiovascular disease are also highlighted.
Key points
-
Apolipoproteins are specialized proteins that regulate lipoprotein metabolism and influence normal human vascular biology and atherosclerotic cardiovascular disease.
-
Clinically important apolipoproteins include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a).
-
Apolipoprotein B-100, apolipoprotein B-48 and apolipoprotein(a) form the structural backbone of atherogenic lipoproteins, including VLDL, IDL, LDL, chylomicrons and lipoprotein(a).
-
Apolipoprotein A-I regulates HDL metabolism and reverses cholesterol transport.
-
Apolipoprotein C-II, apolipoprotein C-III and apolipoprotein E regulate triglyceride-rich lipoprotein metabolism.
-
Therapeutic agents directly targeting apolipoproteins have been developed, and their effectiveness in reducing risk in populations of patients at high risk of atherosclerotic cardiovascular disease is being evaluated.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Mahley, R. W., Innerarity, T. L., Rall, S. C. & Weisgraber, K. H. Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 25, 1277–1294 (1984).
Pownall, H. J., Rosales, C., Gillard, B. K., Moon, J. E. & Gotto, A. M. in Clinical Lipidology: A Companion to Braunwald’s Heart Disease 2nd edn Ch. 1 (ed. Ballantyne, C. M.) 1–10 (Saunders, 2014).
Dominiczak, M. H. & Caslake, M. J. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann. Clin. Biochem. 48, 498–515 (2011).
Linton, M. F. et al in Endotext (eds Feingold, K. R. et al.) 1–142 (MDText.com, 2000).
Ritchie, H. & Roser, M. Causes of death (Our World in Data, 2019).
Young, S. G. Recent progress in understanding apolipoprotein B. Circulation 82, 1574–1594 (1990).
Segrest, J. P., Jones, M. K., De Loof, H. & Dashti, N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42, 1346–1367 (2001).
Fazio, S. & Linton, M. F. in Clinical Lipidology: A Companion to Braunwald’s Heart Disease Ch. 2 (ed Ballantyne, C. M.) 11–25 (2009).
Yao, Z., Tran, K. & McLeod, R. S. Intracellular degradation of newly synthesized apolipoprotein B. J. Lipid Res. 38, 1937–1953 (1997).
Fisher, E. A. & Ginsberg, H. N. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J. Biol. Chem. 277, 17377–17380 (2002).
Pan, M. et al. Presecretory oxidation, aggregation, and autophagic destruction of apoprotein-B: a pathway for late-stage quality control. Proc. Natl Acad. Sci. USA 105, 5862–5867 (2008).
Olofsson, S. O., Asp, L. & Borén, J. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr. Opin. Lipidol. 10, 341–346 (1999).
Gusarova, V., Brodsky, J. L. & Fisher, E. A. Apolipoprotein B100 exit from the endoplasmic reticulum (ER) is COPII-dependent, and its lipidation to very low density lipoprotein occurs post-ER. J. Biol. Chem. 278, 48051–48058 (2003).
Feingold, K. R. in Endotext (eds Feingold, K. R. et al.) 1–20 (MDText.com, 2000).
Mead, J. R., Irvine, S. A. & Ramji, D. P. Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med. 80, 753–769 (2002).
Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).
Tabas, I., Williams, K. J. & Borén, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).
Borén, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest. 101, 2658–2664 (1998).
Parthasarathy, S., Raghavamenon, A., Garelnabi, M. O. & Santanam, N. Oxidized low-density lipoprotein. Methods Mol. Biol. 610, 403–417 (2010).
Yurdagul, A., Finney, A. C., Woolard, M. D. & Orr, A. W. The arterial microenvironment: the where and why of atherosclerosis. Biochem. J. 473, 1281–1295 (2016).
Tabas, I. & Lichtman, A. H. Monocyte-macrophages and T cells in atherosclerosis. Immunity 47, 621–634 (2017).
Goldstein, J. L. & Brown, M. S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29, 431–438 (2009).
Moore, K. J. & Freeman, M. W. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 26, 1702–1711 (2006).
Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R. & Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 16, 727–744 (2019).
Sniderman, A. D. et al. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol. 4, 1287–1295 (2019).
Sniderman, A. D., Islam, S., Yusuf, S. & McQueen, M. J. Discordance analysis of apolipoprotein B and non-high density lipoprotein cholesterol as markers of cardiovascular risk in the INTERHEART study. Atherosclerosis 225, 444–449 (2012).
Mora, S., Buring, J. E. & Ridker, P. M. Discordance of low-density lipoprotein (LDL) cholesterol with alternative LDL-related measures and future coronary events. Circulation 129, 553–561 (2014).
Pencina, M. J. et al. Apolipoprotein B improves risk assessment of future coronary heart disease in the Framingham Heart Study beyond LDL-C and non-HDL-C. Eur. J. Prev. Cardiol. 22, 1321–1327 (2015).
Wilkins, J. T., Li, R. C., Sniderman, A., Chan, C. & Lloyd-Jones, D. M. Discordance between apolipoprotein B and LDL-cholesterol in young adults predicts coronary artery calcification: the CARDIA Study. J. Am. Coll. Cardiol. 67, 193–201 (2016).
Lawler, P. R. et al. Discordance between circulating atherogenic cholesterol mass and lipoprotein particle concentration in relation to future coronary events in women. Clin. Chem. 63, 870–879 (2017).
Ference, B. A. et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk. JAMA 318, 947–956 (2017).
Ference, B. A. et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321, 364–373 (2019).
de Graaf, J., Couture, P. & Sniderman, A. A diagnostic algorithm for the atherogenic apolipoprotein B dyslipoproteinemias. Nat. Clin. Pract. Endocrinol. Metab. 4, 608–618 (2008).
Sniderman, A., Couture, P. & de Graaf, J. Diagnosis and treatment of apolipoprotein B dyslipoproteinemias. Nat. Rev. Endocrinol. 6, 335–346 (2010).
Blanco, A. & Blanco, G. in Medical Biochemistry Ch. 15 (eds Blanco, A. & Blanco, G.) 325–365 (Academic Press, 2017).
Spady, D. K. Hepatic clearance of plasma low density lipoproteins. Semin. Liver Dis. 12, 373–385 (1992).
Watts, G. F. et al. Familial hypercholesterolaemia: evolving knowledge for designing adaptive models of care. Nat. Rev. Cardiol. 17, 360–377 (2020).
Andersen, L. H., Miserez, A. R., Ahmad, Z. & Andersen, R. L. Familial defective apolipoprotein B-100: a review. J. Clin. Lipidol. 10, 1297–1302 (2016).
Linton, M. F., Farese, R. V. & Young, S. G. Familial hypobetalipoproteinemia. J. Lipid Res. 34, 521–541 (1993).
Ross, R. S. et al. Homozygous hypobetalipoproteinemia: a disease distinct from abetalipoproproteinemia at the molecular level. J.Clin. Invest. 81, 590–595 (1988).
Wong, E. & Goldberg, T. Mipomersen (kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. P. T. 39, 119–122 (2014).
Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).
Stein, E. A. et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia. Circulation 126, 2283–2292 (2012).
Thomas, G. S. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 62, 2178–2184 (2013).
Nakajima, K. et al. Apolipoprotein B-48: a unique marker of chylomicron metabolism. Adv. Clin. Chem. 64, 117–177 (2014).
Powell, L. M. et al. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50, 831–840 (1987).
Chen, S. H. et al. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238, 363–366 (1987).
Black, D. D. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G519–G524 (2007).
Zeng, B. J., Mortimer, B. C., Martins, I. J., Seydel, U. & Redgrave, T. G. Chylomicron remnant uptake is regulated by the expression and function of heparan sulfate proteoglycan in hepatocytes. J. Lipid Res. 39, 845–860 (1998).
Jackson, K. G., Poppitt, S. D. & Minihane, A. M. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis 220, 22–33 (2012).
Breslow, J. L. et al. Isolation and characterization of cDNA clones for human apolipoprotein A-I. Proc. Natl Acad. Sci. USA 79, 6861–6865 (1982).
Brewer, H. B. et al. The amino acid sequence of human APOA-I, an apolipoprotein isolated from high density lipoproteins. Biochem. Biophys. Res. Commun. 80, 623–630 (1978).
Bojanovski, D. et al. Human apolipoprotein A-I isoprotein metabolism: proapoA-I conversion to mature apoA-I. J. Lipid Res. 26, 185–193 (1985).
Hammad, S. M. et al. Cubilin, the endocytic receptor for intrinsic factor-vitamin B12 complex, mediates high-density lipoprotein holoparticle endocytosis. Proc. Natl Acad. Sci. USA 96, 10158–10163 (1999).
Gillotte, K. L. et al. Apolipoprotein-mediated plasma membrane microsolubilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid. J. Biol. Chem. 274, 2021–2028 (1999).
Oram, J. F. & Vaughan, A. M. ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Curr. Opin. Lipidol. 11, 253–260 (2000).
Glomset, J. A. The plasma lecithins:cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167 (1968).
Fielding, C. J., Shore, V. G. & Fielding, P. E. A protein cofactor of lecithin:cholesterol acyltransferase. Biochem. Biophys. Res. Commun. 46, 1493–1498 (1972).
Soutar, A. K. et al. Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase. Biochemistry 14, 3057–3064 (1975).
Wang, N., Lan, D., Chen, W., Matsuura, F. & Tall, A. R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA 101, 9774–9779 (2004).
Acton, S. et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520 (1996).
Phillips, M. C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem. 289, 24020–24029 (2014).
Williams, D. L. et al. Scavenger receptor BI and cholesterol trafficking. Curr. Opin. Lipidol. 10, 329–339 (1999).
Shen, W.-J., Azhar, S. & Kraemer, F. B. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018).
Pownall, H. J., Rosales, C., Gillard, B. K. & Gotto, A. M. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-021-00538-z (2021).
de Grooth, G. J. et al. A review of CETP and its relation to atherosclerosis. J. Lipid Res. 45, 1967–1974 (2004).
Rader, D. J. & Hovingh, G. K. HDL and cardiovascular disease. Lancet 384, 618–625 (2014).
Sniderman, A. D., Junger, I., Holme, I., Aastveit, A. & Walldius, G. Errors that result from using the TC/HDL C ratio rather than the apoB/apoA-I ratio to identify the lipoprotein-related risk of vascular disease. J. Intern. Med. 259, 455–461 (2006).
McQueen, M. J. et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet 372, 224–233 (2008).
Tietjen, I. et al. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. Biochim. Biophys. Acta 1821, 416–424 (2012).
Roma, P. et al. In vivo metabolism of a mutant form of apolipoprotein A-I, apo A-IMilano, associated with familial hypoalphalipoproteinemia. J. Clin. Invest. 91, 1445–1452 (1993).
Alexander, E. T. et al. Structural and functional consequences of the Milano mutation (R173C) in human apolipoprotein A-I. J. Lipid Res. 50, 1409–1419 (2009).
Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).
Nicholls, S. J. et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 3, 806–814 (2018).
Gibson, C. M. et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I trial (ApoA-I Event Reducing in Ischemic Syndromes I). Circulation 134, 1918–1930 (2016).
Gibson, C. M. et al. Rationale and design of ApoA-I Event Reducing in Ischemic Syndromes II (AEGIS-II): a phase 3, multicenter, double-blind, randomized, placebo-controlled, parallel-group study to investigate the efficacy and safety of CSL112 in subjects after acute myocardial infarction. Am. Heart J. 231, 121–127 (2021).
Jackson, R. L., Baker, H. N., Gilliam, E. B. & Gotto, A. M. Primary structure of very low density apolipoprotein C-II of human plasma. Proc. Natl Acad. Sci. USA 74, 1942–1945 (1977).
Wolska, A. et al. Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 267, 49–60 (2017).
Péterfy, M. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism. Biochim. Biophys. Acta 1821, 790–794 (2012).
Allan, C. M. et al. Mobility of ‘HSPG-bound’ LPL explains how LPL is able to reach GPIHBP1 on capillaries. J. Lipid Res. 58, 216–225 (2017).
Davies, B. S. J. et al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab. 12, 42–52 (2010).
Goulbourne, C. N. et al. The GPIHBP1-LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries. Cell Metab. 19, 849–860 (2014).
McIlhargey, T. L., Yang, Y., Wong, H. & Hill, J. S. Identification of a lipoprotein lipase cofactor-binding site by chemical cross-linking and transfer of apolipoprotein C-II-responsive lipolysis from lipoprotein lipase to hepatic lipase. J. Biol. Chem. 278, 23027–23035 (2003).
Meyers, N. L., Larsson, M., Olivecrona, G. & Small, D. M. A pressure-dependent model for the regulation of lipoprotein lipase by apolipoprotein C-II. J. Biol. Chem. 290, 18029–18044 (2015).
Lookene, A., Beckstead, J. A., Nilsson, S., Olivecrona, G. & Ryan, R. O. Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism. J. Biol. Chem. 280, 25383–25387 (2005).
Nilsson, S. K., Heeren, J., Olivecrona, G. & Merkel, M. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 219, 15–21 (2011).
Norata, G. D., Tsimikas, S., Pirillo, A. & Catapano, A. L. Apolipoprotein C-III: from pathophysiology to pharmacology. Trends Pharmacol. Sci. 36, 675–687 (2015).
Fuior, E. V. & Gafencu, A. V. Apolipoprotein C1: its pleiotropic effects in lipid metabolism and beyond. Int. J. Mol. Sci. 20, 5939 (2019).
Santulli, G. Angiopoietin-like proteins: a comprehensive look. Front. Endocrinol. 5, 4 (2014).
Surendran, R. P. et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J. Intern. Med. 272, 185–196 (2012).
Brahm, A. J. & Hegele, R. A. Chylomicronaemia — current diagnosis and future therapies. Nat. Rev. Endocrinol. 11, 352–362 (2015).
Ooi, E. M. M., Barrett, P. H. R., Chan, D. C. & Watts, G. F. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin. Sci. 114, 611–624 (2008).
Lambert, D. A. et al. Hydrolysis of phospholipids by purified milk lipoprotein lipase. Effect of apoprotein CII, CIII, A and E, and synthetic fragments. Clin. Chim. Acta 291, 19–33 (2000).
Sacks, F. M. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr. Opin. Lipidol. 26, 56–63 (2015).
Olin-Lewis, K. et al. ApoC-III content of apoB-containing lipoproteins is associated with binding to the vascular proteoglycan biglycan. J. Lipid Res. 43, 1969–1977 (2002).
Hiukka, A. et al. ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes 58, 2018–2026 (2009).
Kawakami, A. et al. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase Cα-mediated nuclear factor-κB activation. Arterioscler. Thromb. Vasc. Biol. 27, 219–225 (2007).
Kawakami, A. et al. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 114, 681–687 (2006).
Jørgensen, A. B., Frikke-Schmidt, R., Nordestgaard, B. G. & Tybjærg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 371, 32–41 (2014).
TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute. et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 371, 22–31 (2014).
Taskinen, M.-R., Packard, C. J. & Borén, J. Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD. Curr. Atheroscler. Rep. 21, 27 (2019).
Gaudet, D. et al. Targeting APOC3 in the familial chylomicronemia syndrome. N. Engl. J. Med. 371, 2200–2206 (2014).
Witztum, J. L. et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N. Engl. J. Med. 381, 531–542 (2019).
Gouni-Berthold, I. et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 9, 264–275 (2021).
Wolska, A. et al. A dual apolipoprotein C-II mimetic-apolipoprotein C-III antagonist peptide lowers plasma triglycerides. Sci. Transl. Med. 12, eaaw7905 (2020).
Mahley, R. W. Apolipoprotein E: remarkable protein sheds light on cardiovascular and neurological diseases. Clin. Chem. 63, 14–20 (2017).
Huebbe, P. & Rimbach, G. Evolution of human apolipoprotein E (APOE) isoforms: gene structure, protein function and interaction with dietary factors. Ageing Res. Rev. 37, 146–161 (2017).
Huang, Y. & Mahley, R. W. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol. Dis. 72, 3–12 (2014).
Bradley, W. A. et al. Low-density lipoprotein receptor binding determinants switch from apolipoprotein E to apolipoprotein B during conversion of hypertriglyceridemic very-low-density lipoprotein to low-density lipoproteins. J. Biol. Chem. 259, 14728–14735 (1984).
Mahley, R. W. & Huang, Y. Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J. Clin. Invest. 117, 94–98 (2007).
Liu, H. et al. Characterization of recombinant wild type and site-directed mutations of apolipoprotein C-III: lipid binding, displacement of ApoE, and inhibition of lipoprotein lipase. Biochemistry 39, 9201–9212 (2000).
Gordts, P. L. S. M. et al. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J. Clin. Invest. 126, 2855–2866 (2016).
Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C.-C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).
Koopal, C., Marais, A. D. & Visseren, F. L. J. Familial dysbetalipoproteinemia: an underdiagnosed lipid disorder. Curr. Opin. Endocrinol. Diabetes Obes. 24, 133–139 (2017).
Mahley, R. W., Huang, Y. & Rall, S. C. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J. Lipid Res. 40, 1933–1949 (1999).
Williams, T., Borchelt, D. R. & Chakrabarty, P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol. Neurodegeneration 15, 8 (2020).
Cummings, J. L. et al. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer’s disease. Alzheimers Res. Ther. 8, 4 (2016).
Berglund, L. & Ramakrishnan, R. Lipoprotein(a): an elusive cardiovascular risk factor. Arterioscler. Thromb. Vasc. Biol. 24, 2219–2226 (2004).
Tsimikas, S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J. Am. Coll. Cardiol. 69, 692–711 (2017).
Schmidt, K., Noureen, A., Kronenberg, F. & Utermann, G. Structure, function, and genetics of lipoprotein (a). J. Lipid Res. 57, 1339–1359 (2016).
McLean, J. W. et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330, 132–137 (1987).
Fless, G. M., Rolih, C. A. & Scanu, A. M. Heterogeneity of human plasma lipoprotein (a). Isolation and characterization of the lipoprotein subspecies and their apoproteins. J. Biol. Chem. 259, 11470–11478 (1984).
Kronenberg, F. & Utermann, G. Lipoprotein(a): resurrected by genetics. J. Intern. Med. 273, 6–30 (2013).
Becker, L., Cook, P. M., Wright, T. G. & Koschinsky, M. L. Quantitative evaluation of the contribution of weak lysine-binding sites present within apolipoprotein(a) kringle IV types 6-8 to lipoprotein(a) assembly. J. Biol. Chem. 279, 2679–2688 (2004).
Koschinsky, M. L., Côté, G. P., Gabel, B. & van der Hoek, Y. Y. Identification of the cysteine residue in apolipoprotein(a) that mediates extracellular coupling with apolipoprotein B-100. J. Biol. Chem. 268, 19819–19825 (1993).
Callow, M. J. & Rubin, E. M. Site-specific mutagenesis demonstrates that cysteine 4326 of apolipoprotein B is required for covalent linkage with apolipoprotein (a) in vivo. J. Biol. Chem. 270, 23914–23917 (1995).
Cain, W. J. et al. Lipoprotein (a) is cleared from the plasma primarily by the liver in a process mediated by apolipoprotein (a). J. Lipid Res. 46, 2681–2691 (2005).
Shapiro, M. D. et al. Relationship between low-density lipoprotein cholesterol and lipoprotein(a) lowering in response to PCSK9 inhibition with evolocumab. J. Am. Heart Assoc. 8, e010932 (2019).
Boffa, M. B. & Koschinsky, M. L. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat. Rev. Cardiol. 16, 305–318 (2019).
Kaiser, Y. et al. Lipoprotein(a) is robustly associated with aortic valve calcium. Heart 107, 1422–1428 (2021).
Guddeti, R. R. et al. Lipoprotein(a) and calcific aortic valve stenosis: a systematic review. Prog. Cardiovasc. Dis. 63, 496–502 (2020).
Zheng, K. H. et al. Lipoprotein(a) and oxidized phospholipids promote valve calcification in patients with aortic stenosis. J. Am. Coll. Cardiol. 73, 2150–2162 (2019).
Emerging Risk Factors Collaboration et al.Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 302, 412–423 (2009).
Virani, S. S. et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 125, 241–249 (2012).
Kamstrup, P. R., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Extreme lipoprotein(a) levels and improved cardiovascular risk prediction. J. Am. Coll. Cardiol. 61, 1146–1156 (2013).
Willeit, P. et al. Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes in the Bruneck study. J. Am. Coll. Cardiol. 64, 851–860 (2014).
Mehta, A. et al. Lipoprotein(a) and family history predict cardiovascular disease risk. J. Am. Coll. Cardiol. 76, 781–793 (2020).
Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).
Lanktree, M. B., Anand, S. S., Yusuf, S. & Hegele, R. A., SHARE Investigators. Comprehensive analysis of genomic variation in the LPA locus and its relationship to plasma lipoprotein(a) in South Asians, Chinese, and European Caucasians. Circ. Cardiovasc. Genet. 3, 39–46 (2010).
Mack, S. et al. A genome-wide association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein (a) isoforms. J. Lipid Res. 58, 1834–1844 (2017).
Lippi, G., Favaloro, E. J. & Sanchis-Gomar, F. Antisense lipoprotein[a] therapy: State-of-the-art and future perspectives. Eur. J. Intern. Med. 76, 8–13 (2020).
Tsimikas, S. et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386, 1472–1483 (2015).
Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04023552 (2021).
Author information
Authors and Affiliations
Contributions
Both authors contributed substantially to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
M.D.S. has served on scientific advisory boards for Alexion, Amgen, Esperion and Novartis. A.M. declares no competing interests.
Additional information
Peer review information
Nature Reviews Cardiology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mehta, A., Shapiro, M.D. Apolipoproteins in vascular biology and atherosclerotic disease. Nat Rev Cardiol 19, 168–179 (2022). https://doi.org/10.1038/s41569-021-00613-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41569-021-00613-5
This article is cited by
-
NOS-like activity of CeO2 nanozymes contributes to diminishing the vascular plaques
Journal of Nanobiotechnology (2024)
-
Effects of a dietary intervention with lacto-ovo-vegetarian and Mediterranean diets on apolipoproteins and inflammatory cytokines: results from the CARDIVEG study
Nutrition & Metabolism (2024)
-
Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling
Clinical Proteomics (2024)
-
Metabolic dysfunction-associated steatotic liver disease and atherosclerosis
Current Diabetes Reports (2024)
-
Nitro-fatty acids: mechanisms of action, roles in metabolic diseases, and therapeutics
Current Medicine (2024)