Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apolipoproteins in vascular biology and atherosclerotic disease

Abstract

Apolipoproteins are important structural components of plasma lipoproteins that influence vascular biology and atherosclerotic disease pathophysiology by regulating lipoprotein metabolism. Clinically important apolipoproteins related to lipid metabolism and atherogenesis include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a). Apolipoprotein B-100 is the major structural component of VLDL, IDL, LDL and lipoprotein(a). Apolipoprotein B-48 is a truncated isoform of apolipoprotein B-100 that forms the backbone of chylomicrons. Apolipoprotein A-I provides the scaffolding for lipidation of HDL and has an important role in reverse cholesterol transport. Apolipoproteins C-II, apolipoprotein C-III and apolipoprotein E are involved in triglyceride-rich lipoprotein metabolism. Apolipoprotein(a) covalently binds to apolipoprotein B-100 to form lipoprotein(a). In this Review, we discuss the mechanisms by which these apolipoproteins regulate lipoprotein metabolism and thereby influence vascular biology and atherosclerotic disease. Advances in the understanding of apolipoprotein biology and their translation into therapeutic agents to reduce the risk of cardiovascular disease are also highlighted.

Key points

  • Apolipoproteins are specialized proteins that regulate lipoprotein metabolism and influence normal human vascular biology and atherosclerotic cardiovascular disease.

  • Clinically important apolipoproteins include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a).

  • Apolipoprotein B-100, apolipoprotein B-48 and apolipoprotein(a) form the structural backbone of atherogenic lipoproteins, including VLDL, IDL, LDL, chylomicrons and lipoprotein(a).

  • Apolipoprotein A-I regulates HDL metabolism and reverses cholesterol transport.

  • Apolipoprotein C-II, apolipoprotein C-III and apolipoprotein E regulate triglyceride-rich lipoprotein metabolism.

  • Therapeutic agents directly targeting apolipoproteins have been developed, and their effectiveness in reducing risk in populations of patients at high risk of atherosclerotic cardiovascular disease is being evaluated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ApoB-100 in human health and atherosclerotic disease.
Fig. 2: ApoA-I and reverse cholesterol transport.
Fig. 3: Role of apoC-II and apoC-III in TRL metabolism.
Fig. 4: Atherogenic mechanisms of apo(a).

Similar content being viewed by others

References

  1. Mahley, R. W., Innerarity, T. L., Rall, S. C. & Weisgraber, K. H. Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 25, 1277–1294 (1984).

    CAS  PubMed  Google Scholar 

  2. Pownall, H. J., Rosales, C., Gillard, B. K., Moon, J. E. & Gotto, A. M. in Clinical Lipidology: A Companion to Braunwald’s Heart Disease 2nd edn Ch. 1 (ed. Ballantyne, C. M.) 1–10 (Saunders, 2014).

  3. Dominiczak, M. H. & Caslake, M. J. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann. Clin. Biochem. 48, 498–515 (2011).

    CAS  PubMed  Google Scholar 

  4. Linton, M. F. et al in Endotext (eds Feingold, K. R. et al.) 1–142 (MDText.com, 2000).

  5. Ritchie, H. & Roser, M. Causes of death (Our World in Data, 2019).

  6. Young, S. G. Recent progress in understanding apolipoprotein B. Circulation 82, 1574–1594 (1990).

    CAS  PubMed  Google Scholar 

  7. Segrest, J. P., Jones, M. K., De Loof, H. & Dashti, N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42, 1346–1367 (2001).

    CAS  PubMed  Google Scholar 

  8. Fazio, S. & Linton, M. F. in Clinical Lipidology: A Companion to Braunwald’s Heart Disease Ch. 2 (ed Ballantyne, C. M.) 11–25 (2009).

  9. Yao, Z., Tran, K. & McLeod, R. S. Intracellular degradation of newly synthesized apolipoprotein B. J. Lipid Res. 38, 1937–1953 (1997).

    CAS  PubMed  Google Scholar 

  10. Fisher, E. A. & Ginsberg, H. N. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J. Biol. Chem. 277, 17377–17380 (2002).

    CAS  PubMed  Google Scholar 

  11. Pan, M. et al. Presecretory oxidation, aggregation, and autophagic destruction of apoprotein-B: a pathway for late-stage quality control. Proc. Natl Acad. Sci. USA 105, 5862–5867 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Olofsson, S. O., Asp, L. & Borén, J. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr. Opin. Lipidol. 10, 341–346 (1999).

    CAS  PubMed  Google Scholar 

  13. Gusarova, V., Brodsky, J. L. & Fisher, E. A. Apolipoprotein B100 exit from the endoplasmic reticulum (ER) is COPII-dependent, and its lipidation to very low density lipoprotein occurs post-ER. J. Biol. Chem. 278, 48051–48058 (2003).

    CAS  PubMed  Google Scholar 

  14. Feingold, K. R. in Endotext (eds Feingold, K. R. et al.) 1–20 (MDText.com, 2000).

  15. Mead, J. R., Irvine, S. A. & Ramji, D. P. Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med. 80, 753–769 (2002).

    CAS  PubMed  Google Scholar 

  16. Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Tabas, I., Williams, K. J. & Borén, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

    CAS  PubMed  Google Scholar 

  18. Borén, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest. 101, 2658–2664 (1998).

    PubMed  PubMed Central  Google Scholar 

  19. Parthasarathy, S., Raghavamenon, A., Garelnabi, M. O. & Santanam, N. Oxidized low-density lipoprotein. Methods Mol. Biol. 610, 403–417 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yurdagul, A., Finney, A. C., Woolard, M. D. & Orr, A. W. The arterial microenvironment: the where and why of atherosclerosis. Biochem. J. 473, 1281–1295 (2016).

    CAS  PubMed  Google Scholar 

  21. Tabas, I. & Lichtman, A. H. Monocyte-macrophages and T cells in atherosclerosis. Immunity 47, 621–634 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldstein, J. L. & Brown, M. S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29, 431–438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moore, K. J. & Freeman, M. W. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 26, 1702–1711 (2006).

    CAS  PubMed  Google Scholar 

  24. Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R. & Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 16, 727–744 (2019).

    PubMed  Google Scholar 

  25. Sniderman, A. D. et al. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol. 4, 1287–1295 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Sniderman, A. D., Islam, S., Yusuf, S. & McQueen, M. J. Discordance analysis of apolipoprotein B and non-high density lipoprotein cholesterol as markers of cardiovascular risk in the INTERHEART study. Atherosclerosis 225, 444–449 (2012).

    CAS  PubMed  Google Scholar 

  27. Mora, S., Buring, J. E. & Ridker, P. M. Discordance of low-density lipoprotein (LDL) cholesterol with alternative LDL-related measures and future coronary events. Circulation 129, 553–561 (2014).

    CAS  PubMed  Google Scholar 

  28. Pencina, M. J. et al. Apolipoprotein B improves risk assessment of future coronary heart disease in the Framingham Heart Study beyond LDL-C and non-HDL-C. Eur. J. Prev. Cardiol. 22, 1321–1327 (2015).

    PubMed  Google Scholar 

  29. Wilkins, J. T., Li, R. C., Sniderman, A., Chan, C. & Lloyd-Jones, D. M. Discordance between apolipoprotein B and LDL-cholesterol in young adults predicts coronary artery calcification: the CARDIA Study. J. Am. Coll. Cardiol. 67, 193–201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lawler, P. R. et al. Discordance between circulating atherogenic cholesterol mass and lipoprotein particle concentration in relation to future coronary events in women. Clin. Chem. 63, 870–879 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ference, B. A. et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk. JAMA 318, 947–956 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ference, B. A. et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321, 364–373 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. de Graaf, J., Couture, P. & Sniderman, A. A diagnostic algorithm for the atherogenic apolipoprotein B dyslipoproteinemias. Nat. Clin. Pract. Endocrinol. Metab. 4, 608–618 (2008).

    PubMed  Google Scholar 

  34. Sniderman, A., Couture, P. & de Graaf, J. Diagnosis and treatment of apolipoprotein B dyslipoproteinemias. Nat. Rev. Endocrinol. 6, 335–346 (2010).

    CAS  PubMed  Google Scholar 

  35. Blanco, A. & Blanco, G. in Medical Biochemistry Ch. 15 (eds Blanco, A. & Blanco, G.) 325–365 (Academic Press, 2017).

  36. Spady, D. K. Hepatic clearance of plasma low density lipoproteins. Semin. Liver Dis. 12, 373–385 (1992).

    CAS  PubMed  Google Scholar 

  37. Watts, G. F. et al. Familial hypercholesterolaemia: evolving knowledge for designing adaptive models of care. Nat. Rev. Cardiol. 17, 360–377 (2020).

    PubMed  Google Scholar 

  38. Andersen, L. H., Miserez, A. R., Ahmad, Z. & Andersen, R. L. Familial defective apolipoprotein B-100: a review. J. Clin. Lipidol. 10, 1297–1302 (2016).

    PubMed  Google Scholar 

  39. Linton, M. F., Farese, R. V. & Young, S. G. Familial hypobetalipoproteinemia. J. Lipid Res. 34, 521–541 (1993).

    CAS  PubMed  Google Scholar 

  40. Ross, R. S. et al. Homozygous hypobetalipoproteinemia: a disease distinct from abetalipoproproteinemia at the molecular level. J.Clin. Invest. 81, 590–595 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wong, E. & Goldberg, T. Mipomersen (kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. P. T. 39, 119–122 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).

    CAS  PubMed  Google Scholar 

  43. Stein, E. A. et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia. Circulation 126, 2283–2292 (2012).

    CAS  PubMed  Google Scholar 

  44. Thomas, G. S. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 62, 2178–2184 (2013).

    CAS  PubMed  Google Scholar 

  45. Nakajima, K. et al. Apolipoprotein B-48: a unique marker of chylomicron metabolism. Adv. Clin. Chem. 64, 117–177 (2014).

    CAS  PubMed  Google Scholar 

  46. Powell, L. M. et al. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50, 831–840 (1987).

    CAS  PubMed  Google Scholar 

  47. Chen, S. H. et al. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238, 363–366 (1987).

    CAS  PubMed  Google Scholar 

  48. Black, D. D. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G519–G524 (2007).

    CAS  PubMed  Google Scholar 

  49. Zeng, B. J., Mortimer, B. C., Martins, I. J., Seydel, U. & Redgrave, T. G. Chylomicron remnant uptake is regulated by the expression and function of heparan sulfate proteoglycan in hepatocytes. J. Lipid Res. 39, 845–860 (1998).

    CAS  PubMed  Google Scholar 

  50. Jackson, K. G., Poppitt, S. D. & Minihane, A. M. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis 220, 22–33 (2012).

    CAS  PubMed  Google Scholar 

  51. Breslow, J. L. et al. Isolation and characterization of cDNA clones for human apolipoprotein A-I. Proc. Natl Acad. Sci. USA 79, 6861–6865 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Brewer, H. B. et al. The amino acid sequence of human APOA-I, an apolipoprotein isolated from high density lipoproteins. Biochem. Biophys. Res. Commun. 80, 623–630 (1978).

    CAS  PubMed  Google Scholar 

  53. Bojanovski, D. et al. Human apolipoprotein A-I isoprotein metabolism: proapoA-I conversion to mature apoA-I. J. Lipid Res. 26, 185–193 (1985).

    CAS  PubMed  Google Scholar 

  54. Hammad, S. M. et al. Cubilin, the endocytic receptor for intrinsic factor-vitamin B12 complex, mediates high-density lipoprotein holoparticle endocytosis. Proc. Natl Acad. Sci. USA 96, 10158–10163 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gillotte, K. L. et al. Apolipoprotein-mediated plasma membrane microsolubilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid. J. Biol. Chem. 274, 2021–2028 (1999).

    CAS  PubMed  Google Scholar 

  56. Oram, J. F. & Vaughan, A. M. ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Curr. Opin. Lipidol. 11, 253–260 (2000).

    CAS  PubMed  Google Scholar 

  57. Glomset, J. A. The plasma lecithins:cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167 (1968).

    CAS  PubMed  Google Scholar 

  58. Fielding, C. J., Shore, V. G. & Fielding, P. E. A protein cofactor of lecithin:cholesterol acyltransferase. Biochem. Biophys. Res. Commun. 46, 1493–1498 (1972).

    CAS  PubMed  Google Scholar 

  59. Soutar, A. K. et al. Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase. Biochemistry 14, 3057–3064 (1975).

    CAS  PubMed  Google Scholar 

  60. Wang, N., Lan, D., Chen, W., Matsuura, F. & Tall, A. R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA 101, 9774–9779 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Acton, S. et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520 (1996).

    CAS  PubMed  Google Scholar 

  62. Phillips, M. C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem. 289, 24020–24029 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Williams, D. L. et al. Scavenger receptor BI and cholesterol trafficking. Curr. Opin. Lipidol. 10, 329–339 (1999).

    CAS  PubMed  Google Scholar 

  64. Shen, W.-J., Azhar, S. & Kraemer, F. B. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018).

    CAS  PubMed  Google Scholar 

  65. Pownall, H. J., Rosales, C., Gillard, B. K. & Gotto, A. M. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-021-00538-z (2021).

    Article  PubMed  Google Scholar 

  66. de Grooth, G. J. et al. A review of CETP and its relation to atherosclerosis. J. Lipid Res. 45, 1967–1974 (2004).

    PubMed  Google Scholar 

  67. Rader, D. J. & Hovingh, G. K. HDL and cardiovascular disease. Lancet 384, 618–625 (2014).

    CAS  PubMed  Google Scholar 

  68. Sniderman, A. D., Junger, I., Holme, I., Aastveit, A. & Walldius, G. Errors that result from using the TC/HDL C ratio rather than the apoB/apoA-I ratio to identify the lipoprotein-related risk of vascular disease. J. Intern. Med. 259, 455–461 (2006).

    CAS  PubMed  Google Scholar 

  69. McQueen, M. J. et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet 372, 224–233 (2008).

    CAS  PubMed  Google Scholar 

  70. Tietjen, I. et al. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. Biochim. Biophys. Acta 1821, 416–424 (2012).

    CAS  PubMed  Google Scholar 

  71. Roma, P. et al. In vivo metabolism of a mutant form of apolipoprotein A-I, apo A-IMilano, associated with familial hypoalphalipoproteinemia. J. Clin. Invest. 91, 1445–1452 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Alexander, E. T. et al. Structural and functional consequences of the Milano mutation (R173C) in human apolipoprotein A-I. J. Lipid Res. 50, 1409–1419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).

    CAS  PubMed  Google Scholar 

  74. Nicholls, S. J. et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 3, 806–814 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Gibson, C. M. et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I trial (ApoA-I Event Reducing in Ischemic Syndromes I). Circulation 134, 1918–1930 (2016).

    Google Scholar 

  76. Gibson, C. M. et al. Rationale and design of ApoA-I Event Reducing in Ischemic Syndromes II (AEGIS-II): a phase 3, multicenter, double-blind, randomized, placebo-controlled, parallel-group study to investigate the efficacy and safety of CSL112 in subjects after acute myocardial infarction. Am. Heart J. 231, 121–127 (2021).

    CAS  PubMed  Google Scholar 

  77. Jackson, R. L., Baker, H. N., Gilliam, E. B. & Gotto, A. M. Primary structure of very low density apolipoprotein C-II of human plasma. Proc. Natl Acad. Sci. USA 74, 1942–1945 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wolska, A. et al. Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 267, 49–60 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Péterfy, M. Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism. Biochim. Biophys. Acta 1821, 790–794 (2012).

    PubMed  Google Scholar 

  80. Allan, C. M. et al. Mobility of ‘HSPG-bound’ LPL explains how LPL is able to reach GPIHBP1 on capillaries. J. Lipid Res. 58, 216–225 (2017).

    CAS  PubMed  Google Scholar 

  81. Davies, B. S. J. et al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab. 12, 42–52 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Goulbourne, C. N. et al. The GPIHBP1-LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries. Cell Metab. 19, 849–860 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. McIlhargey, T. L., Yang, Y., Wong, H. & Hill, J. S. Identification of a lipoprotein lipase cofactor-binding site by chemical cross-linking and transfer of apolipoprotein C-II-responsive lipolysis from lipoprotein lipase to hepatic lipase. J. Biol. Chem. 278, 23027–23035 (2003).

    CAS  PubMed  Google Scholar 

  84. Meyers, N. L., Larsson, M., Olivecrona, G. & Small, D. M. A pressure-dependent model for the regulation of lipoprotein lipase by apolipoprotein C-II. J. Biol. Chem. 290, 18029–18044 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lookene, A., Beckstead, J. A., Nilsson, S., Olivecrona, G. & Ryan, R. O. Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism. J. Biol. Chem. 280, 25383–25387 (2005).

    CAS  PubMed  Google Scholar 

  86. Nilsson, S. K., Heeren, J., Olivecrona, G. & Merkel, M. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 219, 15–21 (2011).

    CAS  PubMed  Google Scholar 

  87. Norata, G. D., Tsimikas, S., Pirillo, A. & Catapano, A. L. Apolipoprotein C-III: from pathophysiology to pharmacology. Trends Pharmacol. Sci. 36, 675–687 (2015).

    CAS  PubMed  Google Scholar 

  88. Fuior, E. V. & Gafencu, A. V. Apolipoprotein C1: its pleiotropic effects in lipid metabolism and beyond. Int. J. Mol. Sci. 20, 5939 (2019).

    CAS  PubMed Central  Google Scholar 

  89. Santulli, G. Angiopoietin-like proteins: a comprehensive look. Front. Endocrinol. 5, 4 (2014).

    Google Scholar 

  90. Surendran, R. P. et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J. Intern. Med. 272, 185–196 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Brahm, A. J. & Hegele, R. A. Chylomicronaemia — current diagnosis and future therapies. Nat. Rev. Endocrinol. 11, 352–362 (2015).

    CAS  PubMed  Google Scholar 

  92. Ooi, E. M. M., Barrett, P. H. R., Chan, D. C. & Watts, G. F. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin. Sci. 114, 611–624 (2008).

    CAS  Google Scholar 

  93. Lambert, D. A. et al. Hydrolysis of phospholipids by purified milk lipoprotein lipase. Effect of apoprotein CII, CIII, A and E, and synthetic fragments. Clin. Chim. Acta 291, 19–33 (2000).

    CAS  PubMed  Google Scholar 

  94. Sacks, F. M. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr. Opin. Lipidol. 26, 56–63 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Olin-Lewis, K. et al. ApoC-III content of apoB-containing lipoproteins is associated with binding to the vascular proteoglycan biglycan. J. Lipid Res. 43, 1969–1977 (2002).

    CAS  PubMed  Google Scholar 

  96. Hiukka, A. et al. ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes 58, 2018–2026 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kawakami, A. et al. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase Cα-mediated nuclear factor-κB activation. Arterioscler. Thromb. Vasc. Biol. 27, 219–225 (2007).

    CAS  PubMed  Google Scholar 

  98. Kawakami, A. et al. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 114, 681–687 (2006).

    CAS  PubMed  Google Scholar 

  99. Jørgensen, A. B., Frikke-Schmidt, R., Nordestgaard, B. G. & Tybjærg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 371, 32–41 (2014).

    PubMed  Google Scholar 

  100. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute. et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 371, 22–31 (2014).

    Google Scholar 

  101. Taskinen, M.-R., Packard, C. J. & Borén, J. Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD. Curr. Atheroscler. Rep. 21, 27 (2019).

    PubMed  PubMed Central  Google Scholar 

  102. Gaudet, D. et al. Targeting APOC3 in the familial chylomicronemia syndrome. N. Engl. J. Med. 371, 2200–2206 (2014).

    PubMed  Google Scholar 

  103. Witztum, J. L. et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N. Engl. J. Med. 381, 531–542 (2019).

    CAS  PubMed  Google Scholar 

  104. Gouni-Berthold, I. et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 9, 264–275 (2021).

    CAS  PubMed  Google Scholar 

  105. Wolska, A. et al. A dual apolipoprotein C-II mimetic-apolipoprotein C-III antagonist peptide lowers plasma triglycerides. Sci. Transl. Med. 12, eaaw7905 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mahley, R. W. Apolipoprotein E: remarkable protein sheds light on cardiovascular and neurological diseases. Clin. Chem. 63, 14–20 (2017).

    CAS  PubMed  Google Scholar 

  107. Huebbe, P. & Rimbach, G. Evolution of human apolipoprotein E (APOE) isoforms: gene structure, protein function and interaction with dietary factors. Ageing Res. Rev. 37, 146–161 (2017).

    CAS  PubMed  Google Scholar 

  108. Huang, Y. & Mahley, R. W. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol. Dis. 72, 3–12 (2014).

    CAS  PubMed  Google Scholar 

  109. Bradley, W. A. et al. Low-density lipoprotein receptor binding determinants switch from apolipoprotein E to apolipoprotein B during conversion of hypertriglyceridemic very-low-density lipoprotein to low-density lipoproteins. J. Biol. Chem. 259, 14728–14735 (1984).

    CAS  PubMed  Google Scholar 

  110. Mahley, R. W. & Huang, Y. Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J. Clin. Invest. 117, 94–98 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, H. et al. Characterization of recombinant wild type and site-directed mutations of apolipoprotein C-III: lipid binding, displacement of ApoE, and inhibition of lipoprotein lipase. Biochemistry 39, 9201–9212 (2000).

    CAS  PubMed  Google Scholar 

  112. Gordts, P. L. S. M. et al. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J. Clin. Invest. 126, 2855–2866 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C.-C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Koopal, C., Marais, A. D. & Visseren, F. L. J. Familial dysbetalipoproteinemia: an underdiagnosed lipid disorder. Curr. Opin. Endocrinol. Diabetes Obes. 24, 133–139 (2017).

    CAS  PubMed  Google Scholar 

  115. Mahley, R. W., Huang, Y. & Rall, S. C. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J. Lipid Res. 40, 1933–1949 (1999).

    CAS  PubMed  Google Scholar 

  116. Williams, T., Borchelt, D. R. & Chakrabarty, P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol. Neurodegeneration 15, 8 (2020).

    CAS  Google Scholar 

  117. Cummings, J. L. et al. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer’s disease. Alzheimers Res. Ther. 8, 4 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. Berglund, L. & Ramakrishnan, R. Lipoprotein(a): an elusive cardiovascular risk factor. Arterioscler. Thromb. Vasc. Biol. 24, 2219–2226 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tsimikas, S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J. Am. Coll. Cardiol. 69, 692–711 (2017).

    CAS  PubMed  Google Scholar 

  120. Schmidt, K., Noureen, A., Kronenberg, F. & Utermann, G. Structure, function, and genetics of lipoprotein (a). J. Lipid Res. 57, 1339–1359 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. McLean, J. W. et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330, 132–137 (1987).

    CAS  PubMed  Google Scholar 

  122. Fless, G. M., Rolih, C. A. & Scanu, A. M. Heterogeneity of human plasma lipoprotein (a). Isolation and characterization of the lipoprotein subspecies and their apoproteins. J. Biol. Chem. 259, 11470–11478 (1984).

    CAS  PubMed  Google Scholar 

  123. Kronenberg, F. & Utermann, G. Lipoprotein(a): resurrected by genetics. J. Intern. Med. 273, 6–30 (2013).

    CAS  PubMed  Google Scholar 

  124. Becker, L., Cook, P. M., Wright, T. G. & Koschinsky, M. L. Quantitative evaluation of the contribution of weak lysine-binding sites present within apolipoprotein(a) kringle IV types 6-8 to lipoprotein(a) assembly. J. Biol. Chem. 279, 2679–2688 (2004).

    CAS  PubMed  Google Scholar 

  125. Koschinsky, M. L., Côté, G. P., Gabel, B. & van der Hoek, Y. Y. Identification of the cysteine residue in apolipoprotein(a) that mediates extracellular coupling with apolipoprotein B-100. J. Biol. Chem. 268, 19819–19825 (1993).

    CAS  PubMed  Google Scholar 

  126. Callow, M. J. & Rubin, E. M. Site-specific mutagenesis demonstrates that cysteine 4326 of apolipoprotein B is required for covalent linkage with apolipoprotein (a) in vivo. J. Biol. Chem. 270, 23914–23917 (1995).

    CAS  PubMed  Google Scholar 

  127. Cain, W. J. et al. Lipoprotein (a) is cleared from the plasma primarily by the liver in a process mediated by apolipoprotein (a). J. Lipid Res. 46, 2681–2691 (2005).

    CAS  PubMed  Google Scholar 

  128. Shapiro, M. D. et al. Relationship between low-density lipoprotein cholesterol and lipoprotein(a) lowering in response to PCSK9 inhibition with evolocumab. J. Am. Heart Assoc. 8, e010932 (2019).

    PubMed  PubMed Central  Google Scholar 

  129. Boffa, M. B. & Koschinsky, M. L. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat. Rev. Cardiol. 16, 305–318 (2019).

    PubMed  Google Scholar 

  130. Kaiser, Y. et al. Lipoprotein(a) is robustly associated with aortic valve calcium. Heart 107, 1422–1428 (2021).

    CAS  PubMed  Google Scholar 

  131. Guddeti, R. R. et al. Lipoprotein(a) and calcific aortic valve stenosis: a systematic review. Prog. Cardiovasc. Dis. 63, 496–502 (2020).

    PubMed  Google Scholar 

  132. Zheng, K. H. et al. Lipoprotein(a) and oxidized phospholipids promote valve calcification in patients with aortic stenosis. J. Am. Coll. Cardiol. 73, 2150–2162 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Emerging Risk Factors Collaboration et al.Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 302, 412–423 (2009).

    Google Scholar 

  134. Virani, S. S. et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 125, 241–249 (2012).

    CAS  PubMed  Google Scholar 

  135. Kamstrup, P. R., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Extreme lipoprotein(a) levels and improved cardiovascular risk prediction. J. Am. Coll. Cardiol. 61, 1146–1156 (2013).

    CAS  PubMed  Google Scholar 

  136. Willeit, P. et al. Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes in the Bruneck study. J. Am. Coll. Cardiol. 64, 851–860 (2014).

    PubMed  Google Scholar 

  137. Mehta, A. et al. Lipoprotein(a) and family history predict cardiovascular disease risk. J. Am. Coll. Cardiol. 76, 781–793 (2020).

    CAS  PubMed  Google Scholar 

  138. Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).

    CAS  PubMed  Google Scholar 

  139. Lanktree, M. B., Anand, S. S., Yusuf, S. & Hegele, R. A., SHARE Investigators. Comprehensive analysis of genomic variation in the LPA locus and its relationship to plasma lipoprotein(a) in South Asians, Chinese, and European Caucasians. Circ. Cardiovasc. Genet. 3, 39–46 (2010).

    CAS  PubMed  Google Scholar 

  140. Mack, S. et al. A genome-wide association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein (a) isoforms. J. Lipid Res. 58, 1834–1844 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lippi, G., Favaloro, E. J. & Sanchis-Gomar, F. Antisense lipoprotein[a] therapy: State-of-the-art and future perspectives. Eur. J. Intern. Med. 76, 8–13 (2020).

    CAS  PubMed  Google Scholar 

  142. Tsimikas, S. et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386, 1472–1483 (2015).

    CAS  PubMed  Google Scholar 

  143. Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020).

    CAS  PubMed  Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04023552 (2021).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Michael D. Shapiro.

Ethics declarations

Competing interests

M.D.S. has served on scientific advisory boards for Alexion, Amgen, Esperion and Novartis. A.M. declares no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, A., Shapiro, M.D. Apolipoproteins in vascular biology and atherosclerotic disease. Nat Rev Cardiol 19, 168–179 (2022). https://doi.org/10.1038/s41569-021-00613-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00613-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing