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Atherosclerosis is a chronic inflammatory disease initi-
ated by the subendothelial accumulation of lipids that 
trigger maladaptive, non- resolving immune responses1–4. 
The causal role of the immune system and inflammation 
in atherosclerosis has been well established in preclin-
ical models2,3, and inflammation remains a substantial 
residual risk factor for cardiovascular events in optimally 
treated patients5. The positive results of the CANTOS6 
and COLCOT7 trials in the past 4 years proved the path-
ogenic role of inflammation in atherosclerosis in patients. 
Importantly, the negative results of the CIRT trial8, which 
targeted inflammation broadly with the use of low- dose 
methotrexate in patients with previous myocardial 
infarction or multivessel coronary artery disease who had 
either type 2 diabetes mellitus or metabolic syndrome, 
also indicated that not all immunotherapies are athero-
protective. Moreover, new evidence is emerging showing 
that a one- size- fits- all therapeutic approach is ineffective 
due to variation in patient responses. For instance, in the 
CANTOS trial6, a greater benefit with canakinumab ther-
apy, a monoclonal antibody against IL-1β, was seen in 
responder patients in whom the levels of inflammation 
decreased 3 months after treatment initiation (meas-
ured as a decrease in high- sensitivity C- reactive protein 
(hsCRP) to <2 mg/l). The results of other clinical trials 

suggest that, to be effective, immunotherapies need to 
be tailored to specific groups of patients with atheroscle-
rotic cardiovascular disease depending on their clinical 
status. For example, the LoDoCo2 trial9 showed the effi-
cacy of low- dose colchicine (also tested in the COLCOT 
trial7) for the secondary prevention of cardio vascular 
events in patients with stable coronary artery disease. 
This effect was associated with a reduction in the cir-
culating levels of hsCRP and of proteins involved in the 
activation of the NLRP3 inflammasome10,11. However, 
treatment with colchicine did not reduce the risk of 
cardiovascular death, and the incidences of death from 
any cause and non- cardiovascular death were higher in 
the colchicine- treated group than in the placebo group. 
Moreover, in the COPS trial12 in patients with acute coro-
nary syndrome, colchicine treatment resulted in a higher 
mortality and had no benefit in reducing cardiovascular 
outcomes at 12 months compared with placebo.

Most research efforts so far have focused on reducing 
the inflammatory status of patients with atherosclerosis, 
an approach that is typically associated with an increased 
risk of infection6,7. However, new strategies that harness 
anti- atherosclerotic functions of the immune system, 
including the use of low- dose IL-2 to promote the polar-
ization of anti- atherosclerotic regulatory T (Treg) cells, 
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are under investigation in the ongoing LILACS13 and 
IVORY14 clinical trials.

Nevertheless, despite remarkable advances in the 
field, including the identification of novel molecular 
targets and the development of new experimental treat-
ments (extensively reviewed prevously15), the clinical 
translation of many immunotherapies identified by 
single- target drug discovery has proved difficult16,17. 
Most studies have focused on systemic immune alter-
ations in patients with atherosclerotic cardiovascular 
disease18, while our knowledge of the cellular compo-
sition of the human atherosclerotic plaque, where the 
plaque disruption underlying the clinical events occurs, 
remains limited. The importance of immune cell plas-
ticity in atherosclerosis — with immune cells acquiring 
pro- atherogenic and anti- atherogenic functions across 
a spectrum of differentiation states that determine the 
fate of an atherosclerotic lesion — has long been inves-
tigated in animal models1,19. However, the delineation of  
the dynamic alterations and crosstalk between hetero-
geneous immune cell subsets in the human atheroscle-
rotic plaque has been restricted to low- dimensional 
approaches that do not capture the coordinated activity 
of heterogeneous cells in health and disease states20.

The past decade has seen a revolutionary advance 
in single- cell technologies — such as single- cell mass 
cytometry (cytometry by time of flight; CyTOF)21,22, 
single- cell RNA sequencing (scRNA- seq)23 and cellular 
indexing of transcriptomes and epitopes by sequencing 
(CITE- seq)24 — that has enabled high- dimensional pro-
filing and analysis of the proteome and transcriptome 
of individual cells with unprecedented resolution and 
throughput. Therefore, single- cell technologies are 
ideal for mapping human atherosclerotic plaques and 
have already provided a first glimpse of newly identi-
fied immune alterations that are specific to the human 
plaque microenvironment and are associated with  
clinical complications25 (Fig. 1).

In this Review, we discuss how single- cell technolo-
gies can advance our understanding of the cellular and 
molecular architecture of human atherosclerotic plaques 
to advance drug discovery. First, single- cell approaches 
provide the high- dimensional molecular resolution that 
is required to resolve heterogeneous cell populations on 
the basis of the molecular make- up of each cell in the com-
plex plaque microenvironment. Second, single- cell data  
offer the opportunity to computationally predict cell  

trajectories of differentiation and infer the key cell–cell 
communications that contribute to specific cell func-
tions in the atherosclerotic niche. We also argue that to 
identify new molecular targets successfully, future stud-
ies will need to harness single- cell studies in humans 
used as model systems, coupled with rigorous valida-
tion in relevant experimental models. Finally, we discuss 
the promise of single- cell omics studies in humans for 
guiding the design of new personalized immunother-
apies and immune monitoring tools in patients with  
atherosclerotic cardiovascular disease.

Immune mechanism in atherosclerosis
Decades of intense research efforts have rigorously estab-
lished fundamental steps in atherosclerotic plaque for-
mation and progression. This knowledge is largely based 
on the use of well- validated animal models of athero-
sclerosis and state- of- the art pathology studies of human 
plaques1–3,26–28. Key atherosclerotic mechanisms include 
the immune reaction to lipid accumulation in the arterial 
wall. Of particular importance in atherogenesis are inflam-
matory macrophages and foam cell formation in plaque 
progression, processes that have been extensively reviewed 
previously1–3. Cholesterol loading of macrophages triggers 
the synthesis of pro- inflammatory cytokines, including the 
activation of the NLRP3–IL-1β pathway29,30. As the dis-
ease progresses, macrophage function deteriorates, their 
capacity to metabolize and clear lipids from the arterial 
wall becomes inefficient, and they undergo apoptosis 
contributing to the formation of a necrotic core. Defective 
efferocytosis — the clearing of apoptotic cells by macro-
phages, which promotes inflammation resolution —  
further promotes a chronic non- resolving inflammatory 
state that results in plaque progression31. Several research 
groups have provided strong evidence that restoring 
macro phage efferocytosis and inducing a reparative  
phenotype promotes plaque regression1–3. Preclinical 
studies (extensively reviewed previously32,33) have shown 
that macrophage phenotype and function are dictated by 
complex microenvironmental cues that promote either 
pro- inflammatory responses or reparative functions to 
promote healing and restore tissue homeostasis. Several 
subsets of pro- atherogenic or pro- resolving macrophages 
have been reported in atherosclerotic plaques in animal 
models and are likely to correspond to distinct functional 
states rather than predetermined cell subsets32,33. Similarly, 
foam cell formation can be either pro- atherosclerotic or 
reparative depending on environmental cues that regu-
late or impair the capacity of the macrophage to uptake, 
metabolize and remove cholesterol from the atheroscle-
rotic plaque32,33. Overall, these preclinical studies highlight 
the fundamental role of macrophages in atherosclerosis 
and provide the important concept that manipulating 
macrophage polarization to restore their reparative func-
tions is a promising strategy to halt plaque inflammation 
and promote plaque regression.

Dysregulated innate immune responses within the 
plaque microenvironment are tied to equally complex 
alterations of the adaptive immune system. T cell subsets 
in progressing and regressing atherosclerotic plaques 
are highly heterogeneous and have a dynamic spectrum 
of pro- atherogenic and anti- atherogenic functions3,34. 

Key points

•	atherosclerosis is initiated by the subendothelial accumulation of lipids that trigger 
maladaptive, non- resolving, chronic inflammation.

•	anti- inflammatory interventions have substantially reduced the risk of adverse 
cardiovascular events in patients with recent acute myocardial infarction.

•	emerging data from clinical trials published since 2017 show that successful 
treatments need to be tailored to specific groups of patients.

•	Single- cell technologies are ideal for studying immune system dynamics and can 
advance our understanding of the cellular and molecular architecture of human 
atherosclerotic tissue to advance drug discovery.

•	The inclusion of single- cell immune- monitoring tools in early phases of drug testing 
could advance drug discovery and precision medicine in cardiovascular disease to 
reduce the risk of adverse cardiovascular outcomes and death in patients.
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CD4+ T helper 1 (TH1) cells have pro- atherogenic func-
tions, whereas Treg cells canonically have atheroprotec-
tive roles, although Treg cell subsets with detrimental 
effects in atherosclerosis have been described34. Other 
CD4+ T cell subsets including TH2 cells and TH17 cells 
are present in the plaque microenvironment but their 
role in atherosclerosis is still controversial and mecha-
nistically not fully understood34–38. In addition to macro-
phages and T cells, other innate and adaptive immune 
cells contribute to the pathogenesis of atherosclerosis, 
including neutrophils, natural killer (NK) T cells and  

B cells, and less clearly NK cells, and the role of these cells 
in atherosclerosis has been extensively reviewed19,39–43.

These advances in the field clearly show that the 
immune system has a crucial role in atherosclerosis and 
that targeting specific immune mechanisms of plaque 
progression and regression is a successful strategy to 
pursue in experimental models. However, important 
challenges remain in resolving the complex cellular 
and molecular architecture of atherosclerotic plaques 
and in translating the findings of animal studies  
to humans.
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Fig. 1 | Single-cell approaches to study human atherosclerosis. a | After atherosclerotic tissue is dissociated into  
single cells, the sample is analysed using three approaches: cytometry by time of flight (CyTOF), cellular indexing of 
transcriptomes and epitopes by sequencing (CITE- seq) and single- cell RNA sequencing (scRNA- seq). b | CyTOF can be 
used to analyse the broad cell types and frequencies of immune cells across patients, with the use of unbiased approaches 
such as Louvain clustering. c | CITE- seq accurately integrates proteomics and gene expression signatures. d | scRNA- seq 
can be used to characterize phenotypically the immune cells from patients and to compare profiles of different cell types. 
pDCs, plasmacytoid dendritic cells.
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Animal models of atherosclerosis offer tremendous 
capabilities in terms of genetic manipulation of the dis-
ease with molecular and cellular specificity and have 
undoubtedly enabled remarkable advances in the field44. 
For example, mice and humans show a strong concord-
ance of risk factors for atherosclerosis and a substantial 
overlap between mouse and human genes associated 
with atherosclerosis identified in genome- wide asso-
ciation studies (GWAS). However, fundamental differ-
ences between experimental and human atherosclerosis 
exist. Mouse models of atherosclerosis are created using 
genetically modified mice in which athero sclerotic 
plaques often develop under the influence of toxic 
levels of circulating lipids over a short period of time. 
Other translational challenges include the lack of genetic 
diversity in most experimental mouse models, because 
they are largely limited to one genetic background 
(C57BL/6). Moreover, differences in the regulation of 
gene expression in adaptive immune cells and of genes 
related to metabolic pathways include the presence of 
non- conserved enhancers and long non- coding RNAs 
across species44. Finally, the lack of microbial experience 
of laboratory mice might limit the adequate modelling of 
immunological events relevant to humans45.

The natural course of atherosclerotic plaque devel-
opment shows other crucial differences across species. 
First, human plaques develop over decades under the 
multifactorial influence of high plasma cholesterol lev-
els and cardiometabolic and environmental risk factors 
acting on heterogeneous genetic backgrounds. Seminal 
work has documented that human atherosclerotic 
plaques can progress to a vulnerable state, characterized 
by a large necrotic core, a thin fibrous cap, an inflam-
matory phenotype and intraplaque haemorrhage27,28,46–49. 
Vulnerable plaques are prone to spontaneous rupture 
or erosion, events exclusive to humans that can trigger 
occlusive atherothrombosis and consequent ischaemic 
clinical events such as stroke or myocardial infarction. 
Second, emerging evidence supports a nonlinear evolu-
tion of human atherosclerosis, because plaque disruption  
(rupture or erosion) does not always lead to clinical 
events. When formation of a thrombus is prevented, 
plaque healing promotes the repair of the damaged vas-
culature and stabilization of the atherosclerotic plaque50. 
The clinical significance of plaque healing is still debated 
but it is increasingly suggested that the reiteration of 
clinically silent plaque disruption coupled to impaired 
healing could contribute to the development of vulner-
able plaques and to future ischaemic cardiovascular 
events resulting from plaque distruption50.

Therefore, the natural history of human atheroscle-
rotic disease involves pivotal processes that are common 
to those in mice, and others that are unique to humans 
and not fully recapitulated in existing experimental 
models. Owing to the intrinsic complexity and tissue 
specialization of the immune system, the precise involve-
ment of specific immune cell populations and subsets 
and the specific cell–cell communications occurring 
in the atherosclerotic niche in mice and humans and 
the differences across species remain to be fully under-
stood. Single- cell multiomics analyses hold the poten-
tial to transform the way that we characterize immune 

processes within human and experimental atheroscle-
rotic lesions and to advance our capacity to identify new 
cell targets, pathways and immune crosstalk to harness 
the power of the immune system and develop new and 
precise immunotherapies for atherosclerotic cardio-
vascular disease. Immune mapping of experimental 
athero sclerosis will help improve the selection of rele-
vant mouse models for the mechanistic validation of the 
identified therapeutic targets and signalling pathways 
and of new immunotherapies.

Single- cell proteomics
The capacity to study individual cells within tissues has 
been around for decades51. Conventional immunohisto-
chemistry and conventional flow cytometry are robust 
and validated single- cell methods that rely on the use 
of light and fluorescence to investigate individual cells. 
However, multiparameter detection of heterogeneous 
cells including immune cells infiltrating human athero-
sclerotic plaques has long been limited to a few cell types 
or subsets owing to the spectral overlap of fluorescent 
probes52. Since the first introduction of advanced spec-
tral flow cytometry detection in 2005, advances and 
commercialization of spectral flow cytometry technol-
ogies have enabled a more efficient spectrum capture, 
pushing the limits to more than 30 colours53. Spectral 
flow cytometry can detect the shape, and not the peak 
as in conventional flow cytometry, of emission spectra 
along a range of continuous wavelengths. Therefore, 
spectral flow cytometry can discriminate different 
fluoro chromes with similar emission peaks and allows 
multiparameter analysis without compensation require-
ments. These remarkable advances now allow in- depth 
analyses of heterogeneous cell populations. However, 
some disadvantages remain for specific analyses. These 
disadvantages include limitation in barcoding capacity 
and, when analysing complex tissue samples, intrin-
sic tissue background autofluorescence that can limit 
the detection of low- expression proteins54–56. Sources 
of auto fluorescence in atherosclerotic plaques include 
cellular and extracellular components. Cellular auto-
fluorescence can dynamically reflect the metabolic, 
differentiation and survival state of cells57. Macrophage 
autofluorescence can vary based on the differentiation 
state of the cells58, and foam cells expressing inducible 
nitric oxide synthase can produce autofluorescent (per)
oxidized lipids (ceroid)59. Furthermore, changes in the 
levels of NADPH and FAD autofluorescence reflect 
T cell activation and subtype60. Collagen, elastin and 
oxidized LDL components of the lipid core are other 
potential sources of extracellular autofluorescence in 
atherosclerotic plaques that can interfere with sample 
analysis61,62. Specific to human advanced atherosclerotic 
plaques, near- infrared autofluorescence derived from 
intraplaque haemorrhage and haem degradation can 
variably affect samples from plaques either at high risk 
of rupture or that have ruptured63.

Mass cytometry (CyTOF)21 overcomes these lim-
itations by using probes labelled with elemental iso-
topes, with a detection overlap among heavy metal 
isotopes generally <2%64. Therefore, CyTOF allows 
high parameterization and the quantitative detection of 
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40–50 parameters in a single tube and is highly suitable  
for mapping circulating immune cells as well as the 
cellular composition of human atherosclerotic plaques. 
The specific details of basic CyTOF workflows and 
technical performance have been elegantly described 
previoulsy21,65,66. A large number of antibodies conju-
gated to heavy metals are now commercially available, 
and antibody panels can be tailor- made using commer-
cially available heavy metal conjugation kits67. Indeed, 
with 135 CyTOF detection channels now available, the 
current limitation to ~40 markers is due to the availa-
bility of pure and stable reporter metals and the chem-
istry to conjugate them68. To overcome this constraint, 
atomic mass tags are continually being developed to 
expand parameter detection and multiplexing capacity69. 
The high parameterization capacity of CyTOF also ena-
bles many samples to be multiplexed together with the 
use of specific barcoding schemes70,71 to reduce batch 
effects and remove staining variation across samples72. 
Moreover, CyTOF can reproducibly detect cell subsets 
in samples with as few as 10,000 cells, thereby making 
the technique ideal for use with limited specimens from 
patients73. Multiplexing capabilities can also protect 
against sample loss during the antibody staining pro-
cess. Therefore, CyTOF allows the gathering of maximal 
information from limited clinical tissue samples.

High- parameter CyTOF data can be analysed either 
with traditional gating methods on the basis of previ-
ous knowledge or with unbiased approaches that enable 
the discovery of new cell clusters and functional states. 
The web- based platform Cytobank incorporates sev-
eral computational methods to analyse CyTOF data, 
including traditional gating, viSNE, FlowSOM, SPADE 
and CITRUS74. Cytobank tools are user- friendly and 
well- suited to use by many non- computational bench 
scientists. Other flow cytometry software, such as FlowJo 
and FCS Express, have implemented plugins to allow the 
visualization and analysis of CyTOF data. Kimball and 
colleagues have published a practical guide to analysing 
and visualizing mass cytometry data, with an overview 
on the use of algorithms such as viSNE, PhenoGraph, 
X- shift, SPADE and CITRUS, and detailing the insights 
garnered by each platform75. A systematic comparison of 
seven unsupervised methods and two semi- supervised 
methods tested on six mass cytometry datasets clearly 
showed the advantages of each method, including the 
resolving capabilities and precision or coherence of 
the different algorithms and a decision pipeline for 
choosing the most appropriate one76. New tools and 
algorithms for fast and automated unbiased cluster-
ing from high- dimensional data are continually being 
developed77, with one of the goals being the discovery of 
new cell subsets or functional states78,79.

CyTOF analyses provide novel clinical insights. CyTOF 
can detect both surface and intracellular markers, mak-
ing this technique ideal for phosphoproteomics studies 
of heterogeneous cell populations as well as pharmaco-
dynamics and toxicity studies80,81. Single- cell phospho- 
signatures of activated monocyte–platelet aggregates in 
patients with sickle cell disease have been described82. 
In another clinical study, the activation of STAT3, CREB 

and NF- κB signalling in monocyte subsets correlated 
with functional impairment and pain in patients after 
surgical hip replacement83. CyTOF has also been used 
to profile differential immune responses to drugs in 
human haematopoietic cells22. In cancer, CyTOF analy-
ses have contributed to the identification of circulating 
immune correlates predictive of overall patient survival 
with new cancer treatments84–86 and of tumour- specific 
innate and adaptive immune cell alterations in early lung  
adenocarcinoma lesions87.

Overall, CyTOF is increasingly being used in large- 
scale clinical immune monitoring and precision 
medicine studies83. More than 100 clinical trials reg-
istered in clinicaltrials.gov use CyTOF as the main 
immune- monitoring tool. The studies range from phase I  
to phase IV clinical trials across several disciplines, 
including immunology, immuno- oncology, vaccine 
development, autoimmunity, surgery, biomarker discov-
ery, infectious disease and, more recently, COVID-19 
(reF.88). The analysed tissues include peripheral blood, 
tissue biopsies and bone marrow samples, depending on 
the type of disease and availability of tissue sampling.

The increasing use of CyTOF in clinical research 
requires standardized workflows and protocols for the 
acquisition and analysis of large- scale, multicentre, 
immune- monitoring clinical studies. Batch- correcting 
algorithms89 and reproducible data generation are the 
basis for reliable and robust clinical analyses. For this 
objective, a method that uses a lyophilized core antibody 
panel to streamline blood sample processing has been 
implemented to reduce technical variation and standard-
ize operations90 and includes quality control by remov-
ing events caused by loss of stability and compensating 
for signal spillover resulting from isotopic impurities or 
oxide formation91. New, streamlined CyTOF workflows 
that are based on a simple method to cryopreserve sam-
ples at the sample collection site and analysis at a central 
core facility have been implemented to facilitate mul-
ticentre studies, including in patients with COVID-19  
(reFs92,93). Overall, immune monitoring by CyTOF is 
robust and reproducible for clinical sample types across 
different institutions94.

CyTOF analyses uncover new immune perturbations 
in atherosclerosis. In cardiovascular research, CyTOF 
has been instrumental in developing precise new gating 
strategies for improved flow cytometry analysis of circu-
lating monocytes95 and in disentangling their heteroge-
neity in healthy individuals and in patients with coronary 
artery disease96. In particular, the latter study identified 
eight clusters of circulating monocytes, including three 
classic subsets and four non- classic subsets96, challeng-
ing the commonly accepted understanding that human 
monocyte populations are limited to three subsets. The 
presence of the new non- classic subset of Slan+CXCR6+ 
monocytes, with the potential to migrate into atheroscle-
rotic plaques, positively correlated with coronary artery 
disease severity.

CyTOF studies have also contributed to resolving the 
immune cell composition of atherosclerotic plaques in 
humans and mice. Cole and colleagues provided one of 
the first comprehensive, single- cell, immune proteomic 

Phosphoproteomics
A proteomic analysis to identify 
and characterize protein 
phosphorylation, a post-  
translational modification that 
regulates cellular processes.
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mapping studies of the atherosclerotic aorta of Apoe−/− 
mice fed a chow or a high- fat diet; plaque macrophages 
comprised ~50% of the aortic CD45+ cells97, a pro-
portion that was similar to that observed by Cochain 
and colleagues in a scRNA- seq study in Ldlr−/− mice98.  
In Apoe−/− mice, a high- fat diet had a profound effect 
on the myeloid cell repertoire present in atherosclerotic 
plaques, by inducing more inflammatory monocyte– 
macrophage subsets and fewer CD206+CD169+ macro-
phages and type 2 conventional dendritic cells97. 
Winkels and colleagues used CyTOF to validate the  
11 heterogeneous leukocyte populations identified with 
scRNA- seq of aortas from Apoe−/− mice fed a Western 
or chow diet and to compare the CyTOF data in mice 
with CyTOF data from a human atherosclerotic lesion99.

Our group used CyTOF to provide a first immune 
profile dataset of human atherosclerosis in patients with 
carotid atherosclerosis25. In a first cohort of 15 patients, 
unbiased Louvain clustering of immune cells in the 
athero sclerotic plaque and blood from the same patient 
revealed that T cells were a major and heterogeneous cell 
type among all CD45+ cells infiltrating atherosclerotic 
plaques. The analysis of a second cohort of 27 patients 
confirmed these findings and identified a remarkable 
heterogeneity of T cells, that comprised 25 distinct meta-
clusters across blood and atherosclerotic plaques. Four 
T cell subsets were enriched in atherosclerotic lesions 
and expressed tissue- residency markers, were more 
activated and differentiated, and expressed higher lev-
els of PD1 compared with corresponding metaclusters 
in blood25. Atherosclerotic plaques from patients with 
stroke were enriched in a specific subset of CD4+ effector 
memory T cells compared with atherosclerotic plaques 
from patients without stroke25. Overall, these results 
uncovered a new role for T cells, which accounted for 
~65% of all immune cells in atherosclerotic plaques, 
and confirmed the importance of macrophages, which 
corresponded to ~13% (3–28%) of all CD45+ cells in the 
plaques25.

Macrophages are considered to be the main cell 
type in atherosclerotic plaques on the basis of tradi-
tional pathology studies and, more recently, cell- type  
deconvolution methods used to infer the cellular compo-
sition of atherosclerotic plaques from bulk RNA- seq of 
mouse and human atherosclerosis99. The discrepancy 
with human single- cell analysis data could simply be 
due to a technical artefact owing to low efficiency of 
macrophage retrieval during tissue digestion. However, 
other explanations could include the heterogeneous dis-
tribution of immune cells within plaques, the histological 
quantification method adopted and, for computational 
prediction methods of tissue cell composition, the lack 
of tissue- specific input of ‘signature matrices’ that reflect 
the exact molecular adaptation of immune cells residing 
in atherosclerotic plaques. Previous histological analysis 
of human atherosclerotic plaques revealed remark-
able differences in the spatial distribution of plaque 
macrophages, with higher frequencies in the necrotic 
core (~60%) than in the adjacent intima (~8.6%), the 
shoulder of the plaque (~18.2%) or the fibrotic cap 
(~23.9%)100. The average macrophage frequency, exclud-
ing the necrotic core, was ~16.9%, which is consistent 

with that identified by CyTOF and scRNA- seq in human 
carotid plaques25,101. Indeed, apoptotic and necrotic cells, 
largely macrophages present in the necrotic core46, would 
not be captured by single- cell analyses. Other studies 
based their findings on the quantification of stained 
areas instead of number of cells49,102. Given that T cells 
are much smaller (5–7 μm) than macrophages and foam 
cells (20–30 μm), a lower number of macrophages and a 
higher number of T cells would occupy the same area. 
Moreover, when macrophage content is measured as the 
percentage of stained areas, the measured area might 
include apoptotic or dead macrophages, which could 
potentially lead to overestimation of the frequency and 
number of macrophages compared with single- cell 
methods such as CyTOF and scRNA- seq, which analyse 
live cells. A scRNA- seq analysis published in 2020 of all 
immune and non- immune cells from carotid athero-
sclerotic plaques from 18 patients confirmed that T cells 
(~52.4%) are the major cell type in human atheroscle-
rotic plaques, followed by myeloid cells (~18.5%)101.  
In this study, data were validated by histological analysis 
of a subset of matched samples, indicating that dissocia-
tion methods did not alter the immune cell composition 
of plaques by overestimating the proportion of T cells. 
The application of high- dimensional multiomics anal-
ysis in situ (TAbLe 1), systematically performed on serial 
sections of different parts of the atherosclerotic plaque 
and combined with automated image segmentation pro-
cessing, will help determine accurately the immune cell 
composition in intact tissue and the spatial relationships 
between cells in human atherosclerotic plaques. In situ 
approaches will offer complementary information to 
that obtained from global, high- throughput analysis of 
whole tissue, and will thereby offer new opportunities 
for the identification of novel molecular targets for drug 
development (Fig. 2).

Single- cell transcriptomics
Together with substantial advances in single- cell pro-
teomics (such as CyTOF), scRNA- seq offers increased 
sensitivity and granularity in identifying molecular 
dysregulation of heterogeneous cells in tissues. Gene 
expression analysis and systems genetics have revolu-
tionized our understanding of basic biological processes 
of common complex diseases103. Most systems genetics 
studies have been based on bulk RNA- seq that averages 
transcriptional expression across cells and cannot pro-
vide detail on the transcriptional alterations of individ-
ual cells from heterogeneous cell pools composing the 
tissue. scRNA- seq analysis reveals transcriptional dif-
ferences not only within populations of heterogeneous 
cells but also among cells with homogeneous proteomes 
based on canonical markers104. Therefore, single- cell 
technologies are ideal for uncovering new alterations of 
the immune system, a complex hierarchical set of mole-
cular and cellular networks that contribute to athero-
sclerotic cardiovascular disease and clinical outcomes. 
The identification of the complex cell type composition 
and functional states of cells in disease- relevant tissues, 
such as atherosclerotic plaques, is crucial for the identi-
fication of the cellular contribution to disease and of new  
druggable cellular targets.

Louvain clustering
graph- based community 
detection algorithm that is 
used to infer clusters of cells 
from single- cell data.

Cell- type deconvolution 
methods
Computational methods used 
to infer cell type proportions 
from bulk transcriptomics data.

Image segmentation
image processing algorithm for 
the automatic identification of 
cells in intact tissue.
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Table 1 | Single- cell technologies to study in situ complex tissue architecture for drug target discovery

Technology Approach Tissue Advantages Disadvantages Resolution Platform Ref.

Proteomics

Co- detection 
by indexing 
(CODEX)

Tissues are stained 
with oligo- conjugated 
antibodies and are 
specifically detected by 
reporters that are imaged 
in cycles with the use of  
a standard microscope

FFPE; 
fresh 
frozen 
tissue

Reagents available  
for custom conjugating  
of antibodies

Non- destructive staining 
procedure that allows 
morphological analysis 
after image acquisition

Multiple rounds of 
imaging with long 
acquisition time

Limited commercially 
available antibody 
panels

Subcellular Akoya 145

Multiplexed ion 
beam imaging 
(MIBI)

Tissues are stained with 
antibodies conjugated 
to heavy metals and are 
imaged using a specialized 
mass cytometer

FFPE; 
fresh 
frozen 
tissue

– Long acquisition 
time

Subcellular IonPath 146

Imaging mass 
cytometry (IMC)

Tissues are stained with 
antibodies conjugated to 
heavy metals and imaged 
using an atmospheric 
laser ablation chamber 
interfaced to a mass 
cytometer

FFPE; 
fresh 
frozen 
tissue

Large selection (>100)  
of validated antibodies

– Subcellular Fluidigm 147

Transcriptomics

Spatial 
transcriptomics

Tissues are attached 
to slides that contain 
barcoded probes capable 
of capturing RNA from the 
permeabilized sample

cDNA synthesis occurs 
on the slide and is 
subsequently used  
for sequencing

FFPE; 
fresh 
frozen 
tissue

– – 50–100 μm Visium 10× 
Genomics

148

Multiplexed 
error- robust 
fluorescence 
in situ 
hybridization 
(MERFISH)

Uses combinational 
labelling with sequential 
imaging and error- robust 
barcoding of individual 
mRNAs

Fresh 
frozen 
tissue

High- throughput, 
single- cell resolution 
with up to 1 cm2 of tissue 
imaged per single run

High multiplexing power 
that measures thousands 
of transcripts

Subcellular localization  
of transcripts

Can detect 
low- expression genes with 
single- molecule sensitivity

Molecular crowding 
of signal and possible 
spatial overlapping 
of signal

Lengthy imaging 
workflow

Depends on a 
finite number of 
hybridized probes 
to known mRNA 
sequences

Subcellular Vizgen 149

Slide- seq A monolayer of 
DNA- barcoded beads 
placed on a slide are  
set to capture the RNA 
from tissue placed onto 
that slide

Fresh 
frozen 
tissue

– Typically detects a 
low number of genes

Incompatible with 
FFPE

Cellular 
(~10 μm)

NR 150

RNAscope Novel in situ hybridization 
assay for detection of 
target RNAs within intact 
cells or tissue

Based on proprietary 
probe design (‘ZZ’ 
oligonucleotide 
probe pairs) to amplify 
target- specific signals 
but not background 
noise from non- specific 
hybridization

FFPE; 
fresh 
frozen 
tissue

Low background noise 
with a single RNA molecule 
level of sensitivity within 
intact cells

The probe design (based on 
short target regions) allows 
successful hybridization 
of partially degraded 
RNA (degraded- sample 
compatible)

Suitable when the target 
cannot be detected  
by antibodies (commercial 
antibodies unavailable, 
targets are low abundance, 
extracellular targets)

Typically detects 
a low number of 
targeted transcripts

Cellular Bio- Techne 151
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In dissociative scRNA- seq techniques, individual 
cells are isolated and lysed, and RNA is captured before 
being converted to cDNA by reverse transcription. 
cDNA is then amplified to prepare sequencing libraries23. 
Depending on the experimental needs (for example, 
number of cells to be analysed, throughput require-
ments or cost), cell- capture methods differ between dis-
tinct techniques. A useful framework for benchmarking 
the most suitable technique has been comprehensively 
discussed previously105–107. Some methods, including 
SMART- seq2 and MARS- seq, are based on florescence 
activated cell sorting (FACS) to isolate cells of interest106. 
Although upstream FACS alleviates the constraints of 
cell size, shape and homogeneity, and total cell number, 
this technique also subjects cells to mechanical stress, 
which induces oxidative stress in the cells and might 
affect their molecular state108,109. Alternatively, cells can 
either be isolated into microwells using a microfluidics 
system (such as Fluidigm C1 HT) or encapsulated into 
individual droplets (with Drop- seq or 10× Chromium 
technology)110. The development of droplet capture 
techniques has revolutionized scRNA- seq to enable the 
transcriptional detection from thousands of cells and 

the identification of rare cells, and has minimized the 
mechanical stress to the cells108,109. Other systems rely 
on single- cell isolation with magnetic beads in micro-
wells, where individual cells are lysed and the beads are 
retrieved (BD Rhapsody) for targeted gene expression 
analysis. This method and other scRNA- seq methods 
have been discussed previously111,112.

scRNAseq data are often analysed with the use of 
established pipelines, such as Seurat113, SCANPY114, 
Clustergrammer2 and other tools (which have been 
comprehensively reviewed previously115 and are listed 
in the publicly available database scRNA- tools), that 
act as frameworks to enable data analysis. Specific tools 
also allow the inference of biological processes of inter-
est from scRNA- seq data, including developmental, dif-
ferentiation and cell cycle processes116,117. Luecken and 
Theis established a best practices tutorial that describes 
the processes of data analysis from start to finish118. 
Systems genetics of bulk RNA- seq data has shown that 
the pathophysiology of common complex disease is 
better explained by gene regulatory networks103,119–123,  
a set of genes that interact with each other to control a  
specific biological function. Several algorithms are 

Technology Approach Tissue Advantages Disadvantages Resolution Platform Ref.

Proteomics and transcriptomics

Digital spatial 
profiling

The tissue slide is stained 
with fluorescence labelled 
reagents to select a region 
of interest

Tissues are also stained 
with a panel of proteins 
or RNA targets of 
interest by using 
specialized UV- cleavable 
oligo- barcodes attached 
to either a target 
complementary sequence 
(transcriptomics) or 
a target antibody 
(proteomics)

The oligos are cleaved 
from the region of interest 
and counted for digital 
quantification

FFPE; 
fresh 
frozen 
tissue

Non- destructive staining 
procedure for tissues

Quantitative expression 
data

Limited markers 
(three) for 
visualization

Regions 
of interest 
comprising 
many cells

NanoString 152

Sequential 
fluorescence 
in situ 
hybridization 
(SeqFISH)

Sequential rounds 
of fluorescent in situ 
hybridization and imaging

Fresh 
frozen 
tissue

Multiplexing  
(>10,000 molecules)

Multiomics capability

No quantification bias 
caused by the use of 
reverse transcription

Can detect low copy 
number mRNAs that 
are undetectable using 
scRNA- seq or in situ 
hybridization

Molecular crowding 
of signal and spatial 
overlapping of signal

Subcellular NR 153

Deterministic 
barcoding in 
tissue for spatial 
omics sequencing 
(DBiT- seq)

Microfluidic barcoding 
of mRNAs and 
proteins in tissues 
on slides is followed 
by high- throughput 
sequencing

FFPE Microfluidic device that 
requires little microfluidics 
expertise

Limited resolution, 
might not ensure 
single- cell readouts

Cellular 
(~10 μm)

NR 154

FFPE, formalin- fixed paraffin- embedded; NR, not reported; scRNA- seq, single- cell RNA sequencing.

Table 1 (cont.) | Single- cell technologies to study in situ complex tissue architecture for drug target discovery

www.nature.com/nrcardio

R e v i e w s

50 | January 2022 | volume 19 

https://www.scrna-tools.org/


0123456789();: 

being developed to infer gene regulatory networks from 
single- cell data. However, these analyses and the rigorous 
identification of gene regulatory networks are currently 
hindered by high cell heterogeneity, cell–cell variation 
in sequencing depth and the data sparsity of scRNA-seq 
datasets owing to the high rate of dropout events124,125. To 
facilitate a rigorous and reproducible evaluation of infer-
ence methods of gene regulatory networks and to provide 
recommendations to the end users, Pratapa and col-
leagues have developed an evaluation framework called 
BEELINE126. BEELINE comprehensively evaluates the 
accuracy, robustness and efficacy of several algorithms 
to identify gene regulatory networks and help avoid  
pitfalls in single- cell transcriptomic data analysis.

scRNA- seq analysis also offers the unique oppor-
tunity to infer crucial cell–cell communications that 
coordinate the function of immune cells within hetero-
geneous tissues127. This approach has enabled the 
identification of specific ligand–receptor interactions 

associated with cell development and disease states, 
including clinical cardiovascular outcomes in patients 
with carotid atherosclerosis25.

Despite the substantial advances in the use of high- 
throughput scRNA- seq to study heterogeneous cell  
populations, the findings obtained with this approach 
cannot be matched with 100% accuracy with traditional 
immune cell classifications that are based on the expression 
of canonical markers. In 2017, Stoeckius and colleagues 
introduced the method of CITE- seq, which is based on 
the use of oligonucleotide- labelled antibodies to integrate 
cellular protein and transcriptome measurements in a sin-
gle cell with high throughput24. This multiomic approach 
offers unique capabilities to study the immune system 
with the use of both data- driven and unbiased methods of 
analysis. CITE- seq is compatible with existing scRNA- seq 
approaches and can achieve a parallel characterization  
of immune cell populations on the basis of the expression of 
canonical and other surface protein markers and unbiased 

Advantages
• Global analysis, the entire 

specimen is used 
• Thousands of cells can be 

simultaneously analysed
• Inference of cellular 

relationships

Disadvantages
• Requires tissue digestion
• Loss of tissue architecture 
• Loss of cell spatial 

localization

Advantages
• Spatial cellular relationships
• Some approaches applicable 

with tissue from biobanks 
(FFPE blocks)

Disadvantages
• Limited to 5–10 μm sections
• Limited number of cells 

analysed
• Small area imaged for some 

applications (such as MIBI)
• Time consuming

Dissociation approaches In situ approaches

Single-cell
suspension

Global sample

Serial sections

Endothelium

Intima

Adventitia
Media

Atherosclerotic
plaque

Atherosclerotic
plaque

Monocyte
Neutrophil

Dendritic cell

T cell

Transcriptomics
Proteomics

Data integration

Identification of molecular targets

Drug discovery

Macrophage

B cell

Red blood cell

Foam cell

Fig. 2 | Single-cell approaches to study atherosclerotic tissue. Tissue dissociation methods and in situ approaches are 
complementary systems to understand cell properties at the single- cell level. Several methods exist for each approach,  
and both approaches can be used for proteomics and transcriptomics analyses. The integration of the resulting data can be 
useful for the identification of molecular targets for disease therapies and subsequent drug discovery. FFPE, formalin- fixed 
paraffin- embedded; MIBI, multiplexed ion beam imaging.

Data sparsity
refers to a matrix of numbers 
that includes many zeros.  
in single- cell analysis, data 
sparsity is due to dropout 
events.

Dropout events
Missing values as a result  
of extremely low rNA input  
in the sequencing experiments 
or the stochastic nature of the 
gene expression pattern  
at the single- cell level. As a 
consequence, a gene can be 
observed at a moderate-  
to- high expression level in one 
cell but might be undetected  
in another cell.
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transcriptomics analyses. Combined with the Cell Hashing 
method128 for multiplex and doublet detection, CITE- seq 
has remarkably expanded the immune- profiling capabili-
ties. The method has been applied to ECCITE- seq, which 
enables the detection of six modalities (transcriptome, 
T cell receptor (αβ TCR and γδ TCR), surface protein, 
sample identity by hashtags, and CRISPR single guide rNA) 
in a single experiment129.

scRNA- seq and CITE- seq as new tools to study experimen-
tal and human atherosclerosis. scRNA- seq techno logies 
have been used to profile the immune cell landscape of 
atherosclerotic vessels from Apoe−/− mice and Ldlr−/− 
mice and atherosclerotic plaques from humans (TAbLe 2). 
Collectively, these results provide a new understanding of 
the immune cell landscape in mouse atherosclerotic tis-
sue. Winkels and colleagues used scRNA- seq followed by 
an unsupervised clustering algorithm and found a greater 
diversity of leukocytes in aortic atherosclerotic tissue 
from Apoe−/− mice and Ldlr−/− mice than in tissue from 
wild- type mice, and validated these findings with the use 
of CyTOF99. Using scRNA- seq, Cochain and colleagues 
identified three distinct macrophage populations in aortic 
atherosclerotic tissue from Apoe−/− mice and Ldlr−/− mice98. 
One subset of resident- like macrophages was found in 
both atherosclerotic mice and healthy mice, whereas 

two subsets of inflammatory and Trem2high macro phages 
were present exclusively in atherosclerotic tissue and had 
a transcriptional profile similar to that of intimal foamy 
macrophages described by Kim and colleagues130. Lin and 
colleagues further characterized the dynamic changes  
of macrophages in the mouse aortic arch with the use of 
validated models of atherosclerotic plaque progression 
and regression131. Specifically, they identified popula-
tions of inflammatory and Trem2high macrophages, analo-
gous to those subsets observed in atherosclerotic tissue 
by Cochain and colleagues98. Furthermore, combining 
scRNA- seq with genetic fate mapping, Lin and colleagues 
resolved the diversity of macrophage transcriptional 
states and identified a cluster of proliferating monocytes 
that could contribute to overall macrophage accumula-
tion in atherosclerotic lesions131, consistent with previous 
observations that local proliferation is a main source of 
plaque macrophages132. A large meta- analysis of nine 
scRNA- seq and two CyTOF studies that focused on the 
leukocyte diversity of mouse atherosclerosis has provided 
new insights into experimental atherosclerosis and con-
firmed known biology of the disease133. The researchers 
used Harmony134 to integrate nine scRNA- seq datasets 
and analy sed a total of 15,288 cells and identified 17 cell 
clusters that encompassed all major immune cells. This 
analysis showed that macrophages are the most abundant 

Table 2 | Single- cell studies of human and mouse atherosclerotic plaques

Sample and model Cell type focus Analysis (platform) Ref.

Studies in mice

Atherosclerotic aorta from Apoe−/− or 
Ldlr−/− mice

Immune cells CyTOF; scRNA- seq  
(10× Genomics)

99

Atherosclerotic aorta from Cx3cr1CreERT2- 

EYFP/+Rosa26tdTomato/+ mice injected with 
AAV- mPCSK9

Macrophages scRNA- seq (10× Genomics) 131

Normal aorta and atherosclerotic aorta 
from Apoe−/− or Ldlr−/− mice

CD45+ immune cells, 
macrophages

scRNA- seq (10× Genomics) 98

Normal aorta and atherosclerotic aorta 
from Apoe−/− mice

Vascular smooth muscle cells scRNA- seq (Fluidigm C1, 
Smart- Seq2, 10× Genomics)

155

Atherosclerotic aortas from Apoe−/− or 
Ldlr−/− mice

CD45+ immune cells, 
macrophages

FACS combined with scRNA- seq 
(10× Genomics)

130

Aortas from Apoe−/− mice fed a chow or  
a high- fat diet

CD45+ immune cells, 
macrophages

CyTOF 97

Aortas from Apoe−/− mice treated with 
pro- efferocytosis nanoparticles

CD45+ immune cells, 
macrophages

scRNA- seq (10× Genomics) 156

Aortas from Apoe−/− mice fed a chow or  
a Western diet

CD4+ T cells scRNA- seq (10× Genomics) 157

Studies in humans

Carotid atherosclerotic plaque and 
peripheral blood mononuclear cells

CD45+ immune cells, 
macrophages, T cells

CD45+ bead- based enrichment 
combined with CyTOF, CITE- seq 
and scRNA- seq (10× Genomics)

25

Carotid atherosclerotic plaque Immune cells, vascular smooth 
muscle cells, endothelial cells

FACS combined with scRNA- seq 
(CEL- seq2) and scATAC- seq

101

Studies in humans and mice

Human atherosclerotic coronary arteries 
and mouse atherosclerotic aorta

Immune cells, vascular smooth 
muscle cells

FACS combined with CITE- seq 
and scRNA- seq (10× Genomics)

142

AAV, adeno-associated virus; CITE- seq, cellular indexing of transcriptomes and epitopes by sequencing; CyTOF, cytometry by 
time of flight; FACS, fluorescence- activated cell sorting; scATAC- seq, single- cell assay for transposase- accessible chromatin 
using sequencing; scRNA- seq, single- cell RNA sequencing. 

Single guide RNA
A single rNA molecule that 
contains both the custom-  
designed short CrisPr rNA  
(a sequence of 17–20 
nucleotides complementary  
to the target DNA) and a 
trans- activating CrisPr rNA 
sequence that serves as a 
binding scaffold for the Cas 
nuclease. single guide rNAs 
are used for CrisPr–Cas9 
technology. The use of single 
guide rNA allows multimodal 
readout of gene perturbations 
at the single- cell level.
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cell type in the atherosclerotic aorta of mice and included 
Trem2+ foamy macrophages that were not inflammatory 
and tissue- resident macrophages expressing Pf4. A sub-
stantial proportion of all foam cells were predicted to be 
derived from vascular smooth muscle cells133. This result 
is consistent with previous observations in both mice and 
humans suggesting that vascular smooth muscle cells con-
tribute to a considerable number of lipid- rich macrophage- 
like cells in atherosclerotic plaques135–139. The plasticity of 
vascular smooth muscle cells in atherosclerosis has been 
extensively reviewed previously140.

scRNA- seq analysis of human atherosclerotic plaques 
has been so far limited to a few studies. Our group used 
scRNA- seq and CITE- seq (10× Genomics) to provide the 
first single- cell, immune cell mapping of human carotid 
artery atherosclerotic plaques that uncovered new innate 
and adaptive immune dysregulation associated with 
clinical cerebrovascular events25. Overall, plaque CD4+ 
T cells from patients with recent stroke were character-
ized by signalling involved in T cell migration, activation 
and differentiation. Plaque CD8+ T cells were activated 
in both patients with carotid artery plaques with recent 
stroke and patients with carotid artery plaques without 
recent stroke. However, in patients with stroke, CD8+ 
T cell activation coexisted with exhaustion signalling, 
suggesting the initiation of exhaustion reprogramming, 
possibly caused by chronic, non- resolving inflammation. 
Plaque macrophages comprised highly heterogeneous 
subsets, including activated and inflammatory cells and 
foam cells25, reminiscent of the heterogeneity found in 
experimental atherosclerosis97–99,131. In patients with 
stroke, macrophages expressed sets of genes associated 
with plaque instability (such as CCL5 and genes encoding 
granzymes), and included a small subset of macrophages 
expressing genes related to iron metabolism25, resembling 
the pro- atherogenic, iron- metabolizing macro phages 
described by Guo and colleagues141. Ligand–receptor 
interaction analyses of carotid artery plaques from 
patients with recent stroke and patients without a 
recent stroke identified top candidate interactions 
between plaque macrophages and T cells, suggesting  
highly specialized cell crosstalk25.

A subsequent scRNA- seq study of all plaque cells 
confirmed all the identified major immune cell sub-
sets in the plaques, including endothelial cells, vascular 
smooth muscle cells, mast cells, B cells, myeloid cells and 
T cells101. This analysis identified subsets of endothelial 
cells expressing genes indicative of angiogenic capa-
city and endothelial- to- mesenchymal transition. Plaque 
T cells had transcriptional profiles suggestive of a transi-
tion from a cytotoxic to a quiescent phenotype. The two 
myeloid cell subsets identified included pro- inflammatory 
macrophages and a TREM2high foam cell- like population 
with a fibrotic phenotype. Vascular smooth muscle cells 
expressed a synthetic transcriptional profile101. In this 
study, the investigators also used single- cell ATAC- seq 
(assay for transposase- accessible chromatin using sequenc-
ing) and cell–cell interaction analysis to identify candi-
date transcription factors involved in gene regulation 
and putative intercellular communications involved in 
atherosclerotic plaque inflammation. Using scRNA- seq 
of human and mouse atherosclerotic plaques, Wirka and 

colleagues identified the transcription factor TCF21 as an 
important factor governing the atheroprotective transition 
of vascular smooth muscle cells to fibroblast- like cells, 
termed fibromyocytes142. Specifically, deletion of Tcf21 in 
Apoe−/− mice significantly reduced the number of vascular 
smooth muscle cell- derived fibromyocytes and resulted in 
a thinner fibrous cap. The researchers identified analogous 
populations of fibromyocytes in human atherosclerotic 
plaques142. The relevance of these findings in humans was 
further supported by the analysis of large GWAS datasets 
and a cis- eQTL (expression quantitative trait loci) dataset, 
showing that individuals with lower TCF21 expression 
levels resulting from genetic variants in this gene had an 
increased risk of cardiovascular events.

Collectively, these studies provide a first step 
towards the ambitious goal of building a comprehensive 
single- cell atlas of human and experimental atheroscle-
rosis that will provide a robust framework to explore the 
immune system in the diseased vasculature. Moreover, 
these studies provide robust evidence that single- cell 
transcriptional analysis is a powerful approach to resolv-
ing complex cellular and molecular alterations and to 
identifying new molecular targets that will aid the devel-
opment of new, precise immunotherapies for patients 
with atherosclerotic cardiovascular disease.

Immune profiling for precision medicine
Most research efforts in drug discovery and repurposing 
of existing drugs for use in patients with atherosclerosis 
so far have focused on targeting systemic inflammation. 
However, emerging single- cell data show specific tissue 
specialization of innate and adaptive immune cells in 
plaque versus blood in the same patient. Identifying new, 
precise treatments that restore the function of immune 
cellular and molecular networks specifically acting in 
blood and/or in atherosclerotic lesions in the same patient 
is an innovative strategy to reduce both systemic and 
plaque inflammation and ultimately treat cardiovascular 
disease (Fig. 3). Existing single- cell studies have already 
enabled new discoveries of novel inflammatory mecha-
nisms in human and mouse atherosclerosis25,97–99,101,131,133  
through the identification of new immune cell subsets 
or functional states and putative intercellular commu-
nications on the basis of the expression of receptors, 
co- receptors and ligands, and differences in patients with 
distinct clinical status25,101. The integration of human and 
mouse single- cell datasets could help achieve a dual goal 
by providing information on the relevance in humans of 
mechanisms identified in experimental models and on 
the most suitable experimental model to study in vivo the 
shared mechanisms across species.

The biological and clinical translation of single- cell 
findings from both human and mouse datasets into 
drug development is a long- term goal that requires sev-
eral additional steps. These steps include the validation 
of cell types and target genes in larger bulk RNA- seq 
clinical datasets, for example with the use of decon-
volution approaches143, to establish potential clinical 
associations. The next steps required include functional 
validation in relevant model systems to provide func-
tional annotations of identified cell clusters and genes, 
for example with the use of fate mapping (as described 

naTure revIewS | CARDiology

R e v i e w s

  volume 19 | January 2022 | 53



0123456789();: 

by Lin and colleagues to study macrophages in pro-
gression and regression models of atherosclerosis131) 
or cell- specific deletion of candidate genes in mice. To 
complement these approaches, high- dimensional mul-
tiplexing strategies have enabled the detection of gene 
function in response to in vitro perturbations with the 
use of innovative single- cell CRISPR screen technology. 
Several approaches have been developed to allow the 
simultaneous examination of the effect of several genes 
or proteins on the phenotype and function of individ-
ual cells (box 1). Rigorous single- cell CRISPR screens 
to determine the immune functions of candidate genes 
and proteins requires further experimental dissection of 
immune responses in vivo and is crucial to understand-
ing fully the computationally predicted biological func-
tions and to identifying new molecular targets for future 
drug development. New methods for single- cell CRISPR 
screenings that are based on protein barcodes suitable for 
complementary in vitro and in vivo studies are emerg-
ing, and the future implementation of this method to 
screen for the function of new target proteins could aid 
in the identification of new drug targets144.

When a candidate target is identified and new drugs 
developed, ex vivo phospho- CyTOF drug screenings can 
provide a suitable platform to determine the immune 

response to drugs in heterogeneous samples of immune 
cells22 and to select top candidate drugs to be tested for 
efficacy in mouse models of atherosclerosis. These steps 
will provide a robust framework before moving into 
early- phase clinical trials that use scalable, single- cell 
technologies such as CyTOF (Fig. 3b). Immune moni-
toring implemented in phase I and phase IIa studies to 
analyse peripheral blood and extravascular tissue sam-
ples, when available based on the standard- of- care, could  
provide specific information on immune responses to 
drugs that could inform and guide phase IIb and phase III  
studies with regard to patient variability in drug 
responses and the effect of comorbidities and comed-
ications. These studies could provide evidence- based 
information on the best strategies for patient selection 
for future large, randomized, outcome- based clinical 
studies, which are the gold- standard evidence to approve 
new therapeutics for clinical use. Indeed, these trials are 
large and expensive, and the failure of a large clinical 
trial imposes huge costs on the biomedical enterprise. 
Therefore, early- stage incorporation of an integrative 
approach to mechanistic data in experimental models 
and humans could aid in the selection of precise treat-
ments for specific groups of patients who would derive 
the most benefit.

a  Target discovery based on single-cell analyses

b  Identification and validation of candidate drugs

Atherosclerotic
plaque

Tissue

Tissue

Blood

Blood

Single-cell
suspension

Human

Shared

Mouse Pooled CRISPR-based
screens in animal models

a

Phospho-CyTOF Atherosclerotic plaque size
and inflammatory status

Single-cell
analysis

Identification of
candidate drugs

Ex vivo 
drug  screening

Drug
selection

In vivo drug testing

Go/No-go 
gate

Functional and
clinical validation

Cross-species
validation

Validation in large
clinical cohorts 

CRISPR-based
validation

• Phase I–II clinical trials
• CyTOF-based immune

monitoring

Fig. 3 | Integration of single-cell methods for the discovery and 
validation of drug targets. a | Single- cell studies in humans and mice 
provide information about the disease. Whereas studies in humans define 
the actual disease state, mechanistic studies in mice can aid in the 
understanding of how perturbations affect the disease. Integration and 
cross- species validation of these studies can be used to identify novel 
molecular targets. Understanding these molecular pathways in large 
clinical cohorts can be used as validation and then secondarily validated 
in animal models with the use of pooled CRISPR screening. b | When new 

targets are identified and validated, candidate drugs can be assessed for 
their specific effect in modulating these pathways. One evaluation 
method is phosphoproteomics with cytometry by time of flight (phospho- 
CyTOF). In vivo testing in animals can be used to investigate further the 
efficacy of the drug and to evaluate the go/no- go decisions to enter 
clinical phases of drug development. The adoption of immune monitoring 
in the early phases of clinical trials can provide crucial information on 
patient selection and efficacy for the design of future end point- driven 
clinical trials.

Protein barcodes
Vector barcoding system that 
operates at the protein level 
and is based on sequences  
of linear epitopes that are 
detectable by antibodies.
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Conclusions
Single- cell technologies have the potential to advance our 
basic knowledge of the complex immune mechanisms 
underlying atherosclerosis directly in humans. The 
analysis of experimental atherosclerosis with the use of 
the same single- cell tools offers the unique opportunity 
to build an immune atlas of experimental and human 
disease that will aid in the validation of human mecha-
nisms in relevant mouse models. Paired with cell- based, 
pooled single- cell CRISPR screens to identify the specific 
function of several genes and proteins on heterogeneous 
immune cells, single- cell studies offer new opportunities 

for molecular- targeted drug development. The growing 
adoption of immune monitoring tools such as CyTOF 
in ongoing clinical trials shows the importance of how 
immune cells respond to new drugs and highlights that 
a similar approach might aid in the discovery of new, 
precise immunotherapies for patients with cardiovascu-
lar disease. The inclusion of immune monitoring in early 
phases of drug testing could advance drug discovery and 
precision medicine in cardiovascular disease to reduce 
adverse cardiovascular outcomes and death.

Published online 15 July 2021

Box 1 | Single- cell CRISPR technologies for drug target functional validation

Single- cell CrISPr screenings are an important and innovative tool that can contribute to the identification of gene 
functions in individual cells. Single- cell CrISPr screenings can be easily implemented in laboratory cell lines or in human 
primary cells. Single- cell CrISPr screenings can provide a direct correlation between the effect of specific guide rnas 
and the phenotypic data from heterogeneous cell populations. Several single- cell CrISPr strategies exist and have 
similar capabilities (see the table). Pooled CrISPr libraries of guide rnas are used to genetically modify cells that are 
subsequently used for single- cell approaches that can resolve individual cells from heterogeneous cell populations. 
Several approaches can be used to incorporate single guide rna into cells, including transfection, electroporation and 
viral transduction. The selection of the most suitable method depends on the cell type, owing to differences in the 
inherent resistance of the cells to incorporating these constructs.

Screening Technology Description Advantages and 
disadvantages

Ref.

Proteomics Procode Barcoding system that leverages 
the use of protein tags to 
enable the multiplexing of 
>100 unique samples

Can be applied to CRISPR screens 
with the use of high- dimensional 
methods, such as CyTOF, to 
characterize knockout constructs 
en masse

Can also be used to evaluate 
overexpression cDNA 
constructs

144

Transcriptomics Perturb- seq Pooled single guide RNA libraries 
are transduced in cells of choice 
and used in conjunction with 
scRNA- seq

Combines scRNA- seq and 
CRISPR- based perturbations to 
perform many assays in a pool

Limited by reliance on indirect 
indexing of single guide RNAs

158

Direct capture 
Perturb- seq

Expression from single guide 
RNAs is sequenced alongside 
transcriptomic measurements

Targets individual genes with 
multiple single guide RNAs 
per cell; allows scRNA- seq 
experiments

159

Mosaic single- cell 
analysis by indexed 
CRISPR sequencing 
(Mosaic- seq)

Uses a CRISPR barcoding 
system in combination with 
the measurement of single cell 
gene expression to readout both 
the phenotypic perturbations 
and the barcode of the specific 
single guide RNA

High- throughput endogenous 
interrogation of enhancers 
evaluated in single cells

160

CRISPR droplet 
sequencing 
(CROP- seq)

A guide RNA serves as  
the barcode

Enables pooled CRISPR screens 
with single- cell transcriptome 
resolution

Overcomes the problem of 
lentiviral template switching 
by using CROP- seq lentiviral 
constructs

161

Chromatin status Perturb- ATAC Combines CRISPR screening  
with scATAC- seq to measure  
the effect of CRISPR 
perturbations on chromatin  
status in single cells

NR 162

CROP- seq, CRISPR droplet sequencing; CyTOF, cytometry by time of flight; NR, not reported; scATAC- seq, single- cell assay for 
transposase- accessible chromatin using sequencing; scRNA- seq, single- cell RNA sequencing.
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