Abstract
Myocardial ischaemia results from coronary macrovascular or microvascular dysfunction compromising the supply of oxygen and nutrients to the myocardium. The underlying pathophysiological processes are manifold and encompass atherosclerosis of epicardial coronary arteries, vasospasm of large or small vessels and microvascular dysfunction — the clinical relevance of which is increasingly being appreciated. Myocardial ischaemia can have a broad spectrum of clinical manifestations, together denoted as chronic coronary syndromes. The most common antianginal medications relieve symptoms by eliciting coronary vasodilatation and modulating the determinants of myocardial oxygen consumption, that is, heart rate, myocardial wall stress and ventricular contractility. In addition, cardiac substrate metabolism can be altered to alleviate ischaemia by modulating the efficiency of myocardial oxygen use. Although a universal agreement exists on the prognostic importance of lifestyle interventions and event prevention with aspirin and statin therapy, the optimal antianginal treatment for patients with chronic coronary syndromes is less well defined. The 2019 guidelines of the ESC recommend a personalized approach, in which antianginal medications are tailored towards an individual patient’s comorbidities and haemodynamic profile. Although no antianginal medication improves survival, their efficacy for reducing symptoms profoundly depends on the underlying mechanism of the angina. In this Review, we provide clinicians with a rationale for when to use which compound or combination of drugs on the basis of the pathophysiology of the angina and the mode of action of antianginal medications.
Key points
-
Antianginal therapies improve coronary vascular oxygen supply to the ischaemic myocardium; reduce heart rate, myocardial work and oxygen consumption; or optimize the energetic efficiency of cardiomyocytes.
-
So far, neither drugs nor interventions that reduce ischaemia prolong survival in patients with chronic coronary syndromes.
-
Although current guidelines recommend β-blockers and calcium-channel blockers as first-line therapy, no evidence exists that these agents are superior to second-line therapies.
-
We provide a compass for the use of antianginal compounds in patients with chronic coronary syndromes that is tailored towards their haemodynamic status, left ventricular function and comorbidities.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Efficacy and Safety of Ivabradine in Combination with Beta-Blockers in Patients with Stable Angina Pectoris: A Systematic Review and Meta-analysis
Advances in Therapy Open Access 17 July 2022
-
Coronary blood flow in heart failure: cause, consequence and bystander
Basic Research in Cardiology Open Access 13 January 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Crea, F., Camici, P. G. & Bairey Merz, C. N. Coronary microvascular dysfunction: an update. Eur. Heart J. 35, 1101–1111 (2014).
Knuuti, J. et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41, 407–477 (2019).
Boden, W. E. et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 356, 1503–1516 (2007).
BARI 2D Study Group. et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N. Engl. J. Med. 360, 2503–2515 (2009).
Xaplanteris, P. et al. Five-year outcomes with PCI guided by fractional flow reserve. N. Engl. J. Med. 379, 250–259 (2018).
Maron, D. J. et al. Initial invasive or conservative strategy for stable coronary disease. N. Engl. J. Med. 382, 1395–1407 (2020).
Dargie, H. J., Ford, I. & Fox, K. M. Total Ischaemic Burden European Trial (TIBET). Effects of ischaemia and treatment with atenolol, nifedipine SR and their combination on outcome in patients with chronic stable angina. The TIBET Study Group. Eur. Heart J. 17, 104–112 (1996).
Rehnqvist, N. et al. Effects of metoprolol vs verapamil in patients with stable angina pectoris. The Angina Prognosis Study in Stockholm (APSIS). Eur. Heart J. 17, 76–81 (1996).
Pepine, C. J. et al. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA 290, 2805–2816 (2003).
Nissen, S. E. et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 292, 2217–2225 (2004).
Poole-Wilson, P. A. et al. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): randomised controlled trial. Lancet 364, 849–857 (2004).
Morrow, D. A. et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA 297, 1775–1783 (2007).
Fox, K., Ford, I., Steg, P. G., Tendera, M. & Ferrari, R. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet 372, 807–816 (2008).
Bangalore, S., Parkar, S. & Messerli, F. H. Long-acting calcium antagonists in patients with coronary artery disease: a meta-analysis. Am. J. Med. 122, 356–365 (2009).
Fox, K. et al. Ivabradine in stable coronary artery disease without clinical heart failure. N. Engl. J. Med. 371, 1091–1099 (2014).
Weisz, G. et al. Ranolazine in patients with incomplete revascularisation after percutaneous coronary intervention (RIVER-PCI): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 387, 136–145 (2016).
Sorbets, E. et al. β-blockers, calcium antagonists, and mortality in stable coronary artery disease: an international cohort study. Eur. Heart J. 40, 1399–1407 (2019).
Ferrari, R. et al. Efficacy and safety of trimetazidine after percutaneous coronary intervention (ATPCI): a randomised, double-blind, placebo-controlled trial. Lancet 396, 830–838 (2020).
Nakamura, Y., Moss, A. J., Brown, M. W., Kinoshita, M. & Kawai, C. Long-term nitrate use may be deleterious in ischemic heart disease: a study using the databases from two large-scale postinfarction studies. Multicenter Myocardial Ischemia Research Group. Am. Heart J. 138, 577–585 (1999).
Glasser, S. P. et al. Is randomization to placebo safe? Risk in placebo-controlled angina trials: angina risk meta-analysis. Cardiology 120, 174–181 (2011).
Takahashi, J. et al. Prognostic impact of chronic nitrate therapy in patients with vasospastic angina: multicentre registry study of the Japanese coronary spasm association. Eur. Heart J. 36, 228–237 (2015).
Fox, K. A. A., Metra, M., Morais, J. & Atar, D. The myth of ‘stable’ coronary artery disease. Nat. Rev. Cardiol. 17, 9–21 (2020).
Patrono, C. & Baigent, C. Role of aspirin in primary prevention of cardiovascular disease. Nat. Rev. Cardiol. 16, 675–686 (2019).
Adhyaru, B. B. & Jacobson, T. A. Safety and efficacy of statin therapy. Nat. Rev. Cardiol. 15, 757–769 (2018).
Nordestgaard, B. G., Nicholls, S. J., Langsted, A., Ray, K. K. & Tybjærg-Hansen, A. Advances in lipid-lowering therapy through gene-silencing technologies. Nat. Rev. Cardiol. 15, 261–272 (2018).
Sabatine, M. S. PCSK9 inhibitors: clinical evidence and implementation. Nat. Rev. Cardiol. 16, 155–165 (2019).
Patti, G. et al. Prevention of atherothrombotic events in patients with diabetes mellitus: from antithrombotic therapies to new-generation glucose-lowering drugs. Nat. Rev. Cardiol. 16, 113–130 (2019).
Bassenge, E. & Heusch, G. Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev. Physiol. Biochem. Pharmacol. 116, 77–165 (1990).
Goodwill, A. G., Dick, G. M., Kiel, A. M. & Tune, J. D. Regulation of coronary blood flow. Compr. Physiol. 7, 321–382 (2017).
Levy, B. I., Heusch, G. & Camici, P. G. The many faces of myocardial ischemia and angina. Cardiovasc. Res. 115, 1460–1470 (2019).
Heusch, G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br. J. Pharmacol. 153, 1589–1601 (2008).
Mosher, P., Ross, J. Jr, McFate, P. A. & Shaw, R. F. Control of coronary blood flow by an autoregulatory mechanism. Circ. Res. 14, 250–259 (1964).
Deussen, A., Ohanyan, V., Jannasch, A., Yin, L. & Chilian, W. Mechanisms of metabolic coronary flow regulation. J. Mol. Cell Cardiol. 52, 794–801 (2012).
Bassenge, E. & Busse, R. Endothelial modulation of coronary tone. Prog. Cardiovasc. Dis. 30, 349–380 (1988).
Heusch, G. The paradox of alpha-adrenergic coronary vasoconstriction revisited. J. Mol. Cell Cardiol. 51, 16–23 (2011).
Beckman, J. S. & Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424–C1437 (1996).
Kälsch, H. et al. Are air pollution and traffic noise independently associated with atherosclerosis: the Heinz Nixdorf Recall Study. Eur. Heart J. 35, 853–860 (2014).
Landmesser, U. et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111, 1201–1209 (2003).
Münzel, T. et al. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J. Am. Coll. Cardiol. 70, 212–229 (2017).
Thijssen, D. H. J. et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 40, 2534–2547 (2019).
Mills, I. et al. Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow. Am. J. Physiol. Heart Circ. Physiol. 266, H447–H457 (1994).
Sorop, O. et al. Functional and structural adaptations of coronary microvessels distal to a chronic coronary artery stenosis. Circ. Res. 102, 795–803 (2008).
Heusch, G. & Deussen, A. The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ. Res. 53, 8–15 (1983).
Aversano, T. & Becker, L. C. Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am. J. Physiol. 248, H403–H411 (1985).
Canty, J. M. & Klocke, F. J. Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71, 370–377 (1985).
Heusch, G., Guth, B. D., Seitelberger, R. & Ross, J. Jr. Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine. Circulation 75, 482–490 (1987).
Jamaiyar, A. et al. Cardioprotection during ischemia by coronary collateral growth. Am. J. Physiol. Heart C. 316, H1–H9 (2019).
Heusch, G. & Yoshimoto, N. Effects of heart rate and perfusion pressure on segmental coronary resistances and collateral perfusion. Pflügers Arch. 397, 284–289 (1983).
Baumgart, D., Ehring, T., Krajcar, M. & Heusch, G. A proischemic action of nisoldipine: relationship to a decrease in perfusion pressure and comparison to dipyridamole. Cardiovasc. Res. 27, 1254–1259 (1993).
Prinzmetal, M., Kennamer, R., Merliss, R., Wada, T. & Bor, N. Angina pectoris. I. A variant form of angina pectoris; preliminary report. Am. J. Med. 27, 375–388 (1959).
Ong, P. et al. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J. Am. Coll. Cardiol. 59, 655–662 (2012).
Nakamura, M., Takeshita, A. & Nose, Y. Clinical characteristics associated with myocardial infarction, arrhythmias, and sudden death in patients with vasospastic angina. Circulation 75, 1110–1116 (1987).
Morita, M. et al. Effects of oral l-citrulline supplementation on lipoprotein oxidation and endothelial dysfunction in humans with vasospastic angina. Immunol. Endocr. Metab. Agents Med. Chem. 13, 214–220 (2013).
Miyamoto, S. et al. Increased plasma levels of thioredoxin in patients with coronary spastic angina. Antioxid. Redox Signal. 6, 75–80 (2004).
Hung, M. J., Cherng, W. J., Cheng, C. W. & Li, L. F. Comparison of serum levels of inflammatory markers in patients with coronary vasospasm without significant fixed coronary artery disease versus patients with stable angina pectoris and acute coronary syndromes with significant fixed coronary artery disease. Am. J. Cardiol. 97, 1429–1434 (2006).
Yasue, H., Touyama, M., Shimamoto, M., Kato, H. & Tanaka, S. Role of autonomic nervous system in the pathogenesis of Prinzmetal’s variant form of angina. Circulation 50, 534–539 (1974).
Kaski, J. C. et al. Local coronary supersensitivity to diverse vasoconstrictive stimuli in patients with variant angina. Circulation 74, 1255–1265 (1986).
Yeung, A. C. et al. The effect of atherosclerosis on the vasomotor response of coronary arteries to mental stress. N. Engl. J. Med. 325, 1551–1556 (1991).
Tsujita, K. et al. Coronary plaque component in patients with vasospastic angina: a virtual histology intravascular ultrasound study. Int. J. Cardiol. 168, 2411–2415 (2013).
Ishii, M. et al. Acetylcholine-provoked coronary spasm at site of significant organic stenosis predicts poor prognosis in patients with coronary vasospastic angina. J. Am. Coll. Cardiol. 66, 1105–1115 (2015).
Halcox, J. P. et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 106, 653–658 (2002).
Danchin, N., Marzilli, M., Parkhomenko, A. & Ribeiro, J. P. Efficacy comparison of trimetazidine with therapeutic alternatives in stable angina pectoris: a network meta-analysis. Cardiology 120, 59–72 (2011).
Jespersen, L. et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur. Heart J. 33, 734–744 (2012).
Maddox, T. M. et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA 312, 1754–1763 (2014).
Brainin, P., Frestad, D. & Prescott, E. The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: a systematic review and meta-analysis. Int. J. Cardiol. 254, 1–9 (2018).
Herscovici, R. et al. Ischemia and no obstructive coronary artery disease (INOCA): what is the risk? J. Am. Heart Assoc. 7, e008868 (2018).
Camici, P. G. & Crea, F. Coronary microvascular dysfunction. N. Engl. J. Med. 356, 830–840 (2007).
Camici, P. G. & Pagani, M. Cardiac nociception. Circulation 114, 2309–2312 (2006).
Ohba, K. et al. Microvascular coronary artery spasm presents distinctive clinical features with endothelial dysfunction as nonobstructive coronary artery disease. J. Am. Heart Assoc. 1, e002485 (2012).
Kaski, J. C., Crea, F., Gersh, B. J. & Camici, P. G. Reappraisal of ischemic heart disease. Circulation 138, 1463–1480 (2018).
Padro, T. et al. ESC working group on coronary pathophysiology and microcirculation position paper on ‘coronary microvascular dysfunction in cardiovascular disease’. Cardiovasc. Res. 116, 741–755 (2020).
Heusch, G. Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am. J. Physiol. Heart Circ. Physiol. 316, H1439–H1446 (2019).
Heusch, G. α-Adrenergic mechanisms in myocardial ischemia. Circulation 81, 1–13 (1990).
Baumgart, D. et al. Augmented α-adrenergic constriction of atherosclerotic human coronary arteries. Circulation 99, 2090–2097 (1999).
Heusch, G. et al. α-Adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101, 689–694 (2000).
Heusch, G., Deussen, A. & Thämer, V. Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J. Auton. Nerv. Syst. 13, 311–326 (1985).
Gallagher, K. P., Matsuzaki, M., Osakada, G., Kemper, W. S. & Ross, J. Jr. Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ. Res. 52, 716–729 (1983).
Gallagher, K. P., Matsuzaki, M., Koziol, J. A., Kemper, W. S. & Ross, J. Jr. Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am. J. Physiol. Heart Circ. Physiol. 247, H727–H738 (1984).
Ross, J. Jr. Myocardial perfusion-contraction matching. Circulation 83, 1076–1083 (1991).
Maroko, P. R. et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43, 67–82 (1971).
Braunwald, E. & Maroko, P. R. Limitation of infarct size. Curr. Probl. Cardiol. 3, 10–51 (1978).
Hansson, N. & Daan, S. Politics and physiology: Hermann Rein and the Nobel Prize 1933–1953. J. Physiol. 592, 2911–2914 (2014).
Matsuzaki, M., Gallagher, K. P., Kemper, W. S., White, F. & Ross, J. Jr. Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 68, 170–182 (1983).
Heusch, G., Schulz, R. & Rahimtoola, S. H. Myocardial hibernation: a delicate balance. Am. J. Physiol. Heart Circ. Physiol. 288, H984–H999 (2005).
Matsuzaki, M. et al. Effects of a calcium-entry blocker (diltiazem) on regional myocardial flow and function during exercise in conscious dogs. Circulation 69, 801–814 (1984).
Matsuzaki, M. et al. Effects of beta-blockade on regional myocardial flow and function during exercise. Am. J. Physiol. 247, H52–H60 (1984).
Matsuzaki, M., Guth, B. D., Tajimi, T., Kemper, W. S. & Ross, J. Jr. Effects of the combination of diltiazem and atenolol on exercise-induced regional myocardial ischemia in conscious dogs. Circulation 72, 233–243 (1985).
Guth, B. D. et al. Experimental exercise-induced ischemia: drug therapy can eliminate regional dysfunction and oxygen supply–demand imbalance. J. Am. Coll. Cardiol. 7, 1036–1046 (1986).
Guth, B. D., Heusch, G., Seitelberger, R. & Ross, J. Jr. Elimination of exercise-induced regional myocardial dysfunction by a bradycardic agent in dogs with chronic coronary stenosis. Circulation 75, 661–669 (1987).
Guth, B. D., Heusch, G., Seitelberger, R. & Ross, J. Jr. Mechanism of beneficial effect of beta-adrenergic blockade on exercise-induced myocardial ischemia in conscious dogs. Circ. Res. 60, 738–746 (1987).
Heusch, G. Myocardial stunning and hibernation revisited. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-021-00506-7 (2021).
Vanoverschelde, J. L. et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87, 1513–1523 (1993).
Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).
Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).
Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S. & Stanley, W. C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90, 207–258 (2010).
Arima, Y. et al. Myocardial ischemia suppresses ketone body utilization. J. Am. Coll. Cardiol. 73, 246–247 (2019).
Dennis, S. C., Gevers, W. & Opie, L. H. Protons in ischemia: where do they come from; where do they go to? J. Mol. Cell Cardiol. 23, 1077–1086 (1991).
Orchard, C. H. & Cingolani, H. E. Acidosis and arrhythmias in cardiac muscle. Cardiovasc. Res. 28, 1312–1319 (1994).
Arai, A. E., Grauer, S. E., Anselone, C. G., Pantely, G. A. & Bristow, J. D. Metabolic adaptation to a gradual reduction in myocardial blood flow. Circulation 92, 244–252 (1995).
Liedtke, A. J., DeMaison, L., Eggleston, A. M., Cohen, L. M. & Nellis, S. H. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ. Res. 62, 535–542 (1988).
Lerch, R., Tamm, C., Papageorgiou, I. & Benzi, R. H. Myocardial fatty acid oxidation during ischemia and reperfusion. Mol. Cell Biochem. 116, 103–109 (1992).
Opie, L. H. Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction. Relation to myocardial ischemia and infarct size. Am. J. Cardiol. 36, 938–953 (1975).
Kudo, N., Barr, A. J., Barr, R. L., Desai, S. & Lopaschuk, G. D. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 270, 17513–17520 (1995).
Liu, Q., Docherty, J. C., Rendell, J. C., Clanachan, A. S. & Lopaschuk, G. D. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J. Am. Coll. Cardiol. 39, 718–725 (2002).
Crea, F. & Gaspardone, A. New look to an old symptom: angina pectoris. Circulation 96, 3766–3773 (1997).
Korvald, C., Elvenes, O. P. & Myrmel, T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am. J. Physiol. Heart Circ. Physiol. 278, H1345–H1351 (2000).
Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S. & Kimura, H. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv. Cycl. Nucleotide Res. 9, 145–158 (1978).
Munzel, T., Daiber, A. & Mulsch, A. Explaining the phenomenon of nitrate tolerance. Circ. Res. 97, 618–628 (2005).
Sellke, F. W., Myers, P. R., Bates, J. N. & Harrison, D. G. Influence of vessel size on the sensitivity of porcine coronary microvessels to nitroglycerin. Am. J. Physiol. 258, H515–H520 (1990).
Daiber, A. & Munzel, T. Organic nitrate therapy, nitrate tolerance, and nitrate-induced endothelial dysfunction: emphasis on redox biology and oxidative stress. Antioxid. Redox Signal. 23, 899–942 (2015).
Jackson, J., Patterson, A. J., MacDonald-Wicks, L. & McEvoy, M. The role of inorganic nitrate and nitrite in CVD. Nutr. Res. Rev. 30, 247–264 (2017).
Munzel, T., Daiber, A. & Gori, T. Nitrate therapy: new aspects concerning molecular action and tolerance. Circulation 123, 2132–2144 (2011).
Munzel, T., Daiber, A. & Gori, T. More answers to the still unresolved question of nitrate tolerance. Eur. Heart J. 34, 2666–2673 (2013).
Tarkin, J. M. & Kaski, J. C. Nicorandil and long-acting nitrates: vasodilator therapies for the management of chronic stable angina pectoris. Eur. Cardiol. 13, 23–28 (2018).
Wenzel, P. et al. Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates. Arterioscler. Thromb. Vasc. Biol. 27, 1729–1735 (2007).
Gladwin, M. T. et al. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am. J. Physiol. Heart Circ. Physiol. 291, H2026–H2035 (2006).
Munzel, T. & Daiber, A. Inorganic nitrite and nitrate in cardiovascular therapy: a better alternative to organic nitrates as nitric oxide donors? Vasc. Pharmacol. 102, 1–10 (2018).
Group, J. C. S. J. W. Guidelines for diagnosis and treatment of patients with vasospastic angina (coronary spastic angina) (JCS 2013). Circ. J. 78, 2779–2801 (2014).
Taylor, A. L. et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N. Engl. J. Med. 351, 2049–2057 (2004).
Redfield, M. M. et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N. Engl. J. Med. 373, 2314–2324 (2015).
Borlaug, B. A. et al. Effect of inorganic nitrite vs placebo on exercise capacity among patients with heart failure with preserved ejection fraction: the INDIE-HFpEF randomized clinical trial. JAMA 320, 1764–1773 (2018).
Opie, L. H. Calcium channel antagonists in the treatment of coronary artery disease: fundamental pharmacological properties relevant to clinical use. Prog. Cardiovasc. Dis. 38, 273–290 (1996).
Ong, P., Athanasiadis, A. & Sechtem, U. Pharmacotherapy for coronary microvascular dysfunction. Eur. Heart J. Cardiovasc. Pharmacother. 1, 65–71 (2015).
Böhm, M., Schwinger, R. H. & Erdmann, E. Different cardiodepressant potency of various calcium antagonists in human myocardium. Am. J. Cardiol. 65, 1039–1041 (1990).
Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).
Buck, J. D., Hardman, H. F., Warltier, D. C. & Gross, G. J. Changes in ischemic blood flow distribution and dynamic severity of a coronary stenosis induced by beta blockade in the canine heart. Circulation 64, 708–715 (1981).
Seitelberger, R. et al. Intracoronary α2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ. Res. 62, 436–442 (1988).
Gottlieb, S. S., McCarter, R. J. & Vogel, R. A. Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction. N. Engl. J. Med. 339, 489–497 (1998).
Law, M. R., Morris, J. K. & Wald, N. J. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ 338, b1665 (2009).
Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).
Dondo, T. B. et al. β-Blockers and mortality after acute myocardial infarction in patients without heart failure or ventricular dysfunction. J. Am. Coll. Cardiol. 69, 2710–2720 (2017).
Dargie, H. J. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet 357, 1385–1390 (2001).
DiFrancesco, D., Ferroni, A., Mazzanti, M. & Tromba, C. Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sino-atrial node. J. Physiol. 377, 61–88 (1986).
Bucchi, A., Baruscotti, M. & DiFrancesco, D. Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J. Gen. Physiol. 120, 1–13 (2002).
Simon, L., Ghaleh, B., Puybasset, L., Giudicelli, J. F. & Berdeaux, A. Coronary and hemodynamic effects of S 16257, a new bradycardic agent, in resting and exercising conscious dogs. J. Pharmacol. Exp. Ther. 275, 659–666 (1995).
Indolfi, C. et al. Mechanisms of improved ischemic regional dysfunction by bradycardia. Studies on UL-FS 49 in swine. Circulation 80, 983–993 (1989).
Heusch, G. et al. Improvement of regional myocardial blood flow and function and reduction of infarct size with ivabradine: protection beyond heart rate reduction. Eur. Heart J. 29, 2265–2275 (2008).
Swedberg, K. et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376, 875–885 (2010).
Ohman, E. M. & Alexander, K. P. The challenges with chronic angina. N. Engl. J. Med. 371, 1152–1153 (2014).
Ferrari, R. et al. Expert consensus document: a ‘diamond’ approach to personalized treatment of angina. Nat. Rev. Cardiol. 15, 120–132 (2018).
Fox, K. et al. Relationship between ivabradine treatment and cardiovascular outcomes in patients with stable coronary artery disease and left ventricular systolic dysfunction with limiting angina: a subgroup analysis of the randomized, controlled BEAUTIFUL trial. Eur. Heart J. 30, 2337–2345 (2009).
Werdan, K. et al. Effectiveness of ivabradine treatment in different subpopulations with stable angina in clinical practice: a pooled analysis of observational studies. Cardiology 135, 141–150 (2016).
Bersin, R. M. & Stacpoole, P. W. Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am. Heart J. 134, 841–855 (1997).
Newman, R. J. Comparison of the antilipolytic effect of metoprolol, acebutolol, and propranolol in man. Br. Med. J. 2, 601–603 (1977).
Wallhaus, T. R. et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103, 2441–2446 (2001).
Bergman, G., Atkinson, L., Metcalfe, J., Jackson, N. & Jewitt, D. E. Beneficial effect of enhanced myocardial carbohydrate utilisation after oxfenicine (l-hydroxyphenylglycine) in angina pectoris. Eur. Heart J. 1, 247–253 (1980).
Cheng, J. F. et al. Discovery of potent and orally available malonyl-CoA decarboxylase inhibitors as cardioprotective agents. J. Med.Chem. 49, 4055–4058 (2006).
Wang, W. et al. Malonyl CoA decarboxylase inhibition improves cardiac function post-myocardial infarction. JACC Basic Transl Sci. 4, 385–400 (2019).
Kantor, P. F., Lucien, A., Kozak, R. & Lopaschuk, G. D. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ. Res. 86, 580–588 (2000).
Tuunanen, H. et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 118, 1250–1258 (2008).
McCarthy, C. P., Mullins, K. V. & Kerins, D. M. The role of trimetazidine in cardiovascular disease: beyond an anti-anginal agent. Eur. Heart J. Cardiovasc. Pharmacother. 2, 266–272 (2016).
Szwed, H. et al. Combination treatment in stable effort angina using trimetazidine and metoprolol: results of a randomized, double-blind, multicentre study (TRIMPOL II). TRIMetazidine in POLand. Eur. Heart J. 22, 2267–2274 (2001).
Peng, S. et al. The efficacy of trimetazidine on stable angina pectoris: a meta-analysis of randomized clinical trials. Int. J. Cardiol. 177, 780–785 (2014).
Nalbantgil, S. et al. The effect of trimetazidine in the treatment of microvascular angina. Int. J. Angiol. 8, 40–43 (1999).
McCormack, J. G., Barr, R. L., Wolff, A. A. & Lopaschuk, G. D. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation 93, 135–142 (1996).
Valdivia, C. R. et al. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J. Mol. Cell Cardiol. 38, 475–483 (2005).
Pieske, B. et al. Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation 106, 447–453 (2002).
Chaitman, B. R. et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA 291, 309–316 (2004).
Bairey Merz, C. N. et al. A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): impact on angina and myocardial perfusion reserve. Eur. Heart J. 37, 1504–1513 (2016).
Scirica, B. M. et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the Metabolic Efficiency With Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 116, 1647–1652 (2007).
Morrow, D. A. et al. Evaluation of the glycometabolic effects of ranolazine in patients with and without diabetes mellitus in the MERLIN-TIMI 36 randomized controlled trial. Circulation 119, 2032–2039 (2009).
Wilson, S. R. et al. Efficacy of ranolazine in patients with chronic angina observations from the randomized, double-blind, placebo-controlled MERLIN-TIMI (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST-Segment Elevation Acute Coronary Syndromes) 36 Trial. J. Am. Coll. Cardiol. 53, 1510–1516 (2009).
Morrow, D. A. et al. B-type natriuretic peptide and the effect of ranolazine in patients with non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST Elevation Acute Coronary-Thrombolysis In Myocardial Infarction 36) trial. J. Am. Coll. Cardiol. 55, 1189–1196 (2010).
Ferrari, R. et al. Anti-anginal drugs — beliefs and evidence: systematic review covering 50 years of medical treatment. Eur. Heart J. 40, 190–194 (2019).
Husted, S. E. & Ohman, E. M. Pharmacological and emerging therapies in the treatment of chronic angina. Lancet 386, 691–701 (2015).
Montalescot, G. et al. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European society of cardiology. Eur. Heart J. 34, 2949–3003 (2013).
Vidal-Petiot, E. et al. Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study. Lancet 388, 2142–2152 (2016).
Ambrosio, G., Tamargo, J. & Grant, P. J. Non-haemodynamic anti-anginal agents in the management of patients with stable coronary artery disease and diabetes: a review of the evidence. Diabetes Vasc. Dis. Res. 13, 98–112 (2016).
Bakris, G. L. et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA 292, 2227–2236 (2004).
Wai, B. et al. Beta blocker use in subjects with type 2 diabetes mellitus and systolic heart failure does not worsen glycaemic control. Cardiovasc. Diabetol. 11, 14 (2012).
Kalra, P. R. et al. Impact of chronic kidney disease on use of evidence-based therapy in stable coronary artery disease: a prospective analysis of 22,272 patients. PLoS ONE 9, e102335 (2014).
Smilowitz, N. R., Gupta, N., Guo, Y., Mauricio, R. & Bangalore, S. Management and outcomes of acute myocardial infarction in patients with chronic kidney disease. Int. J. Cardiol. 227, 1–7 (2017).
Juul-Möller, S. et al. Double-blind trial of aspirin in primary prevention of myocardial infarction in patients with stable chronic angina pectoris. The Swedish Angina Pectoris Aspirin Trial (SAPAT) group. Lancet 340, 1421–1425 (1992).
Shepherd, J. et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 333, 1301–1307 (1995).
Fox, K. A. COURAGE to change practice? Revascularisation in patients with stable coronary artery disease. Heart 95, 689–692 (2009).
Windecker, S. et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: network meta-analysis. BMJ 348, g3859 (2014).
Velazquez, E. J. et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N. Engl. J. Med. 374, 1511–1520 (2016).
Neumann, F. J. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 40, 87–165 (2019).
Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986).
Hausenloy, D. J. et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic. Res. Cardiol. 111, 70 (2016).
Heusch, G. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat. Rev. Cardiol. 17, 773–789 (2020).
Heusch, G. Nitroglycerin and delayed preconditioning in humans: yet another new mechanism for an old drug? Circulation 103, 2876–2878 (2001).
Maack, C., Dabew, E. R., Hohl, M., Schäfers, H. J. & Böhm, M. Endogenous activation of mitochondrial KATP channels protects human failing myocardium from hydroxyl radical-induced stunning. Circ. Res. 105, 811–817 (2009).
Paggio, A. et al. Identification of an ATP-sensitive potassium channel in mitochondria. Nature 572, 609–613 (2019).
O’Rourke, B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ. Res. 94, 420–432 (2004).
Heusch, G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 116, 674–699 (2015).
Cowie, M. R. et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N. Engl. J. Med. 373, 1095–1105 (2015).
Stergiopoulos, K. et al. Percutaneous coronary intervention outcomes in patients with stable obstructive coronary artery disease and myocardial ischemia: a collaborative meta-analysis of contemporary randomized clinical trials. JAMA Intern. Med. 174, 232–240 (2014).
Sara, J. D. et al. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc. Interv. 8, 1445–1453 (2015).
Cannon, R. O. 3rd. The sensitive heart. A syndrome of abnormal cardiac pain perception. JAMA 273, 883–887 (1995).
Gallone, G. et al. Refractory angina: from pathophysiology to new therapeutic nonpharmacological technologies. JACC Cardiovasc. Interv. 13, 1–19 (2020).
Hartikainen, J. et al. Adenoviral intramyocardial VEGF-DDeltaNDeltaC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur. Heart J. 38, 2547–2555 (2017).
Iwasaki, H. et al. Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113, 1311–1325 (2006).
Henry, T. D. et al. Autologous CD34+ cell therapy for refractory angina: 2-year outcomes from the ACT34-CMI study. Cell Transpl. 25, 1701–1711 (2016).
Povsic, T. J. et al. The RENEW trial: efficacy and safety of intramyocardial autologous CD34+ cell administration in patients with refractory angina. JACC Cardiovasc. Interv. 9, 1576–1585 (2016).
Alunni, G. et al. The beneficial effect of extracorporeal shockwave myocardial revascularization in patients with refractory angina. Cardiovasc. Revasc Med. 16, 6–11 (2015).
Kikuchi, Y. et al. Double-blind and placebo-controlled study of the effectiveness and safety of extracorporeal cardiac shock wave therapy for severe angina pectoris. Circ. J. 74, 589–591 (2010).
Davies, A. et al. Management of refractory angina: an update. Eur. Heart J. 42, 269–283 (2021).
Konigstein, M., Giannini, F. & Banai, S. The Reducer device in patients with angina pectoris: mechanisms, indications, and perspectives. Eur. Heart J. 39, 925–933 (2018).
Verheye, S. et al. Efficacy of a device to narrow the coronary sinus in refractory angina. N. Engl. J. Med. 372, 519–527 (2015).
Eisenberg, M. J., Brox, A. & Bestawros, A. N. Calcium channel blockers: an update. Am. J. Med. 116, 35–43 (2004).
Lüscher, T. F. et al. A randomized placebo-controlled study on the effect of nifedipine on coronary endothelial function and plaque formation in patients with coronary artery disease: the ENCORE II study. Eur. Heart J. 30, 1590–1597 (2009).
Preston Mason, R. Pleiotropic effects of calcium channel blockers. Curr. Hypertens. Rep. 14, 293–303 (2012).
Daiber, A., Wenzel, P., Oelze, M. & Munzel, T. New insights into bioactivation of organic nitrates, nitrate tolerance and cross-tolerance. Clin. Res. Cardiol. 97, 12–20 (2008).
Effect of nicorandil on coronary events in patients with stable angina: the Impact Of Nicorandil in Angina (IONA) randomised trial. Lancet 359, 1269–1275 (2002).
Bangalore, S., Messerli, F. H., Kostis, J. B. & Pepine, C. J. Cardiovascular protection using beta-blockers: a critical review of the evidence. J. Am. Coll. Cardiol. 50, 563–572 (2007).
Koruth, J. S., Lala, A., Pinney, S., Reddy, V. Y. & Dukkipati, S. R. The clinical use of ivabradine. J. Am. Coll. Cardiol. 70, 1777–1784 (2017).
Rayner-Hartley, E. & Sedlak, T. Ranolazine: a contemporary review. J. Am. Heart Assoc. 5, e003196 (2016).
Marzilli, M. et al. Trimetazidine in cardiovascular medicine. Int. J. Cardiol. 293, 39–44 (2019).
Acknowledgements
G.H. is supported by the Deutsche Forschungsgemeinschaft (DFG; SFB 1116 B8). T.M. is a principal investigator at the DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany. C.M. is supported by the DFG (Ma 2528/7-1; SFB 894; TRR-219) and the Federal Ministry of Education and Research (BMBF; 01EO1504).
Author information
Authors and Affiliations
Contributions
All the authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
C.M. has received honoraria as a lecturer from AstraZeneca, Bayer, Berlin Chemie, Boehringer Ingelheim, Bristol-Myers Squibb, Novartis and Servier and has served as an adviser to Amgen, Boehringer Ingelheim, Novo Nordisk and Servier. The other authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Cardiology thanks R. Ferrari, J. López-Sendón, H. Ogawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bertero, E., Heusch, G., Münzel, T. et al. A pathophysiological compass to personalize antianginal drug treatment. Nat Rev Cardiol 18, 838–852 (2021). https://doi.org/10.1038/s41569-021-00573-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41569-021-00573-w
This article is cited by
-
Coronary blood flow in heart failure: cause, consequence and bystander
Basic Research in Cardiology (2022)
-
Efficacy and Safety of Ivabradine in Combination with Beta-Blockers in Patients with Stable Angina Pectoris: A Systematic Review and Meta-analysis
Advances in Therapy (2022)
-
Electroacupuncture at PC6 (Neiguan) Attenuates Angina Pectoris in Rats with Myocardial Ischemia–Reperfusion Injury Through Regulating the Alternative Splicing of the Major Inhibitory Neurotransmitter Receptor GABRG2
Journal of Cardiovascular Translational Research (2022)