Abstract
Plasma HDL-cholesterol concentrations correlate negatively with the risk of atherosclerotic cardiovascular disease (ASCVD). According to a widely cited model, HDL elicits its atheroprotective effect through its role in reverse cholesterol transport, which comprises the efflux of cholesterol from macrophages to early forms of HDL, followed by the conversion of free cholesterol (FCh) contained in HDL into cholesteryl esters, which are hepatically extracted from the plasma by HDL receptors and transferred to the bile for intestinal excretion. Given that increasing plasma HDL-cholesterol levels by genetic approaches does not reduce the risk of ASCVD, the focus of research has shifted to HDL function, especially in the context of macrophage cholesterol efflux. In support of the reverse cholesterol transport model, several large studies have revealed an inverse correlation between macrophage cholesterol efflux to plasma HDL and ASCVD. However, other studies have cast doubt on the underlying reverse cholesterol transport mechanism: in mice and humans, the FCh contained in HDL is rapidly cleared from the plasma (within minutes), independently of esterification and HDL holoparticle uptake by the liver. Moreover, the reversibility of FCh transfer between macrophages and HDL has implicated the reverse process — that is, the transfer of FCh from HDL to macrophages — in the aetiology of increased ASCVD under conditions of very high plasma HDL–FCh concentrations.
Key points
-
High plasma HDL-cholesterol concentrations and the esterification of free cholesterol (FCh) contained in HDL are central to traditional models of reverse cholesterol transport and prevention of atherosclerotic cardiovascular disease (ASCVD).
-
Interventions that increase plasma HDL-cholesterol concentrations do not reduce ASCVD, and most FCh in HDL is hepatically extracted without esterification.
-
Studies on the relationship between macrophage cholesterol efflux, plasma HDL concentrations and ASCVD have been contradictory.
-
In mouse models and humans with dysregulated HDL metabolism, a high bioavailability of FCh in HDL correlates with ASCVD; differences in HDL–FCh bioavailability might underlie the disparate findings on the role of macrophage cholesterol efflux in ASCVD.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kannel, W. B., Castelli, W. P. & Gordon, T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann. Intern. Med. 90, 85–91 (1979).
Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).
Cholesterol Treatment Trialists' (CTT) Collaborators. et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).
Stone, N. J. & Grundy, S. M. The 2018 AHA/ACC/Multi-Society Cholesterol guidelines: Looking at past, present and future. Prog. Cardiovasc. Dis. 62, 375–383 (2019).
HPS2-THRIVE Collaborative Group. et al. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 371, 203–212 (2014).
AIM-HIGH Investigators. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).
Elam, M., Lovato, L. & Ginsberg, H. The ACCORD-Lipid study: implications for treatment of dyslipidemia in Type 2 diabetes mellitus. Clin. Lipidol. 6, 9–20 (2011).
ACCORD Study Group. et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).
Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380, 572–580 (2012).
Nicholls, S. J. et al. Effect of serial infusions of CER-001, a pre-beta high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol. 3, 815–822 (2018).
Nicholls, S. J. et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 3, 806–814 (2018).
Covey, S. D., Krieger, M., Wang, W., Penman, M. & Trigatti, B. L. Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells. Arterioscler. Thromb. Vasc. Biol. 23, 1589–1594 (2003).
Van Eck, M. et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J. Biol. Chem. 278, 23699–23705 (2003).
Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).
Madsen, C. M., Varbo, A. & Nordestgaard, B. G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur. Heart J. 38, 2478–2486 (2017).
Ko, D. T. et al. High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: The CANHEART study. J. Am. Coll. Cardiol. 68, 2073–2083 (2016).
Hamer, M., O’Donovan, G. & Stamatakis, E. High-density lipoprotein cholesterol and mortality: too much of a good thing? Arterioscler. Thromb. Vasc. Biol. 38, 669–672 (2018).
Hui, N., Barter, P. J., Ong, K. L. & Rye, K. A. Altered HDL metabolism in metabolic disorders: insights into the therapeutic potential of HDL. Clin. Sci. 133, 2221–2235 (2019).
Miettinen, H. E., Rayburn, H. & Krieger, M. Abnormal lipoprotein metabolism and reversible female infertility in HDL receptor (SR-BI)-deficient mice. J. Clin. Invest. 108, 1717–1722 (2001).
Havel, R. J., Goldstein, J. L. & Brown, M. S. in Metabolic Control of Disease (eds Bondy, P. E. & Rosenberg, L. E.) 393–493 (Saunders Publishing, 1980).
Edelstein, C., Kezdy, F. J., Scanu, A. M. & Shen, B. W. Apolipoproteins and the structural organization of plasma lipoproteins: human plasma high density lipoprotein-3. J. Lipid Res. 20, 143–153 (1979).
Huang, R. et al. Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat. Struct. Mol. Biol. 18, 416–422 (2011).
Li, W. H., Tanimura, M., Luo, C. C., Datta, S. & Chan, L. The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution. J. Lipid Res. 29, 245–271 (1988).
Segrest, J. P., Jackson, R. L., Morrisett, J. D. & Gotto, A. M. Jr. A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett. 38, 247–258 (1974).
Boguski, M. S., Freeman, M., Elshourbagy, N. A., Taylor, J. M. & Gordon, J. I. On computer-assisted analysis of biological sequences: proline punctuation, consensus sequences, and apolipoprotein repeats. J. Lipid Res. 27, 1011–1034 (1986).
Fielding, C. J., Shore, V. G. & Fielding, P. E. A protein cofactor of lecithin:cholesterol acyltransferase. Biochem. Biophys. Res. Commun. 46, 1493–1498 (1972).
Havel, R. J. et al. Cofactor activity of protein components of human very low density lipoproteins in the hydrolysis of triglycerides by lipoproteins lipase from different sources. Biochemistry 12, 1828–1833 (1973).
Saleheen, D. et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544, 235–239 (2017).
Phillips, M. C. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 66, 616–623 (2014).
Mehta, R., Gantz, D. L. & Gursky, O. Human plasma high-density lipoproteins are stabilized by kinetic factors. J. Mol. Biol. 328, 183–192 (2003).
Liang, H. Q., Rye, K. A. & Barter, P. J. Remodelling of reconstituted high density lipoproteins by lecithin: cholesterol acyltransferase. J. Lipid Res. 37, 1962–1970 (1996).
Kee, P., Rye, K. A., Taylor, J. L., Barrett, P. H. & Barter, P. J. Metabolism of apoA-I as lipid-free protein or as component of discoidal and spherical reconstituted HDLs: studies in wild-type and hepatic lipase transgenic rabbits. Arterioscler. Thromb. Vasc. Biol. 22, 1912–1917 (2002).
Rye, K. A., Hime, N. J. & Barter, P. J. Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. J. Biol. Chem. 272, 3953–3960 (1997).
Settasatian, N. et al. The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J. Biol. Chem. 276, 26898–26905 (2001).
Rao, R., Albers, J. J., Wolfbauer, G. & Pownall, H. J. Molecular and macromolecular specificity of human plasma phospholipid transfer protein. Biochemistry 36, 3645–3653 (1997).
Lusa, S., Jauhiainen, M., Metso, J., Somerharju, P. & Ehnholm, C. The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion. Biochem. J. 313, 275–282 (1996).
Lie, J. et al. Evaluation of phospholipid transfer protein and cholesteryl ester transfer protein as contributors to the generation of pre beta-high-density lipoproteins. Biochem. J. 360, 379–385 (2001).
Rye, K. A., Clay, M. A. & Barter, P. J. Remodelling of high density lipoproteins by plasma factors. Atherosclerosis 145, 227–238 (1999).
Marques, P. E. et al. Multimerization and retention of the scavenger receptor sr-b1 in the plasma membrane. Dev. Cell 50, 283–295.e5 (2019).
Gillard, B. K., Bassett, G. R., Gotto, A. M. Jr., Rosales, C. & Pownall, H. J. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester. J. Biol. Chem. 292, 8864–8873 (2017).
Vaisar, T. et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest. 117, 746–756 (2007).
Shah, A. S., Tan, L., Long, J. L. & Davidson, W. S. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J. Lipid Res. 54, 2575–2585 (2013).
Rosenson, R. S. et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125, 1905–1919 (2012).
Toth, P. P. et al. High-density lipoproteins: a consensus statement from the National Lipid Association. J. Clin. Lipidol. 7, 484–525 (2013).
Rader, D. J., Alexander, E. T., Weibel, G. L., Billheimer, J. & Rothblat, G. H. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res. 50, S189–S194 (2009).
Blum, C. B. et al. High density lipoprotein metabolism in man. J. Clin. Invest. 60, 795–807 (1977).
Rodriguez, P. J. et al. Neo high-density lipoprotein produced by the streptococcal serum opacity factor activity against human high-density lipoproteins is hepatically removed via dual mechanisms. Biochemistry 55, 5845–5853 (2016).
Xu, B. et al. ABCA1-derived nascent high-density lipoprotein-apolipoprotein AI and lipids metabolically segregate. Arterioscler. Thromb. Vasc. Biol. 37, 2260–2270 (2017).
Macheboeuf, M. Recherches sur les phosphoaminolipides et les sterides du serum et du plasma sanguins: I. Entrainement des phospholipids, des sterols et des sterides par les diverses fractions au cours du fractionnement des proteides du serum. Bull. Soc. Chim. Biol. 223, 99 (1930).
Gofman, J. W., Young, W. & Tandy, R. Ischemic heart disease, atherosclerosis, and longevity. Circulation 34, 679–697 (1966).
Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B. & Dawber, T. R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med. 62, 707–714 (1977).
Bays, H. E. et al. Blood pressure-lowering effects of extended-release niacin alone and extended-release niacin/laropiprant combination: a post hoc analysis of a 24-week, placebo-controlled trial in dyslipidemic patients. Clin. Ther. 31, 115–122 (2009).
No Authors Listed. Clofibrate and niacin in coronary heart disease. JAMA 231, 360–381 (1975).
Frick, M. H. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med. 317, 1237–1245 (1987).
Robins, S. J. et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 285, 1585–1591 (2001).
Pownall, H. J. et al. Correlation of serum triglyceride and its reduction by omega-3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins. Atherosclerosis 143, 285–297 (1999).
Zhong, S. et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Invest. 97, 2917–2923 (1996).
Bruce, C., Sharp, D. S. & Tall, A. R. Relationship of HDL and coronary heart disease to a common amino acid polymorphism in the cholesteryl ester transfer protein in men with and without hypertriglyceridemia. J. Lipid Res. 39, 1071–1078 (1998).
Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).
Williams, S. A. et al. Improving assessment of drug safety through proteomics: early detection and mechanistic characterization of the unforeseen harmful effects of torcetrapib. Circulation 137, 999–1010 (2018).
Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).
Lincoff, A. M. et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N. Engl. J. Med. 376, 1933–1942 (2017).
HPS3/TIMI55–REVEAL Collaborative Group. et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 377, 1217–1227 (2017).
Tall, A. R. & Rader, D. J. Trials and tribulations of CETP inhibitors. Circ. Res. 122, 106–112 (2018).
Kuwano, T. et al. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport. J. Lipid Res. 58, 731–741 (2017).
Gotto, A. M. Jr. Establishing the benefit of statins in low-to-moderate–risk primary prevention: the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Atheroscler. Suppl. 8, 3–8 (2007).
Carew, T. E. Role of biologically modified low-density lipoprotein in atherosclerosis. Am. J. Cardiol. 64, 18G–22G (1989).
Sawayama, Y., Maeda, S., Ohnishi, H., Okada, K. & Hayashi, J. Effect of probucol on elderly hypercholesterolemic patients in the FAST study. Fukuoka Igaku Zasshi 97, 15–24 (2006).
Thun, M. J. et al. Alcohol consumption and mortality among middle-aged and elderly U.S. adults. N. Engl. J. Med. 337, 1705–1714 (1997).
Hartung, G. H., Lawrence, S. J., Reeves, R. S. & Foreyt, J. P. Effect of alcohol and exercise on postprandial lipemia and triglyceride clearance in men. Atherosclerosis 100, 33–40 (1993).
Rauramaa, R. et al. Effects of aerobic physical exercise on inflammation and atherosclerosis in men: the DNASCO study: a six-year randomized, controlled trial. Ann. Intern. Med. 140, 1007–1014 (2004).
Ge, H. et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519–4526 (2008).
Nilsson, N. O. & Belfrage, P. Effects of acetate, acetaldehyde, and ethanol on lipolysis in isolated rat adipocytes. J. Lipid Res. 19, 737–741 (1978).
Mineo, C. & Shaul, P. W. Regulation of signal transduction by HDL. J. Lipid Res. 54, 2315–2324 (2013).
Stocker, R. & Keaney, J. F. Jr. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381–1478 (2004).
Quinn, M. T., Parthasarathy, S., Fong, L. G. & Steinberg, D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc. Natl Acad. Sci. USA 84, 2995–2998 (1987).
Barreto, J., Karathanasis, S. K., Remaley, A. & Sposito, A. C. Role of LOX-1 (lectin-like oxidized low-density lipoprotein receptor 1) as a cardiovascular risk predictor: mechanistic insight and potential clinical use. Arterioscler. Thromb. Vasc. Biol. 41, 153–166 (2021).
Yoshida, H., Kondratenko, N., Green, S., Steinberg, D. & Quehenberger, O. Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor. Biochem. J. 334, 9–13 (1998).
Steinberg, D. & Witztum, J. L. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 2311–2316 (2010).
Brooks, C. J., Steel, G., Gilbert, J. D. & Harland, W. A. Lipids of human atheroma. 4. Characterisation of a new group of polar sterol esters from human atherosclerotic plaques. Atherosclerosis 13, 223–237 (1971).
Brown, M. S. & Goldstein, J. L. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc. Natl Acad. Sci. USA 76, 3330–3337 (1979).
Parthasarathy, S., Barnett, J. & Fong, L. G. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim. Biophys. Acta 1044, 275–283 (1990).
Roche, M., Rondeau, P., Singh, N. R., Tarnus, E. & Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 582, 1783–1787 (2008).
Lonn, M. E., Dennis, J. M. & Stocker, R. Actions of “antioxidants” in the protection against atherosclerosis. Free Radic. Biol. Med. 53, 863–884 (2012).
Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 23–33 (2002).
Swertfeger, D. K. et al. Feasibility of a plasma bioassay to assess oxidative protection of low-density lipoproteins by high-density lipoproteins. J. Clin. Lipidol. 12, 1539–1548 (2018).
Yvan-Charvet, L. et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J. Clin. Invest. 117, 3900–3908 (2007).
Zhu, X. et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 283, 22930–22941 (2008).
Tang, C., Liu, Y., Kessler, P. S., Vaughan, A. M. & Oram, J. F. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J. Biol. Chem. 284, 32336–32343 (2009).
Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).
Rohatgi, A. et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 371, 2383–2393 (2014).
Guerin, M. et al. Association of serum cholesterol efflux capacity with mortality in patients with st-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 72, 3259–3269 (2018).
Soria-Florido, M. T. et al. Dysfunctional high-density lipoproteins are associated with a greater incidence of acute coronary syndrome in a population at high cardiovascular risk: a nested case-control study. Circulation 141, 444–453 (2020).
Li, X. M. et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler. Thromb. Vasc. Biol. 33, 1696–1705 (2013).
Khera, A. V. & Rader, D. J. Cholesterol efflux capacity: full steam ahead or a bump in the road? Arterioscler. Thromb. Vasc. Biol. 33, 1449–1451 (2013).
Vasudevan, M. et al. Modest diet-induced weight loss reduces macrophage cholesterol efflux to plasma of patients with metabolic syndrome. J. Clin. Lipidol. 7, 661–670 (2013).
Mutharasan, R. K. et al. HDL efflux capacity, HDL particle size, and high-risk carotid atherosclerosis in a cohort of asymptomatic older adults: the Chicago Healthy Aging Study. J. Lipid Res. 58, 600–606 (2017).
Josefs, T. et al. High-density lipoprotein cholesterol efflux capacity is not associated with atherosclerosis and prevalence of cardiovascular outcome: The CODAM study. J. Clin. Lipidol. 14, 122–132.e4 (2020).
Gillard, B. K. et al. Impaired lipoprotein processing in HIV patients on antiretroviral therapy: aberrant high-density lipoprotein lipids, stability, and function. Arterioscler. Thromb. Vasc. Biol. 33, 1714–1721 (2013).
de la Llera-Moya, M. et al. The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler. Thromb. Vasc. Biol. 30, 796–801 (2010).
Picardo, M. et al. Partially reassembled high density lipoproteins. Effects on cholesterol flux, synthesis, and esterification in normal human skin fibroblasts. Arteriosclerosis 6, 434–441 (1986).
Johnson, W. J., Mahlberg, F. H., Rothblat, G. H. & Phillips, M. C. Cholesterol transport between cells and high-density lipoproteins. Biochim. Biophys. Acta 1085, 273–298 (1991).
Feng, M. et al. Free cholesterol transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis underlies the U-shape relationship between HDL-cholesterol and cardiovascular disease. Eur. J. Prev. Cardiol. 27, 1606–1616 (2020).
Hoang, A. et al. Mechanism of cholesterol efflux in humans after infusion of reconstituted high-density lipoprotein. Eur. Heart J. 33, 657–665 (2012).
Teng, B., Sniderman, A. D., Soutar, A. K. & Thompson, G. R. Metabolic basis of hyperapobetalipoproteinemia. Turnover of apolipoprotein B in low density lipoprotein and its precursors and subfractions compared with normal and familial hypercholesterolemia. J. Clin. Invest. 77, 663–672 (1986).
Schwartz, C. C., Halloran, L. G., Vlahcevic, Z. R., Gregory, D. H. & Swell, L. Preferential utilization of free cholesterol from high-density lipoproteins for biliary cholesterol secretion in man. Science 200, 62–64 (1978).
Lund-Katz, S., Hammerschlag, B. & Phillips, M. C. Kinetics and mechanism of free cholesterol exchange between human serum high- and low-density lipoproteins. Biochemistry 21, 2964–2969 (1982).
Halloran, L. G., Schwartz, C. C., Vlahcevic, Z. R., Nisman, R. M. & Swell, L. Evidence for high-density lipoprotein-free cholesterol as the primary precursor for bile-acid synthesis in man. Surgery 84, 1–7 (1978).
Schwartz, C. C., VandenBroek, J. M. & Cooper, P. S. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J. Lipid Res. 45, 1594–1607 (2004).
Ji, Y. et al. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J. Biol. Chem. 274, 33398–33402 (1999).
van der Velde, A. E. et al. Regulation of direct transintestinal cholesterol excretion in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G203–G208 (2008).
Cedo, L. et al. LDL receptor regulates the reverse transport of macrophage-derived unesterified cholesterol via concerted action of the HDL-LDL axis: insight from mouse models. Circ. Res. 127, 778–792 (2020).
Bowe, B. et al. High density lipoprotein cholesterol and the risk of all-cause mortality among U.S. Veterans. Clin. J. Am. Soc. Nephrol. 11, 1784–1793 (2016).
Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 2735–2752 (2005).
Agarwala, A. P. et al. High-density lipoprotein (HDL) phospholipid content and cholesterol efflux capacity are reduced in patients with very high HDL cholesterol and coronary disease. Arterioscler. Thromb. Vasc. Biol. 35, 1515–1519 (2015).
Dole, V. S. et al. Thrombocytopenia and platelet abnormalities in high-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 1111–1116 (2008).
Holm, T. M. et al. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood 99, 1817–1824 (2002).
Braun, A. et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ. Res. 90, 270–276 (2002).
Huszar, D. et al. Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler. Thromb. Vasc. Biol. 20, 1068–1073 (2000).
Trigatti, B. et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc. Natl Acad. Sci. USA 96, 9322–9327 (1999).
Ma, K., Forte, T., Otvos, J. D. & Chan, L. Differential additive effects of endothelial lipase and scavenger receptor-class B type I on high-density lipoprotein metabolism in knockout mouse models. Arterioscler. Thromb. Vasc. Biol. 25, 149–154 (2005).
Thuahnai, S. T., Lund-Katz, S., Williams, D. L. & Phillips, M. C. Scavenger receptor class B, type I-mediated uptake of various lipids into cells. Influence of the nature of the donor particle interaction with the receptor. J. Biol. Chem. 276, 43801–43808 (2001).
Rigotti, A. et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc. Natl Acad. Sci. USA 94, 12610–12615 (1997).
Thacker, S. G. et al. Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice. J. Lipid Res. 56, 1282–1295 (2015).
Braun, A. et al. Probucol prevents early coronary heart disease and death in the high-density lipoprotein receptor SR-BI/apolipoprotein E double knockout mouse. Proc. Natl Acad. Sci. USA 100, 7283–7288 (2003).
Rosales, C., Tang, D., Gillard, B. K., Courtney, H. S. & Pownall, H. J. Apolipoprotein E mediates enhanced plasma high-density lipoprotein cholesterol clearance by low-dose streptococcal serum opacity factor via hepatic low-density lipoprotein receptors in vivo. Arterioscler. Thromb. Vasc. Biol. 31, 1834–1841 (2011).
Matyus, S. P. et al. HDL particle number measured on the Vantera(R), the first clinical NMR analyzer. Clin. Biochem. 48, 148–155 (2015).
Franceschini, G., Sirtori, C. R., Capurso, A. 2nd, Weisgraber, K. H. & Mahley, R. W. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J. Clin. Invest. 66, 892–900 (1980).
Rader, D. J. Lecithin: cholesterol acyltransferase and atherosclerosis: another high-density lipoprotein story that doesn’t quite follow the script. Circulation 120, 549–552 (2009).
Davidson, W. S. et al. Effects of acceptor particle size on the efflux of cellular free cholesterol. J. Biol. Chem. 270, 17106–17113 (1995).
Johnson, W. J. et al. The bidirectional flux of cholesterol between cells and lipoproteins. Effects of phospholipid depletion of high density lipoprotein. J. Biol. Chem. 261, 5766–5776 (1986).
Phillips, M. C., Johnson, W. J. & Rothblat, G. H. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim. Biophys. Acta 906, 223–276 (1987).
Orekhov, A. N. et al. Artificial HDL as an anti-atherosclerotic drug. Lancet 2, 1149–1150 (1984).
Tchoua, U., Gillard, B. K. & Pownall, H. J. HDL superphospholipidation enhances key steps in reverse cholesterol transport. Atherosclerosis 209, 430–435 (2010).
Newton, R. S. & Krause, B. R. HDL therapy for the acute treatment of atherosclerosis. Atheroscler. Suppl. 3, 31–38 (2002).
Pownall, H. J., Van Winkle, W. B., Pao, Q., Rohde, M. & Gotto, A. M. Jr. Action of lecithin:cholesterol acyltransferase on model lipoproteins. Preparation and characterization of model nascent high density lipoprotein. Biochim. Biophys. Acta 713, 494–503 (1982).
Matz, C. E. & Jonas, A. Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J. Biol. Chem. 257, 4535–4540 (1982).
Chen, C. H. & Albers, J. J. Characterization of proteoliposomes containing apoprotein A-I: a new substrate for the measurement of lecithin: cholesterol acyltransferase activity. J. Lipid Res. 23, 680–691 (1982).
Lerch, P. G., Fortsch, V., Hodler, G. & Bolli, R. Production and characterization of a reconstituted high density lipoprotein for therapeutic applications. Vox Sang. 71, 155–164 (1996).
Tardif, J. C. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297, 1675–1682 (2007).
Diditchenko, S. et al. Novel formulation of a reconstituted high-density lipoprotein (CSL112) dramatically enhances ABCA1-dependent cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 33, 2202–2211 (2013).
Herzog, E. et al. Reconstituted high-density lipoprotein can elevate plasma alanine aminotransferase by transient depletion of hepatic cholesterol: role of the phospholipid component. J. Appl. Toxicol. 36, 1038–1047 (2016).
Gille, A., D’Andrea, D., Tortorici, M. A., Hartel, G. & Wright, S. D. CSL112 (Apolipoprotein A-I [Human]) enhances cholesterol efflux similarly in healthy individuals and stable atherosclerotic disease patients. Arterioscler. Thromb. Vasc. Biol. 38, 953–963 (2018).
Pownall, H. J., Hu, A., Gotto, A. M. Jr., Albers, J. J. & Sparrow, J. T. Activation of lecithin:cholesterol acyltransferase by a synthetic model lipid-associating peptide. Proc. Natl Acad. Sci. USA 77, 3154–3158 (1980).
Gomaraschi, M. et al. Anti-inflammatory and cardioprotective activities of synthetic high-density lipoprotein containing apolipoprotein A-I mimetic peptides. J. Pharmacol. Exp. Ther. 324, 776–783 (2008).
Sviridov, D. O., Drake, S. K., Freeman, L. A. & Remaley, A. T. Amphipathic polyproline peptides stimulate cholesterol efflux by the ABCA1 transporter. Biochem. Biophys. Res. Commun. 471, 560–565 (2016).
Amar, M. J. et al. 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J. Pharmacol. Exp. Ther. 334, 634–641 (2010).
Kilsdonk, E. P. et al. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250–17256 (1995).
Atger, V. M. et al. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells. J. Clin. Invest. 99, 773–780 (1997).
Zimmer, S. et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci. Transl. Med. 8, 333ra350 (2016).
Bijsterbosch, M. K. et al. Enhanced hepatic uptake and processing of cholesterol esters from low density lipoprotein by specific lactosaminated Fab fragments. Arterioscler. Thromb. 11, 1806–1813 (1991).
Mims, M. P. et al. A nonexchangeable apolipoprotein E peptide that mediates binding to the low density lipoprotein receptor. J. Biol. Chem. 269, 20539–20547 (1994).
Sankaranarayanan, S. et al. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J. Lipid Res. 52, 2332–2340 (2011).
Schaefer, E. J. Clinical, biochemical, and genetic features in familial disorders of high density lipoprotein deficiency. Arteriosclerosis 4, 303–322 (1984).
Simonelli, S. et al. Recombinant human LCAT normalizes plasma lipoprotein profile in LCAT deficiency. Biologicals 41, 446–449 (2013).
Calabresi, L. et al. The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler. Thromb. Vasc. Biol. 25, 1972–1978 (2005).
Tanigawa, H. et al. Lecithin: cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo. Circulation 120, 160–169 (2009).
Tanigawa, H. et al. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 116, 1267–1273 (2007).
Alaupovic, P., Schaefer, E. J., McConathy, W. J., Fesmire, J. D. & Brewer, H. B. Jr. Plasma apolipoprotein concentrations in familial apolipoprotein A-I and A-II deficiency (Tangier disease). Metabolism 30, 805–809 (1981).
Serfaty-Lacrosniere, C. et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis 107, 85–98 (1994).
Frikke-Schmidt, R. et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA 299, 2524–2532 (2008).
Brousseau, M. E. et al. Common variants in the gene encoding ATP-binding cassette transporter 1 in men with low HDL cholesterol levels and coronary heart disease. Atherosclerosis 154, 607–611 (2001).
Santos, R. D. et al. Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency. J. Lipid Res. 49, 349–357 (2008).
Zanoni, P. et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 351, 1166–1171 (2016).
Acknowledgements
The authors are supported, in part, by grants from the NIH (HL129767 and HL149804) to H.J.P. and C.R. and by the Houston Methodist Hospital Foundation.
Author information
Authors and Affiliations
Contributions
All authors contributed substantially to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
A.M.G. is a member of the board at Esperion Therapeutics, a consultant for Kowa and a member of the Data Safety Monitoring Board at Ionis Pharmaceuticals. The other authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Cardiology thanks J. C. Escola-Gil, M. Jauhianen, D. Sviridov and A. von Eckardstein for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pownall, H.J., Rosales, C., Gillard, B.K. et al. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol 18, 712–723 (2021). https://doi.org/10.1038/s41569-021-00538-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41569-021-00538-z
This article is cited by
-
Combination of mangiferin and T0901317 targeting autophagy promotes cholesterol efflux from macrophage foam cell in atherosclerosis
Chinese Medicine (2024)
-
Association between dietary magnesium intake and gallstones: the mediating role of atherogenic index of plasma
Lipids in Health and Disease (2024)
-
Saponins from Allii Macrostemonis Bulbus attenuate atherosclerosis by inhibiting macrophage foam cell formation and inflammation
Scientific Reports (2024)
-
Associations between long-term averages of metabolic parameters in adulthood and cardiac structure and function in later life
Hypertension Research (2024)
-
The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport
Journal of Cardiovascular Translational Research (2024)