Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity

Abstract

Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.

Key points

  • Surgical heart valve replacement is the gold-standard treatment for aortic valve disease, but transcatheter valve implantation has revolutionized the field by providing a novel treatment option for patients of all risk profiles.

  • Despite rapid advances in the field of heart valve therapy, an unmet clinical need remains for valve replacements with regenerative, remodelling and growth potential.

  • In situ tissue engineering technologies can be used to produce a heart valve replacement that is readily available, manufactured using decellularized extracellular matrix or bioresorbable polymers, and transforms into a native-equivalent valve after implantation.

  • Computational modelling is a powerful tool that can be used to improve and accelerate our understanding of tissue-engineered heart valve growth and remodelling and should be used in concert with in vitro and in vivo tissue engineering technologies.

  • To ensure the good clinical safety, feasibility and efficacy of the tissue-engineered heart valve, researchers and clinicians should work according to Good Manufacturing Practices and Good Laboratory Practices as well as to International Organization for Standardization requirements.

  • The field of heart valve tissue engineering still faces several challenges, such as issues related to immunocompatibility, haemocompatibility, remodelling and growth capacity, which need to be further investigated before broad clinical adoption is possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of heart valve replacement options.
Fig. 2: Overview of various tissue-engineered approaches.
Fig. 3: Challenges and future technologies for the successful generation of TEHVs.

Similar content being viewed by others

References

  1. Baumgartner, H. et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 38, 2739–2786 (2017).

    PubMed  Google Scholar 

  2. Schoen, F. J. & Gotlieb, A. I. Heart valve health, disease, replacement, and repair: a 25-year cardiovascular pathology perspective. Cardiovasc. Pathol. 25, 341–352 (2016).

    PubMed  Google Scholar 

  3. Schoen, F. J. Morphology, clinicopathologic correlations, and mechanisms in heart valve health and disease. Cardiovasc. Eng. Technol. 9, 126–140 (2018).

    PubMed  Google Scholar 

  4. Patterson, J. T. et al. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen. Med. 7, 409–419 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Alsoufi, B., Cheung, D. Y., Duan, B. & Butcher, J. T. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin. Biol. Ther. 15, 1155–1172 (2015).

    Google Scholar 

  6. Iung, B. & Vahanian, A. Epidemiology of valvular heart disease in the adult. Nat. Rev. Cardiol. 8, 162–172 (2011).

    PubMed  Google Scholar 

  7. Salik, I., Lee, L. & Widrich, J. Mitral Valve Repair (StatPearls Publishing, 2019).

  8. Guo, M. H. & Boodhwani, M. Aortic valve repair: from concept to future targets. Semin. Thorac. Cardiovasc. Surg. https://doi.org/10.1053/j.semtcvs.2019.05.034 (2019).

    Article  PubMed  Google Scholar 

  9. Shah, M. & Jorde, U. P. Percutaneous mitral valve interventions (repair): current indications and future perspectives. Front. Cardiovasc. Med. 6, 88 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Bisleri, G. Aortic valve repair. Curr. Opin. Cardiol. 31, 581–584 (2016).

    PubMed  Google Scholar 

  11. Said, S. M., Mainwaring, R. D., Ma, M., Tacy, T. A. & Hanley, F. L. Pulmonary valve repair for patients with acquired pulmonary valve insufficiency. Ann. Thorac. Surg. 101, 2294–2301 (2016).

    PubMed  Google Scholar 

  12. Tabata, N., Sugiura, A., Tsujita, K., Nickenig, G. & Sinning, J.-M. M. in Cardiovascular Intervention and Therapeutics (Springer, 2019).

  13. Yacoub, M. H. & Takkenberg, J. J. M. Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2, 60–61 (2005).

    CAS  PubMed  Google Scholar 

  14. Sarkar, M. & Prabhu, V. Basics of cardiopulmonary bypass. Indian J. Anaesth. 61, 760–767 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Bonhoeffer, P. et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356, 1403–1405 (2000).

    CAS  PubMed  Google Scholar 

  16. Cribier, A. et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106, 3006–3008 (2002).

    PubMed  Google Scholar 

  17. Walther, T. et al. Transapical minimally invasive aortic valve implantation: multicenter experience. Circulation 116, I240–I245 (2007).

    PubMed  Google Scholar 

  18. Rodés-Cabau, J. et al. Long-term outcomes after transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 60, 1864–1875 (2012).

    PubMed  Google Scholar 

  19. Leon, M. B. et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 374, 1609–1620 (2016).

    CAS  PubMed  Google Scholar 

  20. Reardon, M. J. et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 376, 1321–1331 (2017).

    PubMed  Google Scholar 

  21. Mack, M. J. et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1814052 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Popma, J. J. et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1816885 (2019).

    Article  PubMed  Google Scholar 

  23. Hufnagel, C. A. Surgical correction of aortic insufficiency. Mod. Concepts Cardiovasc. Dis. 24, 287–289 (1955).

    CAS  PubMed  Google Scholar 

  24. Russo, M. et al. The evolution of surgical valves. Cardiovasc. Med. 20, 285–292 (2017).

    Google Scholar 

  25. Head, S. J., Çelik, M. & Kappetein, A. P. Mechanical versus bioprosthetic aortic valve replacement. Eur. Heart J. 38, 2183–2191 (2017).

    PubMed  Google Scholar 

  26. Soliman Hamad, M. A., van Eekelen, E., van Agt, T. & van Straten, A. H. M. Self-management program improves anticoagulation control and quality of life: a prospective randomized study. Eur. J. Cardiothorac. Surg. 35, 265–269 (2009).

    PubMed  Google Scholar 

  27. Nishimura, R. A. & Warnes, C. A. Anticoagulation during pregnancy in women with prosthetic valves: evidence, guidelines and unanswered questions: Table 1. Heart 101, 430–435 (2015).

    CAS  PubMed  Google Scholar 

  28. Murray, G., Roschlau, W. & Lougheed, W. Homologous aortic-valve-segment transplants as surgical treatment for aortic and mitral insufficiency. Angiology 7, 466–471 (1956).

    CAS  PubMed  Google Scholar 

  29. Ross, D. N. Homograft replacement of the aortic valve. Lancet 280, 487 (1962).

    Google Scholar 

  30. Lisy, M. et al. Allograft heart valves: current aspects and future applications. Biopreserv. Biobank 15, 148–157 (2017).

    CAS  PubMed  Google Scholar 

  31. Meijer, F. M. M. et al. Excellent durability of homografts in pulmonary position analysed in a predefined adult group with tetralogy of Fallot. Interact. Cardiovasc. Thorac. Surg. 28, 279–283 (2019).

    PubMed  Google Scholar 

  32. Bonetti, A., Marchini, M. & Ortolani, F. Ectopic mineralization in heart valves: new insights from in vivo and in vitro procalcific models and promising perspectives on noncalcifiable bioengineered valves. J. Thorac. Dis. 11, 2126–2143 (2019).

    PubMed  PubMed Central  Google Scholar 

  33. Delmo Walter, E. M., de By, T. M. M. H., Meyer, R. & Hetzer, R. The future of heart valve banking and of homografts: perspective from the Deutsches Herzzentrum Berlin. HSR Proc. Intensive Care Cardiovasc. Anesth. 4, 97–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Blum, K. M., Drews, J. D. & Breuer, C. K. Tissue-engineered heart valves: a call for mechanistic studies. Tissue Eng. Part B Rev. 24, 240–253 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Etnel, J. R. G. et al. Outcome after aortic valve replacement in children: a systematic review and meta-analysis. J. Thorac. Cardiovasc. Surg. 151, 143–152.e1-3 (2016).

    PubMed  Google Scholar 

  36. Schenke-Layland, K. et al. Impact of cryopreservation on extracellular matrix structures of heart valve leaflets. Ann. Thorac. Surg. 81, 918–926 (2006).

    PubMed  Google Scholar 

  37. Pfitzner, R. et al. Influence of cryopreservation on structural, chemical, and immunoenzymatic properties of aortic valve allografts. Transplant. Proc. 50, 2195–2198 (2018).

    CAS  PubMed  Google Scholar 

  38. Nappi, F. et al. Long-term outcome of cryopreserved allograft for aortic valve replacement. J. Thorac. Cardiovasc. Surg. 156, 1357–1365.e6 (2018).

    PubMed  Google Scholar 

  39. Fukushima, S. et al. Long-term clinical outcomes after aortic valve replacement using cryopreserved aortic allograft. J. Thorac. Cardiovasc. Surg. 148, 65–72.e2 (2014).

    PubMed  Google Scholar 

  40. Flameng, W., Daenen, W., Jashari, R., Herijgers, P. & Meuris, B. Durability of homografts used to treat complex aortic valve endocarditis. Ann. Thorac. Surg. 99, 1234–1238 (2015).

    PubMed  Google Scholar 

  41. Manji, R. A., Lee, W. & Cooper, D. K. C. Xenograft bioprosthetic heart valves: past, present and future. Int. J. Surg. 23, 280–284 (2015).

    PubMed  Google Scholar 

  42. Loger, K. et al. Transcatheter mitral valve implantation: supra-annular and subvalvular fixation techniques. Eur. J. Cardiothorac. Surg. 54, 1013–1021 (2018).

    PubMed  Google Scholar 

  43. Tavakoli, R. et al. Biological aortic valve replacement: advantages and optimal indications of stentless compared to stented valve substitutes. A review. Gen. Thorac. Cardiovasc. Surg. 66, 247–256 (2018).

    PubMed  Google Scholar 

  44. Bilkhu, R., Borger, M. A., Briffa, N. P. & Jahangiri, M. Sutureless aortic valve prostheses. Heart 105, s16–s20 (2019).

    PubMed  Google Scholar 

  45. Thiene, G. & Valente, M. Anticalcification strategies to increase bioprosthetic valve durability. J. Heart Valve Dis. 20, 37–44 (2011).

    PubMed  Google Scholar 

  46. Wiegerinck, E. M. A., Van Kesteren, F., Van Mourik, M. S., Vis, M. M. & Baan, J. Jr. An up-to-date overview of the most recent transcatheter implantable aortic valve prostheses. Expert Rev. Med. Devices 13, 31–45 (2016).

    CAS  PubMed  Google Scholar 

  47. Arsalan, M. & Walther, T. Durability of prostheses for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 13, 360–367 (2016).

    CAS  PubMed  Google Scholar 

  48. Niclauss, L., von Segesser, L. K. & Ferrari, E. Aortic biological valve prosthesis in patients younger than 65 years of age: transition to a flexible age limit? Interact. Cardiovasc. Thorac. Surg. 16, 501–507 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. David, T. E. Reoperations after the Ross procedure. Circulation 122, 1139–1140 (2010).

    PubMed  Google Scholar 

  50. Riess, F.-C. et al. Hemodynamic performance of the medtronic mosaic porcine bioprosthesis up to ten years. Ann. Thorac. Surg. 83, 1310–1318 (2007).

    PubMed  Google Scholar 

  51. Human, P. & Zilla, P. The neglected villain of bioprosthetic degeneration: inflammatory and immune processes. J. Long. Term. Eff. Med. Implant. 27, 159–180 (2017).

    Google Scholar 

  52. Fishbein, G. A. & Fishbein, M. C. Pathology of the aortic valve: aortic valve stenosis/aortic regurgitation. Curr. Cardiol. Rep. 21, 81 (2019).

    PubMed  Google Scholar 

  53. Rabkin-Aikawa, E., Mayer, J. E. & Schoen, F. J. Heart valve regeneration. Adv. Biochem. Eng. Biotechnol. 94, 141–179 (2005).

    PubMed  Google Scholar 

  54. Ross, D. N. Replacement of aortic and mitral valves with a pulmonary autograft. Lancet 2, 956–958 (1967).

    CAS  PubMed  Google Scholar 

  55. Bowdish, M. E., Ram Kumar, S. & Starnes, V. A. The Ross procedure: an excellent option in the right hands. Ann. Transl Med. 4, 1–3 (2016).

    Google Scholar 

  56. Mazine, A. et al. Long-term outcomes of the Ross procedure versus mechanical aortic valve replacement: propensity-matched cohort study. Circulation 134, 576–585 (2016).

    PubMed  Google Scholar 

  57. Tam, D. Y., Wijeysundera, H. C., Ouzounian, M. & Fremes, S. E. The Ross procedure versus mechanical aortic valve replacement in young patients: a decision analysis. Eur. J. Cardiothorac. Surg. 55, 1180–1186 (2019).

    PubMed  Google Scholar 

  58. Thom, H. et al. Clinical and cost-effectiveness of the Ross procedure versus conventional aortic valve replacement in young adults. Open Heart 6, e001047 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Roe, B. B. Late follow-up studies on flexible leaflet prosthetic valves. J. Thorac. Cardiovasc. Surg. 58, 59–61 (1969).

    CAS  PubMed  Google Scholar 

  60. Ando, M. & Takahashi, Y. Ten-year experience with handmade trileaflet polytetrafluoroethylene valved conduit used for pulmonary reconstruction. J. Thorac. Cardiovasc. Surg. 137, 124–131 (2009).

    PubMed  Google Scholar 

  61. Mackay, T. G., Wheatley, D. J., Bernacca, G. M., Fisher, A. C. & Hindle, C. S. New polyurethane heart valve prosthesis: design, manufacture and evaluation. Biomaterials 17, 1857–1863 (1996).

    CAS  PubMed  Google Scholar 

  62. Bezuidenhout, D., Williams, D. F. & Zilla, P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 36, 6–25 (2015).

    CAS  PubMed  Google Scholar 

  63. Hilbert, S. L., Ferrans, V. J., Tomita, Y., Eidbo, E. E. & Jones, M. Evaluation of explanted polyurethane trileaflet cardiac valve prostheses. J. Thorac. Cardiovasc. Surg. 94, 419–429 (1987).

    CAS  PubMed  Google Scholar 

  64. Jansen, J. & Reul, H. A synthetic three-leaflet valve. J. Med. Eng. Technol. 16, 27–33 (1992).

    CAS  PubMed  Google Scholar 

  65. Daebritz, S. H. et al. New flexible polymeric heart valve prostheses for the mitral and aortic positions. Heart Surg. Forum 7, E525–E532 (2004).

    PubMed  Google Scholar 

  66. Nistal, F. et al. In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. J. Thorac. Cardiovasc. Surg. 99, 1074–1081 (1990).

    CAS  PubMed  Google Scholar 

  67. Hirai, S. et al. Assessment of a new silicone tri-leaflet valve seamlessly assembled with blood chamber for a low-cost ventricular assist device. Hiroshima J. Med. Sci. 47, 47–55 (1998).

    CAS  PubMed  Google Scholar 

  68. Dandeniyage, L. S. et al. Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application. J. Biomed. Mater. Res. Part B Appl. Biomater. 107, 112–121 (2019).

    CAS  Google Scholar 

  69. Dandeniyage, L. S. et al. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application. J. Biomed. Mater. Res. Part B Appl. Biomater. 106, 1712–1720 (2018).

    CAS  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03851068 (2019).

  71. Yakubov, S. Foldax® Tria: first in human implant of a totally synthetic polymeric aortic valve. Cardiovascular Research Technologies (CRT) https://www.crtonline.org/crt-premium-detail/foldax-tria-first-in-human-implant-of-totally-synt (2020).

  72. Scherman, J. et al. Transcatheter valve with a hollow balloon for aortic valve insufficiency. Multimed. Man. Cardiothorac. Surg. https://doi.org/10.1510/mmcts.2018.012 (2018).

  73. Henaine, R., Roubertie, F., Vergnat, M. & Ninet, J. Valve replacement in children: a challenge for a whole life. Arch. Cardiovasc. Dis. 105, 517–528 (2012).

    PubMed  Google Scholar 

  74. Huygens, S. A. et al. Contemporary outcomes after surgical aortic valve replacement with bioprostheses and allografts:a systematic review and meta-analysis. Eur. J. Cardiothorac. Surg. 50, 605–616 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Huygens, S. A., Goossens, L. M. A., Van Erkelens, J. A., Takkenberg, J. J. M. & Rutten-Van Mölken, M. P. M. H. How much does a heart valve implantation cost and what are the health care costs afterwards? Open Heart 5, e000672 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Harken, D. E. Heart valves: ten commandments and still counting. Ann. Thorac. Surg. 48 (Suppl. 3), 18–19 (1989).

    Google Scholar 

  77. Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).

    CAS  PubMed  Google Scholar 

  78. Mendelson, K. & Schoen, F. J. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 34, 1799–1819 (2006).

    PubMed  PubMed Central  Google Scholar 

  79. Cebotari, S. et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114 (Suppl. 1), I132–138 (2006).

    PubMed  Google Scholar 

  80. Dohmen, P. M. et al. Mid-Term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann. Thorac. Surg. 84, 729–736 (2007).

    PubMed  Google Scholar 

  81. Dohmen, P. et al. An experimental study of decellularized xenografts implanted into the aortic position with 4 months of follow up. J. Clin. Exp. Cardiol. https://doi.org/10.4172/2155-9880.S4-004 (2012).

    Article  Google Scholar 

  82. Erdbrügger, W. et al. Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng. 12, 2059–2068 (2006).

    PubMed  Google Scholar 

  83. Hoerstrup, S. P. et al. A new approach to completely autologous cardiovascular tissue in humans. ASAIO J. 48, 234–238 (2002).

    PubMed  Google Scholar 

  84. Del Gaudio, C., Grigioni, M., Bianco, A. & De Angelis, G. Electrospun bioresorbable heart valve scaffold for tissue engineering. Int. J. Artif. Organs 31, 68–75 (2008).

    PubMed  Google Scholar 

  85. Sodian, R. et al. Tissue engineering of heart valves: in vitro experiences. Ann. Thorac. Surg. 70, 140–144 (2000).

    CAS  PubMed  Google Scholar 

  86. Hoerstrup, S. P. et al. Functional living trileaflet heart valves grown in vitro. Circulation 102 (Suppl. 3), III44–III49 (2000).

    CAS  PubMed  Google Scholar 

  87. Gottlieb, D. et al. In vivo monitoring of function of autologous engineered pulmonary valve. J. Thorac. Cardiovasc. Surg. 139, 723–731 (2010).

    PubMed  Google Scholar 

  88. Schmidt, D. et al. Minimally-Invasive implantation of living tissue engineered heart valves. J. Am. Coll. Cardiol. 56, 510–520 (2010).

    PubMed  Google Scholar 

  89. Weber, B. et al. Injectable living marrow stromal cell-based autologous tissue engineered heart valves: First experiences with a one-step intervention in primates. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehr059 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sutherland, F. W. H. et al. From stem cells to viable autologous semilunar heart valve. Circulation 111, 2783–2791 (2005).

    PubMed  Google Scholar 

  91. Shinoka, T. et al. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94 (Suppl. 9), II164–II168 (1996).

    CAS  PubMed  Google Scholar 

  92. Robinson, P. S., Johnson, S. L., Evans, M. C., Barocas, V. H. & Tranquillo, R. T. Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng. Part A 14, 83–95 (2008).

    CAS  PubMed  Google Scholar 

  93. Flanagan, T. C. et al. In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng. Part A 15, 2965–2976 (2009).

    CAS  PubMed  Google Scholar 

  94. Dijkman, P. E. et al. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves. J. Heart Valve Dis. 21, 670–678 (2012).

    PubMed  Google Scholar 

  95. Beachy, S. H., Wizemann, T. C. & Hackmann, M. (eds) Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products (National Academies Press, 2019).

  96. Dijkman, P. E., Driessen-Mol, A., Frese, L., Hoerstrup, S. P. & Baaijens, F. P. T. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 33, 4545–4554 (2012).

    CAS  PubMed  Google Scholar 

  97. Wissing, T. B., Bonito, V., Bouten, C. V. C. & Smits, A. I. P. M. Biomaterial-driven in situ cardiovascular tissue engineering — a multi-disciplinary perspective. NPJ Regen. Med. 2, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Kluin, J. et al. In situ heart valve tissue engineering using a bioresorbable elastomeric implant – from material design to 12 months follow-up in sheep. Biomaterials 125, 101–117 (2017).

    CAS  PubMed  Google Scholar 

  99. Lichtenberg, A. et al. Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation https://doi.org/10.1161/CIRCULATIONAHA.105.001206 (2006).

    Article  PubMed  Google Scholar 

  100. Biermann, A. C. et al. Improved long-term durability of allogeneic heart valves in the orthotopic sheep model. Eur. J. Cardiothorac. Surg. 55, 484–493 (2019).

    PubMed  Google Scholar 

  101. Tudorache, I. et al. Decellularized aortic homografts for aortic valve and aorta ascendens replacement. Eur. J. Cardiothorac. Surg. 50, 89–97 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Sarikouch, S. et al. Decellularized fresh homografts for pulmonary valve replacement: A decade of clinical experience. Eur. J. Cardiothorac. Surg. 50, 281–290 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Cebotari, S. et al. Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation 124, 115–124 (2011).

    Google Scholar 

  104. Boethig, D. et al. A European study on decellularized homografts for pulmonary valve replacement: initial results from the prospective ESPOIR Trial and ESPOIR Registry data. Eur. J. Cardiothorac. Surg. 56, 503–509 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Bobylev, D. et al. Double semilunar valve replacement in complex congenital heart disease using decellularized homografts. Interact. Cardiovasc. Thorac. Surg. 28, 151–157 (2019).

    PubMed  Google Scholar 

  106. Da Costa, F. D. A. et al. The early and midterm function of decellularized aortic valve allografts. Ann. Thorac. Surg. 90, 1854–1860 (2010).

    PubMed  Google Scholar 

  107. Helder, M. R. K. K. et al. Late durability of decellularized allografts for aortic valve replacement: A word of caution. J. Thorac. Cardiovasc. Surg. 152, 1197–1199 (2016).

    PubMed  Google Scholar 

  108. Brown, J. W., Ruzmetov, M., Eltayeb, O., Rodefeld, M. D. & Turrentine, M. W. Performance of synergraft decellularized pulmonary homograft in patients undergoing a Ross procedure. Ann. Thorac. Surg. 91, 416–423 (2011).

    PubMed  Google Scholar 

  109. Burch, P. T. et al. Clinical performance of decellularized cryopreserved valved allografts compared with standard allografts in the right ventricular outflow tract. Ann. Thorac. Surg. 90, 1301–1306 (2010).

    PubMed  Google Scholar 

  110. Konertz, W. et al. Right ventricular outflow tract reconstruction with decellularized porcine xenografts in patients with congenital heart disease. J. Heart Valve Dis. 20, 341–347 (2011).

    PubMed  Google Scholar 

  111. Sayk, F., Bos, I., Schubert, U., Wedel, T. & Sievers, H.-H. Histopathologic findings in a novel decellularized pulmonary homograft: an autopsy study. Ann. Thorac. Surg. 79, 1755–1758 (2005).

    PubMed  Google Scholar 

  112. Helder, M. R. K. et al. Low-dose gamma irradiation of decellularized heart valves results in tissue injury in vitro and in Vivo. Ann. Thorac. Surg. 101, 667–674 (2016).

    PubMed  Google Scholar 

  113. Ruiz, C. E. et al. Transcatheter placement of a low-profile biodegradable pulmonary valve made of small intestinal submucosa: a long-term study in a swine model. J. Thorac. Cardiovasc. Surg. 130, 477–484 (2005).

    PubMed  Google Scholar 

  114. Fallon, A. M., Goodchild, T. T., Cox, J. L. & Matheny, R. G. In vivo remodeling potential of a novel bioprosthetic tricuspid valve in an ovine model. J. Thorac. Cardiovasc. Surg. 148, 333–340.e1 (2014).

    PubMed  Google Scholar 

  115. Zafar, F. et al. Physiological growth, remodeling potential, and preserved function of a novel bioprosthetic tricuspid valve: tubular bioprosthesis made of small intestinal submucosa-derived extracellular matrix. J. Am. Coll. Cardiol. 66, 877–888 (2015).

    PubMed  Google Scholar 

  116. van Rijswijk, J. W. et al. Failure of decellularized porcine small intestinal submucosa as a heart valved conduit. J. Thorac. Cardiovasc. Surg. https://doi.org/10.1016/j.jtcvs.2019.09.164 (2020).

    Article  PubMed  Google Scholar 

  117. Woo, J. S., Fishbein, M. C. & Reemtsen, B. Histologic examination of decellularized porcine intestinal submucosa extracellular matrix (CorMatrix) in pediatric congenital heart surgery. Cardiovasc. Pathol. 25, 12–17 (2016).

    CAS  PubMed  Google Scholar 

  118. Filippo, N., Paola, A. & Laura, I. Biocompatibility evaluation criteria for novel xenograft materials: distribution and quantification of remnant nucleic acid and alpha-gal epitope. J. Stem Cell Res. Ther. https://doi.org/10.4172/2157-7633.S6-009 (2013).

    Article  Google Scholar 

  119. Mosala Nezhad, Z. et al. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review. Interact. Cardiovascular Thorac. Surg. 22, 839–850 (2016).

    Google Scholar 

  120. Padalino, M. A. et al. Porcine intestinal submucosa (CorMatrix) for semilunar valve repair in children: a word of caution after midterm results. Semin. Thorac. Cardiovasc. Surg. 28, 436–445 (2016).

    PubMed  Google Scholar 

  121. Hofmann, M. et al. Congenital aortic valve repair using CorMatrix®: a histologic evaluation. Xenotransplantation https://doi.org/10.1111/xen.12341 (2017).

    Article  PubMed  Google Scholar 

  122. Mosala Nezhad, Z., Poncelet, A., Fervaille, C., De Kerchove, L. & Gianello, P. Experimental aortic valve cusp extension with cormatrix in a porcine model. Thorac. Cardiovasc. Surg. 65, 206–210 (2017).

    PubMed  Google Scholar 

  123. Mosala Nezhad, Z. et al. CorMatrix valved conduit in a porcine model: long-term remodelling and biomechanical characterization. Interact. Cardiovasc. Thorac. Surg. 24, 90–98 (2017).

    PubMed  Google Scholar 

  124. Mosala Nezhad, Z., Baldin, P., Poncelet, A. & El Khoury, G. Calcific degeneration of CorMatrix 4 years after bicuspidization of unicuspid aortic valve. Ann. Thorac. Surg. 104, e431–e433 (2017).

    PubMed  Google Scholar 

  125. Zaidi, A. H. et al. Preliminary experience with porcine intestinal submucosa (CorMatrix) for valve reconstruction in congenital heart disease: Histologic evaluation of explanted valves. J. Thorac. Cardiovasc. Surg. 148, 2216–2225.e1 (2014).

    PubMed  Google Scholar 

  126. Gilbert, C. L., Gnanapragasam, J., Benhaggen, R. & Novick, W. M. Novel use of extracellular matrix graft for creation of pulmonary valved conduit. World J. Pediatr. Congenit. Heart Surg. 2, 495–501 (2011).

    PubMed  Google Scholar 

  127. Gerdisch, M., Stelly, T., Slaughter, M. & Rodriguez, V. Early results from the FDA extracellular matrix (ECM) cylinder valve clinical feasibility trial. Structural Heart 4, 102 (2020).

    Google Scholar 

  128. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02397668 (2015).

  129. Iwai, S., Torikai, K., Coppin, C. M. & Sawa, Y. Minimally immunogenic decellularized porcine valve provides in situ recellularization as a stentless bioprosthetic valve. J. Artif. Organs 10, 29–35 (2007).

    PubMed  Google Scholar 

  130. Dohmen, P. M. et al. Results of a decellularized porcine heart valve implanted into the juvenile sheep model. Heart Surg. Forum 8, 72–76 (2005).

    Google Scholar 

  131. Leyh, R. G. et al. Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J. Thorac. Cardiovasc. Surg. 126, 1000–1004 (2003).

    CAS  PubMed  Google Scholar 

  132. Konertz, W. et al. Hemodynamic characteristics of the Matrix P decellularized xenograft for pulmonary valve replacement during the Ross operation. J. Heart Valve Dis. 14, 78–81 (2005).

    PubMed  Google Scholar 

  133. Christ, T. et al. Long-term results after the Ross procedure with the decellularized autotissue matrix P® bioprosthesis used for pulmonary valve replacement. Eur. J. Cardiothorac. Surg. 55, 885–892 (2019).

    PubMed  Google Scholar 

  134. Perri, G. et al. Early and late failure of tissue-engineered pulmonary valve conduits used for right ventricular outflow tract reconstruction in patients with congenital heart disease. Eur. J. Cardiothorac. Surg. 41, 1320–1325 (2012).

    PubMed  Google Scholar 

  135. Backhoff, D., Steinmetz, M., Sigler, M. & Schneider, H. Formation of multiple conduit aneurysms following Matrix P® conduit implantation in a boy with tetralogy of Fallot and pulmonary atresia. Eur. J. Cardiothorac. Surg. 46, 500–502 (2014).

    PubMed  Google Scholar 

  136. Breitenbach, I. et al. Early failure of decellularized xenogenous pulmonary valve conduit (Matrix-P-Plus) for reconstruction of the right ventricular outflow tract in the Ross procedure. Thorac. Cardiovasc. Surg. 62, OP123 (2014).

    Google Scholar 

  137. Simon, P. et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardiothorac. Surg. 23, 1002–1006 (2003).

    CAS  PubMed  Google Scholar 

  138. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Goecke, T. et al. In vivo performance of freeze-dried decellularized pulmonary heart valve allo- and xenografts orthotopically implanted into juvenile sheep. Acta Biomater. 68, 41–52 (2018).

    PubMed  Google Scholar 

  140. Hennessy, R. S. et al. Recellularization of a novel off-the-shelf valve following xenogenic implantation into the right ventricular outflow tract. PLoS ONE 12, e0181614 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Weber, B. et al. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 34, 7269–7280 (2013).

    PubMed  Google Scholar 

  142. Hopkins, R. A. et al. Bioengineered human and allogeneic pulmonary valve conduits chronically implanted orthotopically in baboons: Hemodynamic performance and immunologic consequences. J. Thorac. Cardiovasc. Surg. 145, 1098–1107.e3 (2013).

    PubMed  Google Scholar 

  143. Syedain, Z. H., Meier, L. A., Lahti, M. T., Johnson, S. L. & Tranquillo, R. T. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng. Part A 20, 1726–1734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Emmert, M. Y. et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci. Transl Med. 10, an4587 (2018).

    Google Scholar 

  145. Motta, S. E. et al. Human cell-derived tissue-engineered heart valve with integrated Valsalva sinuses: towards native-like transcatheter pulmonary valve replacements. NPJ Regen. Med. 4, 14 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. Motta, S. E. et al. Development of an off-the-shelf tissue-engineered sinus valve for transcatheter pulmonary valve replacement: a proof-of-concept study. J. Cardiovasc. Transl Res. 11, 182–191 (2018).

    PubMed  Google Scholar 

  147. Lintas, V. et al. Development of a novel human cell-derived tissue-engineered heart valve for transcatheter aortic valve replacement: an in vitro and in vivo feasibility study. J. Cardiovasc. Transl Res. 11, 470–482 (2018).

    CAS  PubMed  Google Scholar 

  148. Syedain, Z. H. et al. A completely biological ‘off-the-shelf’ arteriovenous graft that recellularizes in baboons. Sci. Transl Med. 9, eaan4209 (2017).

    PubMed  Google Scholar 

  149. Reimer, J. M., Syedain, Z. H., Haynie, B. H. T. & Tranquillo, R. T. Pediatric tubular pulmonary heart valve from decellularized engineered tissue tubes. Biomaterials 62, 88–94 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Syedain, Z. et al. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 73, 175–184 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Driessen-Mol, A. et al. Transcatheter implantation of homologous ‘off-the-shelf’ tissue-engineered heart valves with self-repair capacity: Long-term functionality and rapid in vivo remodeling in sheep. J. Am. Coll. Cardiol. 63, 1320–1329 (2014).

    PubMed  Google Scholar 

  152. Reimer, J. et al. Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann. Biomed. Eng. 45, 439–451 (2017).

    PubMed  Google Scholar 

  153. Kirkton, R. D. et al. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci. Transl Med. 11, eaau6934 (2019).

    PubMed  PubMed Central  Google Scholar 

  154. Lawson, J. H. et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet 387, 2026–2034 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. Jana, S., Tefft, B. J., Spoon, D. B. & Simari, R. D. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 10, 2877–2893 (2014).

    CAS  PubMed  Google Scholar 

  156. Soliman, O. I. et al. Midterm performance of a novel restorative pulmonary valved conduit: Preclinical results. EuroIntervention 13, e1418–e1427 (2017).

    PubMed  Google Scholar 

  157. Capulli, A. K. et al. JetValve: Rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement. Biomaterials 133, 229–241 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Miyazaki, Y. et al. Acute performance of a novel restorative transcatheter aortic valve: preclinical results. EuroIntervention 13, e1410–e1417 (2017).

    PubMed  Google Scholar 

  159. Bennink, G. et al. A novel restorative pulmonary valved conduit in a chronic sheep model: mid-term hemodynamic function and histologic assessment. J. Thorac. Cardiovasc. Surg. 155, 2591–2601.e3 (2018).

    PubMed  Google Scholar 

  160. Coyan, G. N. et al. In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve. J. Thorac. Cardiovasc. Surg. 157, 1809–1816 (2019).

    PubMed  Google Scholar 

  161. Emmert, M. Y. et al. Transapical aortic implantation of autologous marrow stromal cell-based tissue-engineered heart valves: first experiences in the systemic circulation. JACC Cardiovasc. Interv. 4, 822–823 (2011).

    PubMed  Google Scholar 

  162. Emmert, M. Y. et al. Stem cell-based transcatheter aortic valve implantation: first experiences in a pre-clinical model. JACC Cardiovasc. Interv. 5, 874–883 (2012).

    PubMed  Google Scholar 

  163. Emmert, M. Y. et al. Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts. Eur. J. Cardiothorac. Surg. 45, 61–68 (2014).

    PubMed  Google Scholar 

  164. Fioretta, E. S. et al. Differential leaflet remodeling of bone marrow cell pre-seeded versus nonseeded bioresorbable transcatheter pulmonary valve replacements. JACC Basic Transl Sci. 5, 15–31 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. Fioretta, E. et al. A multidisciplinary study to develop a transcatheter aortic valve implantation system for in situ heart valve tissue engineering. Structural Heart 4, 57 (2020).

    Google Scholar 

  166. Bockeria, L. et al. Total cavopulmonary connection with a new bioabsorbable vascular graft: first clinical experience. J. Thorac. Cardiovasc. Surg. 153, 1542–1550 (2017).

    PubMed  Google Scholar 

  167. Bennink, G. et al. A in International Conference of Tissue Engineered Heart Valves 37–38 (ICTEHV, 2020).

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02700100 (2016).

  169. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03022708 (2017).

  170. Miller, D. V., Edwards, W. D. & Zehr, K. J. Endothelial and smooth muscle cell populations in a decellularized cryopreserved aortic homograft (SynerGraft) 2 years after implantation. J. Thorac. Cardiovasc. Surg. 132, 175–176 (2006).

    PubMed  Google Scholar 

  171. Choi, S.-Y. et al. Elimination of alpha-gal xenoreactive epitope: alpha-galactosidase treatment of porcine heart valves. J. Heart Valve Dis. 21, 387–397 (2012).

    PubMed  Google Scholar 

  172. Abdolghafoorian, H. et al. Effect of heart valve decellularization on xenograft rejection. Exp. Clin. Transplant. 15, 329–336 (2017).

    PubMed  Google Scholar 

  173. Park, S., Kim, W.-H., Choi, S.-Y. & Kim, Y.-J. Removal of alpha-gal epitopes from porcine aortic valve and pericardium using recombinant human alpha galactosidase A. J. Korean Med. Sci. 24, 1126 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Goecke, T., Hilfiker, A., Haverich, A. & Cebotari, S. Investigation of inflammatory response of decellularized porcine aortic tissue in mice: can we rely on this experimental setting? Eur. J. Cardiothorac. Surg. 47, e90–e91 (2015).

    PubMed  Google Scholar 

  175. Smits, A. I. P. M., Ballotta, V., Driessen-Mol, A., Bouten, C. V. C. & Baaijens, F. P. T. Shear flow affects selective monocyte recruitment into MCP-1-loaded scaffolds. J. Cell. Mol. Med. 18, 2176–2188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Bonito, V., de Kort, B. J., Bouten, C. V. C. & Smits, A. I. P. M. Cyclic strain affects macrophage cytokine secretion and extracellular matrix turnover in electrospun scaffolds. Tissue Eng. Part A 25, 1310–1325 (2019).

    CAS  PubMed  Google Scholar 

  177. Sanders, B., Driessen-Mol, A., Bouten, C. V. C. & Baaijens, F. P. T. The Effects of scaffold remnants in decellularized tissue-engineered cardiovascular constructs on the recruitment of blood cells. Tissue Eng. Part A 23, 1142–1151 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, G. et al. The shift of macrophages toward M1 phenotype promotes aortic valvular calcification. J. Thorac. Cardiovasc. Surg. 153, 1318–1327.e1 (2017).

    CAS  PubMed  Google Scholar 

  179. Seyfert, U. T., Biehl, V. & Schenk, J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomol. Eng. 19, 91–96 (2002).

    CAS  PubMed  Google Scholar 

  180. Weber, M. et al. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front. Bioeng. Biotechnol. 6, 99 (2018).

    PubMed  PubMed Central  Google Scholar 

  181. Xu, X. X., Gao, X. H., Pan, R., Lu, D. & Dai, Y. A simple adhesion assay for studying interactions between platelets and endothelial cells in vitro. Cytotechnology 62, 17–22 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Ariëns, R. A. S. Novel mechanisms that regulate clot structure/function. Thromb. Res. 141 (Suppl. 2), 25–27 (2016).

    Google Scholar 

  183. Herring, M. B. Endothelial cell seeding. J. Vasc. Surg. 13, 731–732 (1991).

    CAS  PubMed  Google Scholar 

  184. Rotmans, J. I. et al. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 112, 12–18 (2005).

    CAS  PubMed  Google Scholar 

  185. Melchiorri, A. J. et al. Contrasting biofunctionalization strategies for the enhanced endothelialization of biodegradable vascular grafts. Biomacromolecules 16, 437–446 (2015).

    CAS  PubMed  Google Scholar 

  186. Jordan, J. E. et al. Bioengineered self-seeding heart valves. J. Thorac. Cardiovasc. Surg. 143, 201–208 (2012).

    PubMed  Google Scholar 

  187. Rodenberg, E. J. & Pavalko, F. M. Peptides derived from fibronectin type III connecting segments promote endothelial cell adhesion but not platelet adhesion: Implications in tissue-engineered vascular grafts. Tissue Eng. 13, 2653–2666 (2007).

    CAS  PubMed  Google Scholar 

  188. Caiado, F. et al. The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials 32, 7096–7105 (2011).

    CAS  PubMed  Google Scholar 

  189. Aubin, H. et al. Customized interface biofunctionalization of decellularized extracellular matrix: towards enhanced endothelialization. Tissue Eng. Part C. Methods 22, 496–508 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Smith, R. J., Koobatian, M. T., Shahini, A., Swartz, D. D. & Andreadis, S. T. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor. Biomaterials 51, 303–312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Namiri, M. et al. Improving the biological function of decellularized heart valves through integration of protein tethering and three-dimensional cell seeding in a bioreactor. J. Tissue Eng. Regen. Med. 12, e1865–e1879 (2018).

    CAS  PubMed  Google Scholar 

  192. Pawlowski, K. J., Rittgers, S. E., Schmidt, S. P. & Bowlin, G. L. Endothelial cell seeding of polymeric vascular grafts. Front. Biosci. 9, 1412 (2004).

    CAS  PubMed  Google Scholar 

  193. Dohmen, P. M. et al. A tissue engineered heart valve implanted in a juvenile sheep model. Med. Sci. Monit. 9, BR97–BR104 (2003).

    PubMed  Google Scholar 

  194. Dohmen, P. M., Lembcke, A., Holinski, S., Pruss, A. & Konertz, W. Ten years of clinical results with a tissue-engineered pulmonary valve. Ann. Thorac. Surg. 92, 1308–1314 (2011).

    PubMed  Google Scholar 

  195. Herring, M. et al. Endothelial seeding of polytetrafluoroethylene femoral popliteal bypasses: the failure of low-density seeding to improve patency. J. Vasc. Surg. 20, 650–655 (1994).

    CAS  PubMed  Google Scholar 

  196. Koenig, F. et al. Is transcatheter aortic valve implantation of living tissue-engineered valves feasible? An In vitro evaluation utilizing a decellularized and reseeded biohybrid valve. Artif. Organs 40, 727–737 (2016).

    CAS  PubMed  Google Scholar 

  197. Akhyari, P. et al. A novel culture device for the evaluation of three-dimensional extracellular matrix materials. J. Tissue Eng. Regen. Med. 8, 673–681 (2014).

    CAS  PubMed  Google Scholar 

  198. Wang, K. et al. Three-layered PCL grafts promoted vascular regeneration in a rabbit carotid artery model. Macromol. Biosci. 16, 608–918 (2016).

    CAS  PubMed  Google Scholar 

  199. Bachmann, B. J. et al. Honeycomb-structured metasurfaces for the adaptive nesting of endothelial cells under hemodynamic loads. Biomater. Sci. 6, 2726–2737 (2018).

    CAS  PubMed  Google Scholar 

  200. Soares, A. L. F., Oomens, C. W. J. & Baaijens, F. P. T. A computational model to describe the collagen orientation in statically cultured engineered tissues. Comput. Methods Biomech. Biomed. Engin. 17, 251–262 (2014).

    CAS  PubMed  Google Scholar 

  201. Borazjani, I. A review of fluid-structure interaction simulations of prosthetic heart valves. J. Long. Term. Eff. Med. Implant. 25, 75–93 (2015).

    Google Scholar 

  202. Sotiropoulos, F. & Borazjani, I. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47, 245–256 (2009).

    PubMed  PubMed Central  Google Scholar 

  203. Sanders, B. et al. Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Ann. Biomed. Eng. 44, 1061–1071 (2016).

    PubMed  Google Scholar 

  204. Hoerstrup, S. P. et al. Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation 114 (Suppl. 1), I159–166 (2006).

    PubMed  Google Scholar 

  205. Lu, L. et al. Tissue engineered constructs: perspectives on clinical translation. Ann. Biomed. Eng. 43, 796–804 (2015).

    PubMed  PubMed Central  Google Scholar 

  206. Emmert, M. Y., Fioretta, E. S. & Hoerstrup, S. P. Translational challenges in cardiovascular tissue engineering. J. Cardiovasc. Transl Res. 10, 139–149 (2017).

    PubMed  Google Scholar 

  207. Salmikangas, P. et al. Marketing regulatory oversight of advanced therapy medicinal products (ATMPs) in Europe: the EMA/CAT perspective. Adv. Exp. Med. Biol. 871, 103–130 (2015).

    PubMed  Google Scholar 

  208. Hurtado-Aguilar, L. G. et al. Ultrasound for in vitro, noninvasive real-time monitoring and evaluation of tissue-engineered heart valves. Tissue Eng. Part C Methods 22, 974–981 (2016).

    PubMed  Google Scholar 

  209. Tipnis, N. P. & Burgess, D. J. Sterilization of implantable polymer-based medical devices: a review. Int. J. Pharm. 544, 455–460 (2018).

    CAS  PubMed  Google Scholar 

  210. Durko, A. P. et al. Annual number of candidates for transcatheter aortic valve implantation per country: current estimates and future projections. Eur. Heart J. 39, 2635–2642 (2018).

    PubMed  Google Scholar 

  211. Santarpino, G., Specchia, L. & Lombardi, L. Aortic valve implantation or replacement: which procedure is more cost-effective? J. Thorac. Cardiovasc. Surg. 156, 1851 (2018).

    PubMed  Google Scholar 

  212. Huygens, S. A., Takkenberg, J. J. M. & Rutten-van Mölken, M. P. M. H. Systematic review of model-based economic evaluations of heart valve implantations. Eur. J. Health Econ. 19, 241–255 (2018).

    PubMed  Google Scholar 

  213. Tam, D. Y. et al. A cost-utility analysis of transcatheter versus surgical aortic valve replacement for the treatment of aortic stenosis in the population with intermediate surgical risk. J. Thorac. Cardiovasc. Surg. 155, 1978–1988.e1 (2018).

    PubMed  Google Scholar 

  214. Huygens, S. A. et al. What is the potential cost-effectiveness of tissue-engineered heart valves? Structural Heart 3, 60–60 (2019).

    Google Scholar 

  215. Huygens, S. A. et al. Early cost-utility analysis of tissue-engineered heart valves compared to bioprostheses in the aortic position in elderly patients. Eur. J. Health Econ. https://doi.org/10.1007/s10198-020-01159-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Loerakker, S., Ristori, T. & Baaijens, F. P. T. T. A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. J. Mech. Behav. Biomed. Mater. 58, 173–187 (2016).

    CAS  PubMed  Google Scholar 

  217. Zakerzadeh, R., Hsu, M. C. & Sacks, M. S. Computational methods for the aortic heart valve and its replacements. Expert Rev. Med. Devices 14, 849–866 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Xu, F. et al. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. Int. J. Numer. Method Biomed. Eng. 34, e2938 (2018).

    PubMed  PubMed Central  Google Scholar 

  219. Khosravi, R. et al. Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts two years post-implantation. Tissue Eng. Part A 21, 1529–1538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Best, C. A. et al. Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomater. 94, 183–194 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Miller, K. S., Lee, Y. U., Naito, Y., Breuer, C. K. & Humphrey, J. D. Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct. J. Biomech. 47, 2080–2087 (2014).

    CAS  PubMed  Google Scholar 

  222. Szafron, J. M. et al. Immuno-driven and mechano-mediated neotissue formation in tissue engineered vascular grafts. Ann. Biomed. Eng. 46, 1938–1950 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Loerakker, S., Argento, G., Oomens, C. W. J. & Baaijens, F. P. T. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J. Biomech. 46, 1792–1800 (2013).

    CAS  PubMed  Google Scholar 

  224. Szafron, J. M., Ramachandra, A. B., Breuer, C. K., Marsden, A. L. & Humphrey, J. D. Optimization of tissue-engineered vascular graft design using computational modeling. Tissue Eng. Part C. Methods 25, 561–570 (2019).

    PubMed  PubMed Central  Google Scholar 

  225. Ristori, T., Obbink-Huizer, C., Oomens, C. W. J., Baaijens, F. P. T. & Loerakker, S. Efficient computational simulation of actin stress fiber remodeling. Comput. Methods Biomech. Biomed. Engin. 19, 1347–1358 (2016).

    CAS  PubMed  Google Scholar 

  226. Latorre, M. & Humphrey, J. D. A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. Z. Angew. Math. Mech. 98, 2048–2071 (2018).

    PubMed  PubMed Central  Google Scholar 

  227. Latorre, M. & Humphrey, J. D. Critical roles of time-scales in soft tissue growth and remodeling. APL Bioeng. 2, 026108 (2018).

    PubMed  PubMed Central  Google Scholar 

  228. Boyle, P. M. et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat. Biomed. Eng. 3, 870–879 (2019).

    PubMed  PubMed Central  Google Scholar 

  229. Alber, M. et al. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med. 2, 115 (2019).

    PubMed  PubMed Central  Google Scholar 

  230. Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A. & Laurencin, C. T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536 (2020).

    CAS  PubMed  Google Scholar 

  231. Dasgupta, Q. & Black, L. D. A FRESH SLATE for 3D bioprinting. Science 365, 446–447 (2019).

    CAS  PubMed  Google Scholar 

  232. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    CAS  PubMed  Google Scholar 

  233. Coulter, F. B. et al. Bioinspired heart valve prosthesis made by silicone additive manufacturing. Matter 1, 266–279 (2019).

    Google Scholar 

  234. Diment, L. E., Thompson, M. S. & Bergmann, J. H. M. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ Open 7, e016891 (2017).

    PubMed  PubMed Central  Google Scholar 

  235. Rotman, O. M., Bianchi, M., Ghosh, R. P., Kovarovic, B. & Bluestein, D. Principles of TAVR valve design, modelling, and testing. Expert Rev. Med. Devices 15, 771–791 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Zakko, J. et al. Development of tissue engineered heart valves for percutaneous transcatheter delivery in a fetal ovine model. JACC Basic Transl Sci. 5, 815–828 (2020).

    PubMed  PubMed Central  Google Scholar 

  237. Borhani, S., Hassanajili, S., Ahmadi Tafti, S. H. & Rabbani, S. Cardiovascular stents: overview, evolution, and next generation. Prog. Biomater. 7, 175–205 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Cabrera, M. S. et al. Computationally designed 3D printed self-expandable polymer stents with biodegradation capacity for minimally invasive heart valve implantation: a proof-of-concept study. 3D Print. Addit. Manuf. 4, 19–29 (2017).

    PubMed  PubMed Central  Google Scholar 

  239. Liu, L. et al. Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system. PLoS ONE 12, e0182914 (2017).

    PubMed  PubMed Central  Google Scholar 

  240. Wang, J. et al. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. Acta Biomater. 50, 546–555 (2017).

    CAS  PubMed  Google Scholar 

  241. Eibschitz, I., Abinader, E. G., Klein, A. & Sharf, M. Intrauterine diagnosis and control of fetal ventricular arrhythmia during labor. Am. J. Obstet. Gynecol. 122, 597–600 (1975).

    CAS  PubMed  Google Scholar 

  242. McElhinney, D. B., Tworetzky, W. & Lock, J. E. Current status of fetal cardiac intervention. Circulation 121, 1256–1263 (2010).

    PubMed  PubMed Central  Google Scholar 

  243. Maxwell, D., Allan, L. & Tynan, M. J. Balloon dilatation of the aortic valve in the fetus: A report of two cases. Br. Heart J. 65, 256–258 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. McElhinney, D. B. et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation 120, 1482–1490 (2009).

    PubMed  PubMed Central  Google Scholar 

  245. Flake, A. W. Surgery in the human fetus: the future. J. Physiol. 547, 45–51 (2003).

    CAS  PubMed  Google Scholar 

  246. Weber, B. et al. Fetal trans-apical stent delivery into the pulmonary artery: prospects for prenatal heart-valve implantation. Eur. J. Cardiothorac. Surg. 41, 398–403 (2012).

    PubMed  Google Scholar 

  247. Colwell, A. S., Longaker, M. T. & Lorenz, H. P. Mammalian fetal organ regeneration. Adv. Biochem. Eng. Biotechnol. 93, 83–100 (2005).

    CAS  PubMed  Google Scholar 

  248. van der Merwe, J. & Casselman, F. Mitral valve replacement — current and future perspectives. Open J. Cardiovasc. Surg. 9, 117906521771902 (2017).

    Google Scholar 

  249. Muller, D. W. M. Transcatheter mitral valve replacement: slow and steady progress. J. Thorac. Dis. 10, S1949–S1952 (2018).

    PubMed  PubMed Central  Google Scholar 

  250. Zehr, K. J., Yagubyan, M., Connolly, H. M., Nelson, S. M. & Schaff, H. V. Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results. J. Thorac. Cardiovasc. Surg. 130, 1010–1015 (2005).

    PubMed  Google Scholar 

  251. Hawkins, J. A. et al. Immunogenicity of decellularized cryopreserved allografts in pediatric cardiac surgery: Comparison with standard cryopreserved allografts. J. Thorac. Cardiovasc. Surg. 126, 247–253 (2003).

    PubMed  Google Scholar 

  252. Takagi, K. et al. In vivo recellularization of plain decellularized xenografts with specific cell characterization in the systemic circulation: histological and immunohistochemical study. Artif. Organs 30, 233–241 (2006).

    CAS  PubMed  Google Scholar 

  253. Ota, T. et al. Fibronectin-hepatocyte growth factor enhances reendothelialization in tissue-engineered heart valve. Ann. Thorac. Surg. 80, 1794–1801 (2005).

    PubMed  Google Scholar 

  254. O’Brien, M. F. et al. The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Semin. Thorac. Cardiovasc. Surg. 11, 194–200 (1999).

    PubMed  Google Scholar 

  255. Voges, I. et al. Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. Eur. J. Cardiothorac. Surg. 44, 272–279 (2013).

    Google Scholar 

  256. Rüffer, A. et al. Early failure of xenogenous de-cellularised pulmonary valve conduits - a word of caution! Eur. J. Cardiothorac. Surg. 38, 78–85 (2010).

    PubMed  Google Scholar 

  257. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03631056 (2018).

  258. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03183245 (2017).

  259. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02644941 (2016).

  260. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03005418 (2016).

  261. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02887859 (2016).

  262. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01872208 (2013).

  263. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03405636 (2018).

  264. Shi, W., Keefe, M. & Matalanis, G. in Aortic Valve Surgery Ch. 5 (IntechOpen, 2011).

Download references

Acknowledgements

E.S.F. was supported by the Swiss National Science Foundation (PZ00P3_180138). M.Y.E. and S.L. have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement no. 852814 (TAVI4Life) and grant agreement no. 802967 (MechanoSignaling).

Author information

Authors and Affiliations

Authors

Contributions

E.S.F., S.E.M., V.L., S.L. and M.Y.E. wrote the manuscript and contributed substantially to discussion of its content. M.Y.E. developed the overall design and concept of the article. All the authors contributed to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Maximilian Y. Emmert.

Ethics declarations

Competing interests

F.P.T.B. and S.P.H. are shareholders at LifeMatrix and Xeltis. V.F. declares financial activities with Boston Scientific, Edwards Lifesciences and Medtronic in relation to educational grants (including travel support), fees for lectures and speeches, fees for professional consultation, and research and study funds. M.Y.E. is a shareholder at LifeMatrix. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks K. J. Grande-Allen, C. Simmons and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Rheumatic fever

Inflammatory disease that mostly affects children aged 5–14 years and can cause permanent damage to the heart and heart valves.

Stenosis

Narrowing of the heart valve, which prevents proper opening, thereby reducing the blood flow through the valve.

Valve insufficiency

Also known as regurgitation or incompetence. Incomplete closure of the heart valve leaflets, which allows blood to flow backwards through the valve.

Annuloplasty

A procedure to tighten or reinforce the ring around a valve in the heart.

Bi-leaflet tilting disc

A valve made of a metal ring covered by polytetrafluoroethylene, whereby the metal ring holds a disc that opens and closes after one cardiac cycle.

Tetralogy of Fallot

A rare congenital condition caused by a combination of four heart defects: pulmonary valve stenosis, ventricular septal defect, overriding aorta and right ventricular hypertrophy.

Xenogeneic

Materials derived from tissues that originate from a different species to the recipient such as bovine pericardium or porcine valve leaflets.

Creep resistance

Refers to a solid material’s capacity to resist creep, that is, the tendency of a solid material to move slowly or deform over long-term exposure to high levels of stress.

Decellularization

To deplete cells from biological tissues in order to remove DNA and immunological epitopes. Decellularization can be performed via chemical, enzymatic or physical methods to ensure a cell-free material that is available off the shelf.

Functionalization

To include bioactive moieties, such as proteins, peptides and polysaccharides, into a scaffold by means of covalent or non-covalent binding to improve scaffold biocompatibility.

Crimping

A procedure used to reduce the diameter of the valve prosthesis by more than threefold to fit the prosthesis into the catheter used for minimally invasive implantation.

First-in-human

An early feasibility clinical study used to evaluate the initial clinical safety and performance in patients.

Valvuloplasty

Balloon valvuloplasty or balloon valvotomy is a procedure that repairs stenotic heart valves by expanding a balloon catheter inside the valve to increase the valve opening area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fioretta, E.S., Motta, S.E., Lintas, V. et al. Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol 18, 92–116 (2021). https://doi.org/10.1038/s41569-020-0422-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0422-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing