Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-cardiac surgery in patients with coronary artery disease: risk evaluation and periprocedural management

Abstract

Perioperative cardiovascular complications are important causes of morbidity and mortality associated with non-cardiac surgery, particularly in patients with coronary artery disease (CAD). Although preoperative cardiac risk assessment can facilitate the identification of vulnerable patients and implementation of adequate preventive measures, excessive evaluation might lead to undue resource utilization and surgical delay. Owing to conflicting data, there remains some uncertainty regarding the most beneficial perioperative strategy for patients with CAD. Antithrombotic agents are the cornerstone of secondary prevention of ischaemic events but substantially increase the risk of bleeding. Given that 5–25% of patients undergoing coronary stent implantation require non-cardiac surgery within 2 years, surgery is the most common reason for premature cessation of dual antiplatelet therapy. Perioperative management of antiplatelet therapy, which necessitates concomitant evaluation of the individual thrombotic and bleeding risks related to both clinical and procedural factors, poses a recurring dilemma in clinical practice. Current guidelines do not provide detailed recommendations on this topic, and the optimal approach in these patients is yet to be determined. This Review summarizes the current data guiding preoperative risk stratification as well as periprocedural management of patients with CAD undergoing non-cardiac surgery, including those treated with stents.

Key points

  • Numerous prothrombotic, inflammatory and haemodynamic stressors related to surgery can exacerbate the risk of myocardial ischaemia in patients with underlying coronary artery disease (CAD).

  • Preoperative cardiac risk assessment and perioperative monitoring of patients with CAD are essential to optimize risk reduction strategies and improve surgical outcomes.

  • A multidisciplinary approach involving all perioperative care specialists is necessary to define the various aspects of surgical risk.

  • Patients undergoing non-cardiac surgery after recent coronary stent placement have higher rates of adverse cardiac events; however, guidelines lack specific recommendations for the optimal perioperative management of this subgroup.

  • Decisions regarding antiplatelet therapy during non-cardiac surgery must be made with the goal of achieving a balance between the potential benefit of preventing thrombotic events and avoiding bleeding complications.

  • Bridging with intravenous antiplatelet agents is a viable strategy for patients on dual antiplatelet therapy undergoing non-deferrable surgery, but still needs to be validated in a randomized clinical study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenesis of perioperative myocardial ischaemia in patients with CAD.
Fig. 2: Preoperative cardiac risk assessment in patients undergoing non-cardiac surgery.
Fig. 3: Guideline-recommended timing of non-cardiac surgery in patients on DAPT with a coronary stent.
Fig. 4: Proposed algorithm for perioperative management of antiplatelet therapy in patients with CAD referred for non-cardiac surgery.
Fig. 5: Perioperative bridging protocols in patients on DAPT undergoing non-cardiac surgery.

Similar content being viewed by others

References

  1. Smilowitz, N. R. et al. Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA Cardiol. 2, 181–187 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. Weiser, T. G. et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet 385, S11 (2015).

    PubMed  Google Scholar 

  3. Sabaté, S. et al. Incidence and predictors of major perioperative adverse cardiac and cerebrovascular events in non-cardiac surgery. Br. J. Anaesth. 107, 879–890 (2011).

    PubMed  Google Scholar 

  4. Holcomb, C. N. et al. The incremental risk of coronary stents on postoperative adverse events. Ann. Surg. 263, 924–930 (2016).

    PubMed  Google Scholar 

  5. Cohen, M. C. & Aretz, T. H. Histological analysis of coronary artery lesions in fatal postoperative myocardial infarction. Cardiovasc. Pathol. 8, 133–139 (1999).

    CAS  PubMed  Google Scholar 

  6. Biccard, B. M. & Rodseth, R. N. The pathophysiology of peri-operative myocardial infarction. Anaesthesia 65, 733–741 (2010).

    CAS  PubMed  Google Scholar 

  7. Landesberg, G., Beattie, W. S., Mosseri, M., Jaffe, A. S. & Alpert, J. S. Perioperative myocardial infarction. Circulation 119, 2936–2944 (2009).

    PubMed  Google Scholar 

  8. Ellis, S. G., Hertzer, N. R., Young, J. R. & Brener, S. Angiographic correlates of cardiac death and myocardial infarction complicating major nonthoracic vascular surgery. Am. J. Cardiol. 77, 1126–1128 (1996).

    CAS  PubMed  Google Scholar 

  9. Dawood, M. M. et al. Pathology of fatal perioperative myocardial infarction: implications regarding pathophysiology and prevention. Int. J. Cardiol. 57, 37–44 (1996).

    CAS  PubMed  Google Scholar 

  10. Kristensen, S. D. et al. 2014 ESC/ESA guidelines on non-cardiac surgery: cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 35, 2383–2431 (2014).

    PubMed  Google Scholar 

  11. Fleisher, L. A. et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J. Am. Coll. Cardiol. 64, e77–e137 (2014).

    PubMed  Google Scholar 

  12. Lee, T. H. et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 100, 1043–1049 (1999).

    CAS  PubMed  Google Scholar 

  13. Gupta, P. K. et al. Development and validation of a risk calculator for prediction of cardiac risk after surgery. Circulation 124, 381–387 (2011).

    PubMed  Google Scholar 

  14. Bilimoria, K. Y. et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 217, 833–842.e3 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Ford, M. K., Beattie, W. S. & Wijeysundera, D. N. Systematic review: prediction of perioperative cardiac complications and mortality by the revised cardiac risk index. Ann. Intern. Med. 152, 26–35 (2010).

    PubMed  Google Scholar 

  16. Andersson, C. et al. Age-specific performance of the revised cardiac risk index for predicting cardiovascular risk in elective noncardiac surgery. Circ. Cardiovasc.Qual. Outcomes 8, 103–108 (2015).

    PubMed  Google Scholar 

  17. Shiloach, M. et al. Toward robust information: data quality and inter-rater reliability in the American College of Surgeons National Surgical Quality Improvement Program. J. Am. Coll. Surg. 210, 6–16 (2010).

    PubMed  Google Scholar 

  18. Cohen, M. E. et al. Optimizing ACS NSQIP modeling for evaluation of surgical quality and risk: patient risk adjustment, procedure mix adjustment, shrinkage adjustment, and surgical focus. J. Am. Coll. Surg. 217, 336–346.e1 (2013).

    PubMed  Google Scholar 

  19. Raymond, B. L. et al. Use of the American College of Surgeons National Surgical Quality Improvement Program Surgical Risk Calculator during preoperative risk discussion: the patient perspective. Anesth. Analg. 128, 643–650 (2019).

    PubMed  Google Scholar 

  20. Glance, L. G. et al. The Surgical Mortality Probability Model: derivation and validation of a simple risk prediction rule for noncardiac surgery. Ann. Surg. 255, 696–702 (2012).

    PubMed  Google Scholar 

  21. Norderud, K. et al. Validation of the European Society of Cardiology and European Society of Anaesthesiology non-cardiac surgery risk score in patients treated with coronary drug-eluting stent implantation. Eur. Heart J. Qual. Care Clin. Outcomes 5, 22–27 (2019).

    PubMed  Google Scholar 

  22. Schein, O. D. et al. The value of routine preoperative medical testing before cataract surgery. N. Engl. J. Med. 342, 168–175 (2000).

    CAS  PubMed  Google Scholar 

  23. van Klei, W. A. et al. The value of routine preoperative electrocardiography in predicting myocardial infarction after noncardiac surgery. Ann. Surg. 246, 165–170 (2007).

    PubMed  PubMed Central  Google Scholar 

  24. Richardson, K. M. et al. Prognostic significance and clinical utility of intraventricular conduction delays on the preoperative electrocardiogram. Am. J. Cardiol. 121, 997–1003 (2018).

    PubMed  Google Scholar 

  25. Hlatky, M. A. et al. A brief self-administered questionnaire to determine functional capacity (the Duke Activity Status Index). Am. J. Cardiol. 64, 651–654 (1989).

    CAS  PubMed  Google Scholar 

  26. Wijeysundera, D. N. et al. Assessment of functional capacity before major non-cardiac surgery: an international, prospective cohort study. Lancet 391, 2631–2640 (2018).

    PubMed  Google Scholar 

  27. Carliner, N. H. et al. Routine preoperative exercise testing in patients undergoing major noncardiac surgery. Am. J. Cardiol. 56, 51–58 (1985).

    CAS  PubMed  Google Scholar 

  28. Gauss, A. et al. Electrocardiographic exercise stress testing for cardiac risk assessment in patients undergoing noncardiac surgery. Anesthesiology 94, 38–46 (2001).

    CAS  PubMed  Google Scholar 

  29. Young, E. L. et al. A systematic review of the role of cardiopulmonary exercise testing in vascular surgery. Eur. J. Vasc. Endovasc. Surg. 44, 64–71 (2012).

    CAS  PubMed  Google Scholar 

  30. Stubbs, D. J., Grimes, L. A. & Ercole, A. Performance of cardiopulmonary exercise testing for the prediction of post-operative complications in non cardiopulmonary surgery: a systematic review. PLoS ONE 15, e0226480 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Boersma, E. et al. Predictors of cardiac events after major vascular surgery: role of clinical characteristics, dobutamine echocardiography, and β-blocker therapy. JAMA 285, 1865–1873 (2001).

    CAS  PubMed  Google Scholar 

  32. Das, M. K. et al. Assessment of cardiac risk before nonvascular surgery: dobutamine stress echocardiography in 530 patients. J. Am. Coll. Cardiol. 35, 1647–1653 (2000).

    CAS  PubMed  Google Scholar 

  33. Kalesan, B., Nicewarner, H., Intwala, S., Leung, C. & Balady, G. J. Pre-operative stress testing in the evaluation of patients undergoing non-cardiac surgery: a systematic review and meta-analysis. PLoS ONE 14, e0219145 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Karthikeyan, G. et al. Is a pre-operative brain natriuretic peptide or N-terminal pro-B-type natriuretic peptide measurement an independent predictor of adverse cardiovascular outcomes within 30 days of noncardiac surgery? A systematic review and meta-analysis of observational studies. J. Am. Coll. Cardiol. 54, 1599–1606 (2009).

    CAS  PubMed  Google Scholar 

  35. Rodseth, R. N., Padayachee, L. & Biccard, B. M. A meta-analysis of the utility of pre-operative brain natriuretic peptide in predicting early and intermediate-term mortality and major adverse cardiac events in vascular surgical patients. Anaesthesia 63, 1226–1233 (2008).

    CAS  PubMed  Google Scholar 

  36. Ryding, A. D., Kumar, S., Worthington, A. M. & Burgess, D. Prognostic value of brain natriuretic peptide in noncardiac surgery: a meta-analysis. Anesthesiology 111, 311–319 (2009).

    CAS  PubMed  Google Scholar 

  37. Weber, M. et al. Incremental value of high-sensitive troponin T in addition to the revised cardiac index for peri-operative risk stratification in non-cardiac surgery. Eur. Heart J. 34, 853–862 (2013).

    CAS  PubMed  Google Scholar 

  38. Mol, K. et al. Preoperative coronary angiography in vascular surgery patients with asymptomatic elevated high-sensitivity troponin T: a case series. Br. J. Anaesth. 123, 565–569 (2019).

    CAS  PubMed  Google Scholar 

  39. Duceppe, E. et al. Canadian Cardiovascular Society guidelines on perioperative cardiac risk assessment and management for patients who undergo noncardiac surgery. Can. J. Cardiol. 33, 17–32 (2017).

    PubMed  Google Scholar 

  40. Hwang, J. W. et al. Assessment of perioperative cardiac risk of patients undergoing noncardiac surgery using coronary computed tomographic angiography. Circ.Cardiovasc. Imaging 8, e002582 (2015).

    PubMed  Google Scholar 

  41. Sheth, T. et al. Prognostic capabilities of coronary computed tomographic angiography before non-cardiac surgery: prospective cohort study. BMJ 350, h1907 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Illuminati, G. et al. Systematic preoperative coronary angiography and stenting improves postoperative results of carotid endarterectomy in patients with asymptomatic coronary artery disease: a randomised controlled trial. Eur. J. Vasc. Endovasc. Surg. 39, 139–145 (2010).

    CAS  PubMed  Google Scholar 

  43. Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 40, 237–269 (2019).

    PubMed  Google Scholar 

  44. Abbott, T. E. F. et al. Preoperative heart rate and myocardial injury after non-cardiac surgery: results of a predefined secondary analysis of the VISION study. Br. J. Anaesth. 117, 172–181 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. van Waes, J. A. et al. Association between intraoperative hypotension and myocardial injury after vascular surgery. Anesthesiology 124, 35–44 (2016).

    PubMed  Google Scholar 

  46. Sessler, D. I. & Khanna, A. K. Perioperative myocardial injury and the contribution of hypotension. Intensive Care Med. 44, 811–822 (2018).

    PubMed  Google Scholar 

  47. Sessler, D. I. et al. Perioperative quality initiative consensus statement on intraoperative blood pressure, risk and outcomes for elective surgery. Br. J. Anaesth. 122, 563–574 (2019).

    PubMed  Google Scholar 

  48. Futier, E. et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA 318, 1346–1357 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Turan, A. et al. Incidence, severity, and detection of blood pressure perturbations after abdominal surgery: a prospective blinded observational study. Anesthesiology 130, 550–559 (2019).

    PubMed  Google Scholar 

  50. Wijnberge, M. et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. JAMA 323, 1052–1060 (2020).

    PubMed  PubMed Central  Google Scholar 

  51. Akata, T. General anesthetics and vascular smooth muscle: direct actions of general anesthetics on cellular mechanisms regulating vascular tone. Anesthesiology 106, 365–391 (2007).

    PubMed  Google Scholar 

  52. Torri, G. Inhalation anesthetics: a review. Minerva Anestesiol. 76, 215–228 (2010).

    CAS  PubMed  Google Scholar 

  53. Veering, B. T. & Cousins, M. J. Cardiovascular and pulmonary effects of epidural anaesthesia. Anaesth. Intensive Care 28, 620–635 (2000).

    CAS  PubMed  Google Scholar 

  54. de Wit, F. et al. The effect of propofol on haemodynamics: cardiac output, venous return, mean systemic filling pressure, and vascular resistances. Br. J. Anaesth. 116, 784–789 (2016).

    PubMed  Google Scholar 

  55. Guay, J. et al. Neuraxial blockade for the prevention of postoperative mortality and major morbidity: an overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 1, CD010108 (2014).

    Google Scholar 

  56. Guay, J. & Kopp, S. Epidural pain relief versus systemic opioid-based pain relief for abdominal aortic surgery. Cochrane Database Syst. Rev. 1, CD005059 (2016).

    Google Scholar 

  57. Uhlig, C. et al. Effects of volatile anesthetics on mortality and postoperative pulmonary and other complications in patients undergoing surgery: a systematic review and meta-analysis. Anesthesiology 124, 1230–1245 (2016).

    CAS  PubMed  Google Scholar 

  58. Devereaux, P. J. et al. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery: a cohort study. Ann. Intern. Med. 154, 523–528 (2011).

    CAS  PubMed  Google Scholar 

  59. Devereaux, P. J. et al. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. JAMA 307, 2295–2304 (2012).

    CAS  PubMed  Google Scholar 

  60. Devereaux, P. J. et al. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA 317, 1642–1651 (2017).

    CAS  PubMed  Google Scholar 

  61. Devereaux, P. J. & Szczeklik, W. Myocardial injury after non-cardiac surgery: diagnosis and management. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehz301 (2019).

  62. Duvall, W. L. et al. Angiographic investigation of the pathophysiology of perioperative myocardial infarction. Catheterization Cardiovasc. Interv. 80, 768–776 (2012).

    Google Scholar 

  63. Sheth, T. et al. Incidence of thrombosis in perioperative and non-operative myocardial infarction. Br. J. Anaesth. 120, 725–733 (2018).

    CAS  PubMed  Google Scholar 

  64. Helwani, M. A. et al. Etiology of acute coronary syndrome after noncardiac surgery. Anesthesiology 128, 1084–1091 (2018).

    PubMed  Google Scholar 

  65. Puelacher, C. et al. Perioperative myocardial injury after noncardiac surgery: incidence, mortality, and characterization. Circulation 137, 1221–1232 (2018).

    PubMed  Google Scholar 

  66. Rodseth, R. N. et al. Postoperative B-type natriuretic peptide for prediction of major cardiac events in patients undergoing noncardiac surgery: systematic review and individual patient meta-analysis. Anesthesiology 119, 270–283 (2013).

    CAS  PubMed  Google Scholar 

  67. Rodseth, R. N. et al. The prognostic value of pre-operative and post-operative B-type natriuretic peptides in patients undergoing noncardiac surgery: B-type natriuretic peptide and N-terminal fragment of pro-B-type natriuretic peptide: a systematic review and individual patient data meta-analysis. J. Am. Coll. Cardiol. 63, 170–180 (2014).

    CAS  PubMed  Google Scholar 

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03765372 (2019).

  69. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03436238 (2019).

  70. Luepker, R. V. et al. Population trends in aspirin use for cardiovascular disease prevention 1980-2009: the Minnesota Heart Survey. J. Am. Heart Assoc. 4, e002320 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Merritt, J. C. & Bhatt, D. L. The efficacy and safety of perioperative antiplatelet therapy. J. Thromb. Thrombolysis 17, 21–27 (2004).

    CAS  PubMed  Google Scholar 

  72. Burger, W., Chemnitius, J. M., Kneissl, G. D. & Rucker, G. Low-dose aspirin for secondary cardiovascular prevention – cardiovascular risks after its perioperative withdrawal versus bleeding risks with its continuation – review and meta-analysis. J. Intern. Med. 257, 399–414 (2005).

    CAS  PubMed  Google Scholar 

  73. Devereaux, P. J. et al. Aspirin in patients undergoing noncardiac surgery. N. Engl. J. Med. 370, 1494–1503 (2014).

    CAS  PubMed  Google Scholar 

  74. Graham, M. M. et al. Aspirin in patients with previous percutaneous coronary intervention undergoing noncardiac surgery. Ann. Intern. Med. 168, 237–244 (2018).

    PubMed  Google Scholar 

  75. Mantz, J. et al. Impact of preoperative maintenance or interruption of aspirin on thrombotic and bleeding events after elective non-cardiac surgery: the multicentre, randomized, blinded, placebo-controlled, STRATAGEM trial. Br. J. Anaesth. 107, 899–910 (2011).

    CAS  PubMed  Google Scholar 

  76. van Waes, J. A. et al. Myocardial injury after noncardiac surgery and its association with short-term mortality. Circulation 127, 2264–2271 (2013).

    PubMed  Google Scholar 

  77. Botto, F. et al. Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology 120, 564–578 (2014).

    PubMed  Google Scholar 

  78. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02291419 (2017).

  79. Devereaux, P. J. et al. Dabigatran in patients with myocardial injury after non-cardiac surgery (MANAGE): an international, randomised, placebo-controlled trial. Lancet 391, 2325–2334 (2018).

    CAS  PubMed  Google Scholar 

  80. Adriaenssens, T. & Sinnaeve, P. Direct oral anticoagulants for postoperative myocardial injury. Lancet 391, 2297–2298 (2018).

    PubMed  Google Scholar 

  81. Group, P. S. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371, 1839–1847 (2008).

    Google Scholar 

  82. Bouri, S., Shun-Shin, M. J., Cole, G. D., Mayet, J. & Francis, D. P. Meta-analysis of secure randomised controlled trials of β-blockade to prevent perioperative death in non-cardiac surgery. Heart 100, 456–464 (2014).

    PubMed  Google Scholar 

  83. Wijeysundera, D. N. et al. Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J. Am. Coll. Cardiol. 64, 2406–2425 (2014).

    PubMed  Google Scholar 

  84. Blessberger, H. et al. Perioperative beta-blockers for preventing surgery-related mortality and morbidity. Cochrane Database of Syst. Rev. 9, CD004476 (2014).

    Google Scholar 

  85. Bangalore, S. et al. Perioperative β blockers in patients having non-cardiac surgery: a meta-analysis. Lancet 372, 1962–1976 (2008).

    CAS  PubMed  Google Scholar 

  86. Devereaux, P. et al. How strong is the evidence for the use of perioperative β blockers in non-cardiac surgery? Systematic review and meta-analysis of randomised controlled trials. BMJ 331, 313–321 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Maron, D. J., Fazio, S. & Linton, M. F. Current perspectives on statins. Circulation 101, 207–213 (2000).

    CAS  PubMed  Google Scholar 

  88. Lindenauer, P. K., Pekow, P., Wang, K., Gutierrez, B. & Benjamin, E. M. Lipid-lowering therapy and in-hospital mortality following major noncardiac surgery. JAMA 291, 2092–2099 (2004).

    CAS  PubMed  Google Scholar 

  89. Berwanger, O. et al. Association between pre-operative statin use and major cardiovascular complications among patients undergoing non-cardiac surgery: the VISION study. Eur. Heart J. 37, 177–185 (2016).

    PubMed  Google Scholar 

  90. London, M. J., Schwartz, G. G., Hur, K. & Henderson, W. G. Association of perioperative statin use with mortality and morbidity after major noncardiac surgery. JAMA Intern. Med. 177, 231–242 (2017).

    PubMed  Google Scholar 

  91. Berwanger, O. et al. Atorvastatin for high-risk statin-naïve patients undergoing noncardiac surgery: the Lowering the Risk of Operative Complications Using Atorvastatin Loading Dose (LOAD) randomized trial. Am. Heart J. 184, 88–96 (2017).

    CAS  PubMed  Google Scholar 

  92. Xia, J., Qu, Y., Yin, C. & Xu, D. Preoperative rosuvastatin protects patients with coronary artery disease undergoing noncardiac surgery. Cardiology 131, 30–37 (2015).

    CAS  PubMed  Google Scholar 

  93. Xia, J., Qu, Y., Shen, H. & Liu, X. Patients with stable coronary artery disease receiving chronic statin treatment who are undergoing noncardiac emergency surgery benefit from acute atorvastatin reload. Cardiology 128, 285–292 (2014).

    CAS  PubMed  Google Scholar 

  94. Durazzo, A. E. et al. Reduction in cardiovascular events after vascular surgery with atorvastatin: a randomized trial. J. Vasc. Surg. 39, 967–975 (2004).

    PubMed  Google Scholar 

  95. Kennedy, J., Quan, H., Buchan, A. M., Ghali, W. A. & Feasby, T. E. Statins are associated with better outcomes after carotid endarterectomy in symptomatic patients. Stroke 36, 2072–2076 (2005).

    CAS  PubMed  Google Scholar 

  96. Verzini, F. et al. Effects of statins on early and late results of carotid stenting. J. Vasc. Surg. 53, 71–79 (2011).

    PubMed  Google Scholar 

  97. O’Donnell, T. F. X. et al. Statin therapy is associated with higher long-term but not perioperative survival after abdominal aortic aneurysm repair. J. Vasc. Surg. 68, 392–399 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Hussain, M. A. et al. Association between statin use and cardiovascular events after carotid artery revascularization. J. Am. Heart Assoc. 7, e009745 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Roshanov, P. S. et al. Withholding versus continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers before noncardiac surgery: an analysis of the vascular events in noncardiac surgery patients cohort evaluation prospective cohort. Anesthesiology 126, 16–27 (2017).

    CAS  PubMed  Google Scholar 

  100. Hollmann, C., Fernandes, N. L. & Biccard, B. M. A systematic review of outcomes associated with withholding or continuing angiotensin-converting enzyme inhibitors and angiotensin receptor blockers before noncardiac surgery. Anesth. Analg. 127, 678–687 (2018).

    CAS  PubMed  Google Scholar 

  101. Legrand, M. et al. Impact of renin-angiotensin system inhibitors continuation versus discontinuation on outcome after major surgery: protocol of a multicenter randomized, controlled trial (STOP-or-NOT trial). Trials 20, 160 (2019).

    PubMed  PubMed Central  Google Scholar 

  102. Koshy, A. N. et al. Computed tomographic coronary angiography in risk stratification prior to non-cardiac surgery: a systematic review and meta-analysis. Heart 105, 1335–1342 (2019).

    PubMed  Google Scholar 

  103. McFalls, E. O. et al. Coronary-artery revascularization before elective major vascular surgery. N. Engl. J. Med. 351, 2795–2804 (2004).

    CAS  PubMed  Google Scholar 

  104. Garcia, S. et al. Usefulness of revascularization of patients with multivessel coronary artery disease before elective vascular surgery for abdominal aortic and peripheral occlusive disease. Am. J. Cardiol. 102, 809–813 (2008).

    PubMed  Google Scholar 

  105. Urban, P. et al. Polymer-free drug-coated coronary stents in patients at high bleeding risk. N. Engl. J. Med. 373, 2038–2047 (2015).

    CAS  PubMed  Google Scholar 

  106. Windecker, S. et al. Polymer-based or polymer-free stents in patients at high bleeding risk. N. Engl. J. Med. 382, 1208–1218 (2020).

    CAS  PubMed  Google Scholar 

  107. Tantry, U. S. et al. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J. Am. Coll. Cardiol. 62, 2261–2273 (2013).

    CAS  PubMed  Google Scholar 

  108. Gurbel, P. A., Mahla, E. & Tantry, U. S. Peri-operative platelet function testing: the potential for reducing ischaemic and bleeding risks. Thromb. Haemost. 106, 248–252 (2011).

    CAS  PubMed  Google Scholar 

  109. Douketis, J. D. et al. Perioperative management of antithrombotic therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141, e326S–e350S (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Valgimigli, M. et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 39, 213–260 (2018).

    PubMed  Google Scholar 

  111. Horlocker, T. T. et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Fourth Edition). Reg. Anesth. Pain. Med. 43, 263–309 (2018).

    PubMed  Google Scholar 

  112. Gurbel, P. A., Bliden, K. P., Hiatt, B. L. & O’Connor, C. M. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107, 2908–2913 (2003).

    PubMed  Google Scholar 

  113. Angiolillo, D. J. et al. Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J. Am. Coll. Cardiol. 49, 1505–1516 (2007).

    CAS  PubMed  Google Scholar 

  114. Price, M. J. et al. Recovery of platelet function after discontinuation of prasugrel or clopidogrel maintenance dosing in aspirin-treated patients with stable coronary disease: the Recovery Trial. J. Am. Coll. Cardiol. 59, 2338–2343 (2012).

    CAS  PubMed  Google Scholar 

  115. Sibbing, D. et al. Updated expert consensus statement on platelet function and genetic testing for guiding P2Y12 receptor inhibitor treatment in percutaneous coronary intervention. JACC Cardiovasc. Interv. 12, 1521–1537 (2019).

    PubMed  Google Scholar 

  116. Mahla, E. et al. Platelet function measurement-based strategy to reduce bleeding and waiting time in clopidogrel-treated patients undergoing coronary artery bypass graft surgery: the timing based on platelet function strategy to reduce clopidogrel-associated bleeding related to CABG (TARGET-CABG) study. Circulation. Cardiovasc. Interv. 5, 261–269 (2012).

    CAS  Google Scholar 

  117. Mahla, E., Tantry, U. S., Pruller, F. & Gurbel, P. A. Is there a role for preoperative platelet function testing in patients undergoing cardiac surgery during antiplatelet therapy? Circulation 138, 2145–2159 (2018).

    PubMed  Google Scholar 

  118. Pagano, D. et al. 2017 EACTS/EACTA guidelines on patient blood management for adult cardiac surgery. Eur. J. Cardiothorac Surg. 53, 79–111 (2018).

    PubMed  Google Scholar 

  119. Karkouti, K. et al. Point-of-care hemostatic testing in cardiac surgery: a stepped-wedge clustered randomized controlled trial. Circulation 134, 1152–1162 (2016).

    PubMed  Google Scholar 

  120. Mahla, E. et al. Platelet inhibition and bleeding in patients undergoing non-cardiac surgery — the BIANCA observational study. Thrombosis Haemost. 118, 864–872 (2018).

    Google Scholar 

  121. Hawn, M. T. et al. The incidence and timing of noncardiac surgery after cardiac stent implantation. J. Am. Coll. Surg. 214, 658–666 (2012).

    PubMed  Google Scholar 

  122. Mahmoud, K. D. et al. Perioperative cardiovascular risk of prior coronary stent implantation among patients undergoing noncardiac surgery. J. Am. Coll. Cardiol. 67, 1038–1049 (2016).

    PubMed  Google Scholar 

  123. Egholm, G. et al. Risk associated with surgery within 12 months after coronary drug-eluting stent implantation. J. Am. Coll. Cardiol. 68, 2622–2632 (2016).

    PubMed  Google Scholar 

  124. Kaluza, G. L., Joseph, J., Lee, J. R., Raizner, M. E. & Raizner, A. E. Catastrophic outcomes of noncardiac surgery soon after coronary stenting. J. Am. Coll. Cardiol. 35, 1288–1294 (2000).

    CAS  PubMed  Google Scholar 

  125. Iakovou, I. et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293, 2126–2130 (2005).

    CAS  PubMed  Google Scholar 

  126. Gori, T. et al. Predictors of stent thrombosis and their implications for clinical practice. Nat. Rev. Cardiol. 16, 243–256 (2019).

    PubMed  Google Scholar 

  127. Berger, P. B. et al. Frequency of major noncardiac surgery and subsequent adverse events in the year after drug-eluting stent placement: results from the EVENT (Evaluation of Drug-Eluting Stents and Ischemic Events) registry. JACC Cardiovasc. Interv. 3, 920–927 (2010).

    PubMed  Google Scholar 

  128. Albaladejo, P. et al. Non-cardiac surgery in patients with coronary stents: the RECO study. Heart 97, 1566–1572 (2011).

    PubMed  Google Scholar 

  129. Banerjee, S. et al. Use of antiplatelet therapy/DAPT for post-PCI patients undergoing noncardiac surgery. J. Am. Coll. Cardiol. 69, 1861–1870 (2017).

    PubMed  Google Scholar 

  130. Rossini, R. et al. A multidisciplinary approach on the perioperative antithrombotic management of patients with coronary stents undergoing surgery: surgery after stenting 2. JACC Cardiovasc. Interv. 11, 417–434 (2018).

    PubMed  Google Scholar 

  131. Rodriguez, A. et al. Management of antiplatelet therapy in patients with coronary stents undergoing noncardiac surgery: association with adverse events. Br. J. Anaesth. 120, 67–76 (2018).

    CAS  PubMed  Google Scholar 

  132. Bhatt, D. L. et al. Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis. JAMA 304, 1350–1357 (2010).

    CAS  PubMed  Google Scholar 

  133. Livhits, M. et al. Risk of surgery following recent myocardial infarction. Ann. Surg. 253, 857–864 (2011).

    PubMed  Google Scholar 

  134. Anwaruddin, S. et al. Characterization of post-operative risk associated with prior drug-eluting stent use. JACC Cardiovasc. Interv. 2, 542–549 (2009).

    PubMed  Google Scholar 

  135. Holcomb, C. N. et al. The incremental risk of noncardiac surgery on adverse cardiac events following coronary stenting. J. Am. Coll. Cardiol. 64, 2730–2739 (2014).

    PubMed  Google Scholar 

  136. Hawn, M. T. et al. Risk of major adverse cardiac events following noncardiac surgery in patients with coronary stents. JAMA 310, 1462–1472 (2013).

    CAS  PubMed  Google Scholar 

  137. Wu, W. C. et al. Preoperative hematocrit levels and postoperative outcomes in older patients undergoing noncardiac surgery. JAMA 297, 2481–2488 (2007).

    CAS  PubMed  Google Scholar 

  138. Smilowitz, N. R., Banco, D., Katz, S. D., Beckman, J. A. & Berger, J. S. Association between heart failure and perioperative outcomes in patients undergoing non-cardiac surgery. Eur. Heart J. Qual. Care Clin. Outcomes https://doi.org/10.1093/ehjqcco/qcz066 (2019).

    Article  PubMed  Google Scholar 

  139. Saia, F. et al. Risk of adverse cardiac and bleeding events following cardiac and noncardiac surgery in patients with coronary stent: how important is the interplay between stent type and time from stenting to surgery? Circ. Cardiovasc. Qual. Outcomes 9, 39–47 (2016).

    PubMed  Google Scholar 

  140. Merlini, P. A. et al. Persistent activation of coagulation mechanism in unstable angina and myocardial infarction. Circulation 90, 61–68 (1994).

    CAS  PubMed  Google Scholar 

  141. Hong, M. K. et al. Comparison of coronary plaque rupture between stable angina and acute myocardial infarction: a three-vessel intravascular ultrasound study in 235 patients. Circulation 110, 928–933 (2004).

    PubMed  Google Scholar 

  142. Kereiakes, D. J. et al. DAPT score utility for risk prediction in patients with or without previous myocardial infarction. J. Am. Coll. Cardiol. 67, 2492–2502 (2016).

    PubMed  Google Scholar 

  143. Levine, G. N. et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 68, 1082–1115 (2016).

    PubMed  Google Scholar 

  144. Cruden, N. L. et al. Previous coronary stent implantation and cardiac events in patients undergoing noncardiac surgery. Circ. Cardiovasc. Interv. 3, 236–242 (2010).

    PubMed  Google Scholar 

  145. Holcomb, C. N. et al. Association of coronary stent indication with postoperative outcomes following noncardiac surgery. JAMA Surg. 151, 462–469 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. Armstrong, E. J. et al. Patient and lesion-specific characteristics predict risk of major adverse cardiovascular events among patients with previous percutaneous coronary intervention undergoing noncardiac surgery. Catheter. Cardiovasc. Interv. 89, 617–627 (2017).

    PubMed  Google Scholar 

  147. Neumann, F. J. et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur. Heart J. 40, 87–165 (2019).

    PubMed  Google Scholar 

  148. Serruys, P. W. et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 360, 961–972 (2009).

    CAS  PubMed  Google Scholar 

  149. Motoyama, S. et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J. Am. Coll. Cardiol. 66, 337–346 (2015).

    PubMed  Google Scholar 

  150. Thomsen, C. & Abdulla, J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 17, 120–129 (2016).

    PubMed  Google Scholar 

  151. Armstrong, E. J. et al. Incomplete revascularization is associated with an increased risk for major adverse cardiovascular events among patients undergoing noncardiac surgery. JACC Cardiovasc. Interv. 10, 329–338 (2017).

    PubMed  Google Scholar 

  152. van Kuijk, J.-P. et al. Timing of noncardiac surgery after coronary artery stenting with bare metal or drug-eluting stents. Am. J. Cardiol. 104, 1229–1234 (2009).

    PubMed  Google Scholar 

  153. Wijeysundera, D. N. et al. Risk of elective major noncardiac surgery after coronary stent insertion: a population-based study. Circulation 126, 1355–1362 (2012).

    PubMed  Google Scholar 

  154. Vicenzi, M. N. et al. Coronary artery stenting and non-cardiac surgery–a prospective outcome study. Br. J. Anaesth. 96, 686–693 (2006).

    CAS  PubMed  Google Scholar 

  155. Tokushige, A. et al. Incidence and outcome of surgical procedures after coronary bare-metal and drug-eluting stent implantation: a report from the CREDO-Kyoto PCI/CABG registry cohort-2. Circ. Cardiovasc. Interv. 5, 237–246 (2012).

    PubMed  Google Scholar 

  156. Wilson, S. H. et al. Clinical outcome of patients undergoing non-cardiac surgery in the two months following coronary stenting. J. Am. Coll. Cardiol. 42, 234–240 (2003).

    PubMed  Google Scholar 

  157. Daemen, J. et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369, 667–678 (2007).

    CAS  PubMed  Google Scholar 

  158. Giustino, G. et al. Characterization of the average daily ischemic and bleeding risk after primary PCI for STEMI. J. Am. Coll. Cardiol. 70, 1846–1857 (2017).

    PubMed  Google Scholar 

  159. Finn, A. V. et al. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115, 2435–2441 (2007).

    PubMed  Google Scholar 

  160. Stefanini, G. G. & Holmes, D. R. Jr. Drug-eluting coronary-artery stents. N. Engl. J. Med. 368, 254–265 (2013).

    CAS  PubMed  Google Scholar 

  161. van Werkum, J. W. et al. Predictors of coronary stent thrombosis: the Dutch Stent Thrombosis registry. J. Am. Coll. Cardiol. 53, 1399–1409 (2009).

    PubMed  Google Scholar 

  162. Holmes, D. R. Jr. et al. Stent thrombosis. J. Am. Coll. Cardiol. 56, 1357–1365 (2010).

    PubMed  Google Scholar 

  163. Giustino, G. et al. Efficacy and safety of dual antiplatelet therapy after complex PCI. J. Am. Coll. Cardiol. 68, 1851–1864 (2016).

    CAS  PubMed  Google Scholar 

  164. Yeh, R. W. et al. Lesion complexity and outcomes of extended dual antiplatelet therapy after percutaneous coronary intervention. J. Am. Coll. Cardiol. 70, 2213–2223 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Vivas, D. et al. Perioperative and periprocedural management of antithrombotic therapy: consensus document of SEC, SEDAR, SEACV, SECTCV, AEC, SECPRE, SEPD, SEGO, SEHH, SETH, SEMERGEN, SEMFYC, SEMG, SEMICYUC, SEMI, SEMES, SEPAR, SENEC, SEO, SEPA, SERVEI, SECOT and AEU. Rev. Esp. Cardiol. 71, 553–564 (2018).

    PubMed  Google Scholar 

  166. Albaladejo, P. et al. Bleeding complications in patients with coronary stents during non-cardiac surgery. Thrombosis Res. 134, 268–272 (2014).

    CAS  Google Scholar 

  167. Hermans, C. et al. Replacement therapy for invasive procedures in patients with haemophilia: literature review, European survey and recommendations. Haemophilia 15, 639–658 (2009).

    CAS  PubMed  Google Scholar 

  168. Mensah, P. K. & Pavord, S. Managing preoperative hemostasis in patients with inherited and acquired bleeding disorders. Semin. Thromb. Hemost. 46, 17–25 (2019).

    PubMed  Google Scholar 

  169. Kaw, D. & Malhotra, D. Platelet dysfunction and end-stage renal disease. Semin. Dialysis 19, 317–322 (2006).

    Google Scholar 

  170. Tripodi, A. & Mannucci, P. M. The coagulopathy of chronic liver disease. N. Engl. J. Med. 365, 147–156 (2011).

    CAS  PubMed  Google Scholar 

  171. Acedillo, R. R. et al. The risk of perioperative bleeding in patients with chronic kidney disease: a systematic review and meta-analysis. Ann. Surg. 258, 901–913 (2013).

    PubMed  Google Scholar 

  172. Ziser, A. et al. Morbidity and mortality in cirrhotic patients undergoing anesthesia and surgery. Anesthesiology 90, 42–53 (1999).

    CAS  PubMed  Google Scholar 

  173. Beattie, W. S., Karkouti, K., Wijeysundera, D. N. & Tait, G. Risk associated with preoperative anemia in noncardiac surgery: a single-center cohort study. Anesthesiology 110, 574–581 (2009).

    PubMed  Google Scholar 

  174. Musallam, K. M. et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet 378, 1396–1407 (2011).

    PubMed  Google Scholar 

  175. Baron, D. M. et al. Preoperative anaemia is associated with poor clinical outcome in non-cardiac surgery patients. Br. J. Anaesth. 113, 416–423 (2014).

    CAS  PubMed  Google Scholar 

  176. Glance, L. G. et al. Preoperative thrombocytopenia and postoperative outcomes after noncardiac surgery. Anesthesiology 120, 62–75 (2014).

    PubMed  Google Scholar 

  177. Urban, P. et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the Academic Research Consortium for High Bleeding Risk. Circulation 140, 240–261 (2019).

    PubMed  PubMed Central  Google Scholar 

  178. Mehran, R. et al. Cessation of dual antiplatelet treatment and cardiac events after percutaneous coronary intervention (PARIS): 2 year results from a prospective observational study. Lancet 382, 1714–1722 (2013).

    PubMed  Google Scholar 

  179. Airoldi, F. et al. Incidence and predictors of drug-eluting stent thrombosis during and after discontinuation of thienopyridine treatment. Circulation 116, 745–754 (2007).

    CAS  PubMed  Google Scholar 

  180. Genereux, P. et al. Stent thrombosis and dual antiplatelet therapy interruption with everolimus-eluting stents: insights from the Xience V coronary stent system trials. Circ. Cardiovasc. Interv. 8, e001362 (2015).

    PubMed  Google Scholar 

  181. Childers, C. P. et al. Perioperative management of antiplatelet therapy in patients undergoing non-cardiac surgery following coronary stent placement: a systematic review. Syst. Rev. 7, 4 (2018).

    PubMed  PubMed Central  Google Scholar 

  182. Graham, L. A., Hollis, R. H., Richman, J. S. & Hawn, M. T. Frequency of surgery cancellations associated with myocardial infarction or death 6 months after coronary stent placement. JAMA Surg. 150, 1199–1201 (2015).

    PubMed  Google Scholar 

  183. Howell, S. et al. Prospective observational cohort study of the association between antiplatelet therapy, bleeding and thrombosis in patients with coronary stents undergoing noncardiac surgery. Br. J. Anaesth. 122, 170–179 (2019).

    CAS  PubMed  Google Scholar 

  184. Schouten, O., Bax, J. J., Damen, J. & Poldermans, D. Coronary artery stent placement immediately before noncardiac surgery: a potential risk? Anesthesiology 106, 1067–1069 (2007).

    PubMed  Google Scholar 

  185. Hong, S.-J. et al. Effect of perioperative antiplatelet therapy on outcomes in patients with drug-eluting stents undergoing elective noncardiac surgery. Am. J. Cardiol. 123, 1414–1421 (2019).

    PubMed  Google Scholar 

  186. Egholm, G. et al. Dual anti-platelet therapy after coronary drug-eluting stent implantation and surgery-associated major adverse events. Thrombosis Haemost. 116, 172–180 (2016).

    Google Scholar 

  187. Rossini, R. et al. Perioperative management of oral antiplatelet therapy and clinical outcomes in coronary stent patients undergoing surgery. Thrombosis Haemost. 114, 272–282 (2015).

    Google Scholar 

  188. Columbo, J. A. et al. A meta-analysis of the impact of aspirin, clopidogrel, and dual antiplatelet therapy on bleeding complications in noncardiac surgery. Ann. Surg. 267, 1–10 (2018).

    PubMed  Google Scholar 

  189. Siller-Matula, J. M. et al. Impact of preoperative use of P2Y12 receptor inhibitors on clinical outcomes in cardiac and non-cardiac surgery: a systematic review and meta-analysis. Eur. Heart J. Acute Cardiovasc. Care 6, 753–770 (2017).

    PubMed  Google Scholar 

  190. Ernst, A., Eberhardt, R., Wahidi, M., Becker, H. D. & Herth, F. J. Effect of routine clopidogrel use on bleeding complications after transbronchial biopsy in humans. Chest 129, 734–737 (2006).

    PubMed  Google Scholar 

  191. Kamel, H. et al. Association between major perioperative hemorrhage and stroke or Q-wave myocardial infarction. Circulation 126, 207–212 (2012).

    PubMed  PubMed Central  Google Scholar 

  192. Godier, A. et al. Management of antiplatelet therapy in patients undergoing elective invasive procedures: proposals from the French Working Group on Perioperative Hemostasis (GIHP) and the French Study Group on Thrombosis and Hemostasis (GFHT). In collaboration with the French Society for Anesthesia and Intensive Care (SFAR). Arch. Cardiovascu. Dis. 111, 210–223 (2018).

    Google Scholar 

  193. Zisman, E. et al. Platelet function recovery after cessation of aspirin: preliminary study of volunteers and surgical patients. Eur. J. Anaesthesiol. 27, 617–623 (2010).

    PubMed  Google Scholar 

  194. Le Manach, Y. et al. Impact of aspirin and clopidogrel interruption on platelet function in patients undergoing major vascular surgery. PLoS ONE 9, e104491 (2014).

    PubMed  PubMed Central  Google Scholar 

  195. Li, C., Hirsh, J., Xie, C., Johnston, M. A. & Eikelboom, J. W. Reversal of the anti-platelet effects of aspirin and clopidogrel. J. Thromb. Haemost. 10, 521–528 (2012).

    CAS  PubMed  Google Scholar 

  196. Gogarten, W. et al. Regional anaesthesia and antithrombotic agents: recommendations of the European Society of Anaesthesiology. Eur. J. Anaesthesiol. 27, 999–1015 (2010).

    CAS  PubMed  Google Scholar 

  197. O’Connor, S. A. et al. Efficacy of ex vivo autologous and in vivo platelet transfusion in the reversal of P2Y12 inhibition by clopidogrel, prasugrel, and ticagrelor: the APTITUDE study. Circ. Cardiovasc. Interv. 8, e002786 (2015).

    PubMed  Google Scholar 

  198. Zafar, M. U. et al. Impact of timing on the functional recovery achieved with platelet supplementation after treatment with ticagrelor. Circ. Cardiovasc. Interv. 10, e005120 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Franchi, F. & Angiolillo, D. J. Novel antiplatelet agents in acute coronary syndrome. Nat. Rev. Cardiol. 12, 30–47 (2015).

    CAS  PubMed  Google Scholar 

  200. Bhatt, D. L. et al. Antibody-based ticagrelor reversal agent in healthy volunteers. N. Engl. J. Med. 380, 1825–1833 (2019).

    CAS  PubMed  Google Scholar 

  201. Capodanno, D. & Angiolillo, D. J. Pretreatment with antiplatelet drugs in invasively managed patients with coronary artery disease in the contemporary era: review of the evidence and practice guidelines. Circ. Cardiovasc. Interv. 8, e002301 (2015).

    PubMed  Google Scholar 

  202. Capodanno, D. et al. Impact of bridging with perioperative low-molecular-weight heparin on cardiac and bleeding outcomes of stented patients undergoing non-cardiac surgery. Thromb. Haemost. 114, 423–431 (2015).

    CAS  PubMed  Google Scholar 

  203. Gotoh, S., Yasaka, M., Nakamura, A., Kuwashiro, T. & Okada, Y. Management of antithrombotic agents during surgery or other kinds of medical procedures with bleeding: the MARK study. J. Am. Heart Assoc. 9, e012774 (2020).

    PubMed  PubMed Central  Google Scholar 

  204. Schneider, D. J., Tracy, P. B., Mann, K. G. & Sobel, B. E. Differential effects of anticoagulants on the activation of platelets ex vivo. Circulation 96, 2877–2883 (1997).

    CAS  PubMed  Google Scholar 

  205. Xiao, Z. & Theroux, P. Platelet activation with unfractionated heparin at therapeutic concentrations and comparisons with a low-molecular-weight heparin and with a direct thrombin inhibitor. Circulation 97, 251–256 (1998).

    CAS  PubMed  Google Scholar 

  206. Angiolillo, D. J. et al. International expert consensus on switching platelet P2Y12 receptor-inhibiting therapies. Circulation 136, 1955–1975 (2017).

    CAS  PubMed  Google Scholar 

  207. Capodanno, D. & Angiolillo, D. J. Management of antiplatelet therapy in patients with coronary artery disease requiring cardiac and noncardiac surgery. Circulation 128, 2785–2798 (2013).

    PubMed  Google Scholar 

  208. Capodanno, D., Milluzzo, R. P. & Angiolillo, D. J. Intravenous antiplatelet therapies (glycoprotein IIb/IIIa receptor inhibitors and cangrelor) in percutaneous coronary intervention: from pharmacology to indications for clinical use. Ther. Adv. Cardiovasc. Dis. 13, 1753944719893274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Franchi, F., Rollini, F., Muniz-Lozano, A., Cho, J. R. & Angiolillo, D. J. Cangrelor: a review on pharmacology and clinical trial development. Expert. Rev. Cardiovasc. Ther. 11, 1279–1291 (2013).

    CAS  PubMed  Google Scholar 

  210. Angiolillo, D. J. et al. Bridging antiplatelet therapy with cangrelor in patients undergoing cardiac surgery: a randomized controlled trial. JAMA 307, 265–274 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Dargham, B. B. et al. Intravenous antiplatelet therapy bridging in patients undergoing cardiac or non-cardiac surgery following percutaneous coronary intervention. Cardiovasc. Revasc. Med. 20, 805–811 (2019).

    PubMed  Google Scholar 

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03862651 (2019).

  213. Muniz-Lozano, A., Rollini, F., Franchi, F. & Angiolillo, D. J. Update on platelet glycoprotein IIb/IIIa inhibitors: recommendations for clinical practice. Ther. Adv. Cardiovasc. Dis. 7, 197–213 (2013).

    CAS  PubMed  Google Scholar 

  214. Savonitto, S. et al. Urgent surgery in patients with a recently implanted coronary drug-eluting stent: a phase II study of ‘bridging’ antiplatelet therapy with tirofiban during temporary withdrawal of clopidogrel. Br. J. Anaesth. 104, 285–291 (2010).

    CAS  PubMed  Google Scholar 

  215. Alshawabkeh, L. I. et al. Outcomes of a preoperative “bridging” strategy with glycoprotein IIb/IIIa inhibitors to prevent perioperative stent thrombosis in patients with drug-eluting stents who undergo surgery necessitating interruption of thienopyridine administration. Europe PCR 9, 204–211 (2013).

    Google Scholar 

  216. Capodanno, D., Alfonso, F., Levine, G. N., Valgimigli, M. & Angiolillo, D. J. ACC/AHA versus ESC guidelines on dual antiplatelet therapy: JACC guideline comparison. J. Am. Coll. Cardiol. 72, 2915–2931 (2018).

    PubMed  Google Scholar 

  217. Capodanno, D. et al. Management of antithrombotic therapy in atrial fibrillation patients undergoing PCI: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 83–99 (2019).

    PubMed  Google Scholar 

  218. Knuuti, J. et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart. J. 41, 407–477 (2020).

    PubMed  Google Scholar 

  219. Angiolillo, D. J. et al. Antithrombotic therapy in patients with atrial fibrillation treated with oral anticoagulation undergoing percutaneous coronary intervention. Circulation 138, 527–536 (2018).

    CAS  PubMed  Google Scholar 

  220. Yasuda, S. et al. Antithrombotic therapy for atrial fibrillation with stable coronary disease. N. Engl. J. Med. 381, 1103–1113 (2019).

    CAS  PubMed  Google Scholar 

  221. Healey, J. S. et al. Periprocedural bleeding and thromboembolic events with dabigatran compared with warfarin: results from the randomized evaluation of long-term anticoagulation therapy (RE-LY) randomized trial. Circulation 126, 343–348 (2012).

    CAS  PubMed  Google Scholar 

  222. Douketis, J. D. et al. Perioperative bridging anticoagulation in patients with atrial fibrillation. N. Engl. J. Med. 373, 823–833 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Douketis, J. D. et al. Perioperative management of patients with atrial fibrillation receiving a direct oral anticoagulant. JAMA Intern. Med. 179, 1469–1478 (2019).

    PubMed Central  PubMed  Google Scholar 

  224. Steffel, J. et al. The 2018 European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur. Heart J. 39, 1330–1393 (2018).

    CAS  PubMed  Google Scholar 

  225. Olesen, J. B. et al. Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation: nationwide cohort study. BMJ 342, d124 (2011).

    PubMed  PubMed Central  Google Scholar 

  226. Nielsen, P. B., Larsen, T. B., Skjoth, F., Overvad, T. F. & Lip, G. Y. Stroke and thromboembolic event rates in atrial fibrillation according to different guideline treatment thresholds: a nationwide cohort study. Sci. Rep. 6, 27410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Hansen, M. L. et al. Risk of bleeding with single, dual, or triple therapy with warfarin, aspirin, and clopidogrel in patients with atrial fibrillation. Arch. Intern. Med. 170, 1433–1441 (2010).

    CAS  PubMed  Google Scholar 

  228. Pollack, C. V. Jr. et al. Idarucizumab for dabigatran reversal – full cohort analysis. N. Engl. J. Med. 377, 431–441 (2017).

    CAS  PubMed  Google Scholar 

  229. Connolly, S. J. et al. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. N. Engl. J. Med. 375, 1131–1141 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03016936 (2019).

  231. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03111875 (2020).

  232. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02427867 (2020).

  233. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03715712 (2019).

  234. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03021525 (2019).

  235. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03505723 (2020).

  236. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03374449 (2020).

  237. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03138603 (2018).

  238. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04329624 (2020).

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04139655 (2019).

  240. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02797548 (2020).

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03695159 (2020).

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.Cao, R.C. and R.M. researched data for the article. All authors contributed to discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Roxana Mehran.

Ethics declarations

Competing interests

D.Capodanno has received consulting fees or honoraria from Amgen, AstraZeneca, Bayer, Biosensors, Boehringer Ingelheim, Daiichi Sankyo and Sanofi. D.J.A. has received grant support, consulting fees and honoraria from Abbott, Amgen, Aralez, Bayer, Biosensors, Boehringer Ingelheim, Bristol Myers Squibb, Chiesi, Daiichi Sankyo, Eli Lilly, Janssen, Merck and Sanofi; consulting fees and honoraria from Haemonetics, the Medicines Company, PhaseBio, PLx Pharma and Pfizer; grant support and fees for review activities from CeloNova; fees for review activities from St Jude Medical; and grant support from CSL Behring, Eisai, Gilead, Idorsia Pharmaceuticals, Matsutani Chemical Industry, Novartis, Osprey Medical, RenalGuard Solutions and the Scott R. MacKenzie Foundation. R.M. has received institutional grants from Abbott, AstraZeneca, Bayer, Beth Israel Deaconess, Bristol Myers Squibb, Chiesi, Concept Medical, CSL Behring, DSI, Medtronic, Novartis Pharmaceuticals, OrbusNeich; has received personal fees from Abbott, Boston Scientific, Janssen Scientific Affairs, Medscape, Medtelligence (Janssen Scientific Affairs), Roivant Sciences, Sanofi and Siemens Medical Solutions; has received consultant fees paid to the institution from Abbott and Bristol Myers Squibb; has received advisory board funding paid to the institution from Spectranetics/Philips/Volcano Corp; has <1% equity in Claret Medical and Elixir Medical; has received Data and Safety Monitoring Board Membership fees paid to the institution from Watermark Research Partners; has been a consultant (no fee) for Idorsia Pharmaceuticals and Regeneron Pharmaceuticals; and her spouse has received consultant fees from Abiomed and The Medicines Company. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks J.-P. Collet, J. Douketis, K. Eagle and L. Fleisher for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Chandiramani, R., Capodanno, D. et al. Non-cardiac surgery in patients with coronary artery disease: risk evaluation and periprocedural management. Nat Rev Cardiol 18, 37–57 (2021). https://doi.org/10.1038/s41569-020-0410-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0410-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing