Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myocardial ischaemia–reperfusion injury and cardioprotection in perspective

Abstract

Despite the increasing use and success of interventional coronary reperfusion strategies, morbidity and mortality from acute myocardial infarction are still substantial. Myocardial infarct size is a major determinant of prognosis in these patients. Therefore, cardioprotective strategies aim to reduce infarct size. However, a perplexing gap exists between the many preclinical studies reporting infarct size reduction with mechanical and pharmacological interventions and the poor translation into better clinical outcomes in patients. This Review revisits the pathophysiology of myocardial ischaemia–reperfusion injury, including the role of autophagy and forms of cell death such as necrosis, apoptosis, necroptosis and pyroptosis. Other cellular compartments in addition to cardiomyocytes are addressed, notably the coronary microcirculation. Preclinical and clinical research developments in mechanical and pharmacological approaches to induce cardioprotection, and their signal transduction pathways, are discussed. Additive cardioprotective interventions are advocated. For clinical translation into treatments for patients with acute myocardial infarction, who typically are of advanced age, have comorbidities and are receiving several medications, not only infarct size reduction but also attenuation of coronary microvascular obstruction, as well as longer-term targets including infarct repair and reverse remodelling, must be considered to improve patient outcomes. Future clinical trials must focus on patients who really need adjunct cardioprotection, that is, those with severe haemodynamic alterations.

Key points

  • Sustained myocardial ischaemia–reperfusion induces various modes of cardiomyocyte death and coronary microvascular injury.

  • Ischaemic conditioning (cycles of brief ischaemia–reperfusion in the heart or in a tissue remote from the heart) reduces infarct size and coronary microvascular injury.

  • The signalling pathways triggered by ischaemic conditioning are complex and include activation of sarcolemmal receptors and cytosolic kinases, as well as reduced mitochondrial permeability transition pore opening, Ca2+ overload and proteolysis.

  • Ischaemic postconditioning and remote ischaemic conditioning reduced infarct size in patients with ST-segment elevation myocardial infarction in proof-of-concept trials.

  • Remote ischaemic conditioning improved clinical outcomes in patients with ST-segment elevation myocardial infarction in one phase III clinical trial.

  • In future studies, the use of additive cardioprotective strategies and a focus on patients with severe haemodynamic alterations (such as cardiogenic shock or those in Killip class III–IV) are advocated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cardioprotective strategies for acute myocardial infarction.
Fig. 2: Infarct size as a function of ischaemia duration and residual blood flow.
Fig. 3: Infarct size reduction with cardioprotective strategies.
Fig. 4: Cardiomyocyte and coronary microvascular injury induced by ischaemia–reperfusion.
Fig. 5: Clinical trials on ischaemic postconditioning and remote ischaemic conditioning.
Fig. 6: Cardioprotective signalling of ischaemic conditioning.
Fig. 7: Mitochondrial cardioprotective signalling of ischaemic conditioning.
Fig. 8: Role of the vago–splenic axis in remote ischaemic preconditioning.

Similar content being viewed by others

Bruce C. V. Campbell, Deidre A. De Silva, … Geoffrey A. Donnan

References

  1. Heusch, G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381, 166–175 (2013).

    Google Scholar 

  2. Heusch, G. Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am. J. Physiol. Heart Circ. Physiol. 316, H1439–H1446 (2019).

    CAS  Google Scholar 

  3. Ibanez, B. et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 39, 119–177 (2017).

    Google Scholar 

  4. Ginks, W. R. et al. Coronary artery reperfusion. II. Reduction of myocardial infarct size at 1 week after the coronary occlusion. J. Clin. Invest. 51, 2717–2723 (1972).

    CAS  Google Scholar 

  5. Ibanez, B., Heusch, G., Ovize, M. & Van de Werf, F. Evolving therapies for myocardial ischemia/reperfusion injury. J. Am. Coll. Cardiol. 65, 1454–1471 (2015).

    Google Scholar 

  6. Piper, H. M., García-Dorado, D. & Ovize, M. A fresh look at reperfusion injury. Cardiovasc. Res. 38, 291–300 (1998).

    CAS  Google Scholar 

  7. Heusch, G. Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr. Physiol. 5, 1123–1145 (2015).

    Google Scholar 

  8. Hausenloy, D. J. et al. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur. Heart J. 38, 935–941 (2017).

    CAS  Google Scholar 

  9. Hausenloy, D. J. & Yellon, D. M. Myocardial ischemia–reperfusion injury: a neglected therapeutic target. J. Clin. Invest. 123, 92–100 (2013).

    CAS  Google Scholar 

  10. Moran, A. E. et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation 129, 1493–1501 (2014).

    Google Scholar 

  11. Roe, M. T. et al. Treatments, trends, and outcomes of acute myocardial infarction and percutaneous coronary intervention. J. Am. Coll. Cardiol. 56, 254–263 (2010).

    Google Scholar 

  12. Cung, T. T. et al. Cyclosporine before PCI in patients with acute myocardial infarction. N. Engl. J. Med. 373, 1021–1103 (2015).

    CAS  Google Scholar 

  13. Hausenloy, D. J. et al. Effect of remote ischemic conditioning on clinical outcomes at 12 months in acute myocardial infarction patients: the CONDI-2/ERIC-PPCI trial. Lancet 394, 1415–1424 (2019).

    Google Scholar 

  14. Jernberg, T. et al. Association between adoption of evidence-based treatment and survival for patients with ST-elevation myocardial infarction. JAMA 305, 1677–1684 (2011).

    CAS  Google Scholar 

  15. Heusch, G. & Gersh, B. J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur. Heart J. 38, 774–784 (2017).

    CAS  Google Scholar 

  16. Stone, G. W. et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J. Am. Coll. Cardiol. 67, 1674–1683 (2016).

    Google Scholar 

  17. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986).

    CAS  Google Scholar 

  18. Hausenloy, D. J. et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res. Cardiol. 111, 70 (2016).

    Google Scholar 

  19. Heusch, G. & Rassaf, T. Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ. Res. 119, 676–695 (2016).

    CAS  Google Scholar 

  20. Heusch, G. Critical issues for the translation of cardioprotection. Circ. Res. 120, 1477–1486 (2017).

    CAS  Google Scholar 

  21. Gaspar, A. et al. Randomized controlled trial of remote ischaemic conditioning in ST-elevation myocardial infarction as adjuvant to primary angioplasty (RIC-STEMI). Basic Res. Cardiol. 113, 14 (2018).

    Google Scholar 

  22. Heusch, G. 25 years of remote ischemic conditioning: from laboratory curiosity to clinical outcome. Basic Res. Cardiol. 113, 15 (2018).

    Google Scholar 

  23. Kloner, R. A. et al. New and revisited approaches to preserving the reperfused myocardium. Nat. Rev. Cardiol. 14, 679–693 (2017).

    Google Scholar 

  24. Jennings, R. B. & Reimer, K. A. Lethal myocardial ischemic injury. Am. J. Pathol. 102, 241–255 (1981).

    CAS  Google Scholar 

  25. Przyklenk, K. Lethal myocardial “reperfusion injury”: the opinions of good men. J. Thromb. Thrombolysis 4, 5–6 (1997).

    CAS  Google Scholar 

  26. Zhao, Z.-Q. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol 285, H579–H588 (2003).

    CAS  Google Scholar 

  27. Tissier, R., Ghaleh, B., Cohen, M. V., Downey, J. M. & Berdeaux, A. Myocardial protection with mild hypothermia. Cardiovasc. Res. 94, 217–225 (2012).

    CAS  Google Scholar 

  28. Heusch, G. Vagal cardioprotection in reperfused acute myocardial infarction. JACC Cardiovasc. Interv. 10, 1521–1522 (2017).

    Google Scholar 

  29. Kleinbongard, P., Amanakis, G., Skyschally, A. & Heusch, G. Reflection of cardioprotection by remote ischemic perconditioning in attenuated ST-segment elevation during ongoing coronary occlusion in pigs: evidence for cardioprotection from ischemic injury. Circ. Res. 122, 1102–1108 (2018).

    CAS  Google Scholar 

  30. Garcia-Ruiz, J. M. et al. Impact of the timing of metoprolol administration during STEMI on infarct size and ventricular function. J. Am. Coll. Cardiol. 67, 2093–2104 (2016).

    CAS  Google Scholar 

  31. Bøtker, H. E. et al. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res. Cardiol. 113, 39 (2018).

    Google Scholar 

  32. Reimer, K. A., Lowe, J. E., Rasmussen, M. M. & Jennings, R. B. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56, 786–794 (1977).

    CAS  Google Scholar 

  33. Reimer, K. A. & Jennings, R. B. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 40, 633–644 (1979).

    CAS  Google Scholar 

  34. Mishra, P. K. et al. Guidelines for evaluating myocardial cell death. Am. J. Physiol. Heart Circ. Physiol. 317, H891–H922 (2019).

    CAS  Google Scholar 

  35. Tani, M. & Neely, J. R. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circ. Res. 65, 1045–1056 (1989).

    CAS  Google Scholar 

  36. Ladilov, Y. V., Siegmund, B. & Piper, H. M. Protection of reoxygenated cardiomyocytes against hypercontracture by inhibition of Na+/H+ exchange. Am. J. Physiol. 268, H1531–H1539 (1995).

    CAS  Google Scholar 

  37. Piper, H. M., Meuter, K. & Schäfer, C. Cellular mechanisms of ischemia–reperfusion injury. Ann. Thorac. Surg. 75, S644–S648 (2003).

    Google Scholar 

  38. Schlüter, K. D., Jakob, G., Ruiz-Meana, G. J. M., Garcia-Dorado, D. & Piper, H. M. Protection of reoxygenated cardiomyocytes against osmotic fragility by nitric oxide donors. Am. J. Physiol. Heart Circ. Physiol. 271, H428–H434 (1996).

    Google Scholar 

  39. Inserte, J., Hernando, V. & Garcia-Dorado, D. Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc. Res. 96, 23–31 (2012).

    CAS  Google Scholar 

  40. Davidson, S. M. et al. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury. J. Cell Mol. Med. 24, 3795–3806 (2020).

    Google Scholar 

  41. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    CAS  Google Scholar 

  42. Bernardi, P., Rasola, A., Forte, M. & Lippe, G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol. Rev. 95, 1111–1155 (2015).

    Google Scholar 

  43. Bernardi, P. & Di Lisa, F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J. Mol. Cell Cardiol. 78c, 100–106 (2015).

    Google Scholar 

  44. Zhou, W. & Yuan, J. SnapShot: necroptosis. Cell 158, 464–464.e1 (2014).

    CAS  Google Scholar 

  45. Oerlemans, M. I. et al. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia–reperfusion in vivo. Basic Res. Cardiol. 107, 270 (2012).

    Google Scholar 

  46. Kawaguchi, M. et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594–604 (2011).

    CAS  Google Scholar 

  47. Audia, J. P. et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res. Cardiol. 113, 32 (2018).

    Google Scholar 

  48. Gottlieb, R. A. & Mentzer, R. M. Jr. Autophagy: an affair of the heart. Heart Fail. Rev. 18, 575–584 (2013).

    CAS  Google Scholar 

  49. Dong, Y., Undyala, V. V., Gottlieb, R. A., Mentzer, R. M. Jr & Przyklenk, K. Autophagy: definition, molecular machinery, and potential role in myocardial ischemia–reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 15, 220–230 (2010).

    CAS  Google Scholar 

  50. Sala-Mercado, J. A. et al. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia–reperfusion injury. Circulation 122, S179–S184 (2010).

    CAS  Google Scholar 

  51. Heusch, G., Schulz, R., Baumgart, D., Haude, M. & Erbel, R. Coronary microembolization. Prog. Cardiovasc. Dis. 44, 217–230 (2001).

    CAS  Google Scholar 

  52. Koshinuma, S., Miyamae, M., Kaneda, K., Kotani, J. & Figueredo, V. M. Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia–reperfusion injury. J. Anesth. 28, 235–241 (2014).

    Google Scholar 

  53. Heusch, G. et al. The coronary circulation in cardioprotection: more than just one confounder. Cardiovasc. Res. 94, 237–245 (2012).

    CAS  Google Scholar 

  54. Heusch, G. The coronary circulation as a target of cardioprotection. Circ. Res. 118, 1643–1658 (2016).

    CAS  Google Scholar 

  55. Heusch, G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res. Cardiol. 114, 45 (2019).

    Google Scholar 

  56. Niccoli, G. et al. Optimized treatment of ST-elevation myocardial infarction: the unmet need to target coronary microvascular obstruction as primary treatment goal to further improve prognosis. Circ. Res. 125, 245–258 (2019).

    CAS  Google Scholar 

  57. Heusch, G. et al. Coronary microembolization: from bedside to bench and back to bedside. Circulation 120, 1822–1836 (2009).

    Google Scholar 

  58. Kleinbongard, P. et al. Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ. Res. 108, 344–352 (2011).

    CAS  Google Scholar 

  59. Kleinbongard, P. et al. Aspirate from human stented native coronary arteries vs. saphenous vein grafts: more endothelin but less particulate debris. Am. J. Physiol. Heart Circ. Physiol. 305, H1222–H1229 (2013).

    CAS  Google Scholar 

  60. Bolli, R., Triana, J. F. & Jeroudi, M. O. Prolonged impairment of coronary vasodilation after reversible ischemia. Circ. Res. 67, 332–343 (1990).

    CAS  Google Scholar 

  61. Ehring, T. et al. Cholinergic and α-adrenergic coronary vasomotion with increasing ischemia–reperfusion injury. Am. J. Physiol. 268, H886–H894 (1995).

    CAS  Google Scholar 

  62. Sheridan, F. M., Dauber, I. M., McMurtry, I. F., Lesnefsky, E. J. & Horwitz, L. D. Role of leukocytes in coronary vascular endothelial injury due to ischemia and reperfusion. Circ. Res. 69, 1566–1574 (1991).

    CAS  Google Scholar 

  63. Barrabes, J. A. et al. Antagonism of selectin function attenuates microvascular platelet deposition and platelet-mediated myocardial injury after transient ischemia. J. Am. Coll. Cardiol. 45, 293–299 (2005).

    CAS  Google Scholar 

  64. Driesen, R. B. et al. Histological correlate of a cardiac magnetic resonance imaged microvascular obstruction in a porcine model of ischemia–reperfusion. Cardiovasc. Pathol. 21, 129–131 (2011).

    Google Scholar 

  65. Dauber, I. M. et al. Functional coronary microvascular injury evident as increased permeability due to brief ischemia and reperfusion. Circ. Res. 66, 986–998 (1990).

    CAS  Google Scholar 

  66. Garcia-Dorado, D., Andres-Villarreal, M., Ruiz-Meana, M., Inserte, J. & Barba, I. Myocardial edema: a translational view. J. Mol. Cell Cardiol. 52, 931–939 (2012).

    CAS  Google Scholar 

  67. Krug, A., du Mesnil de Rochemont, W. & Korb, G. Blood supply of the myocardium after temporary coronary occlusion. Circ. Res. 19, 57–62 (1966).

    CAS  Google Scholar 

  68. Kloner, R. A., Ganote, C. E. & Jennings, R. B. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 54, 1496–1508 (1974).

    CAS  Google Scholar 

  69. Higginson, L. A. et al. Determinants of myocardial hemorrhage after coronary reperfusion in the anesthetized dog. Circulation 65, 62–69 (1982).

    CAS  Google Scholar 

  70. Robbers, L. F. et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur. Heart J. 34, 2346–2353 (2013).

    CAS  Google Scholar 

  71. Hori, M. et al. Role of oxygen-derived free radicals in myocardial edema and ischemia in coronary microvascular embolization. Circulation 84, 828–840 (1991).

    CAS  Google Scholar 

  72. de Waha, S. et al. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 38, 3502–3510 (2017).

    Google Scholar 

  73. Murry, C. E., Richard, V. J., Jennings, R. B. & Reimer, K. A. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 260, H796–H804 (1991).

    CAS  Google Scholar 

  74. Marber, M. S., Latchman, D. S., Walker, J. M. & Yellon, D. M. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88, 1264–1272 (1993).

    CAS  Google Scholar 

  75. Bolli, R. The late phase of preconditioning. Circ. Res. 87, 972–983 (2000).

    CAS  Google Scholar 

  76. Heusch, G. Nitroglycerin and delayed preconditioning in humans. Yet another new mechanism for an old drug? Circulation 103, 2876–2878 (2001).

    CAS  Google Scholar 

  77. Rezkalla, S. H. & Kloner, R. A. Ischemic preconditioning and preinfarction angina in the clinical arena. Nat. Clin. Pract. Cardiovasc. Med. 1, 96–102 (2004).

    Google Scholar 

  78. Deutsch, E. et al. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation 82, 2044–2051 (1990).

    CAS  Google Scholar 

  79. Tomai, F. et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 90, 700–705 (1994).

    CAS  Google Scholar 

  80. Yellon, D. M., Alkhulaifi, A. M. & Pugsley, W. B. Preconditioning the human myocardium. Lancet 342, 276–277 (1993).

    CAS  Google Scholar 

  81. Jenkins, D. P. et al. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 77, 314–318 (1997).

    CAS  Google Scholar 

  82. Staat, P. et al. Postconditioning the human heart. Circulation 112, 2143–2148 (2005).

    Google Scholar 

  83. Thuny, F. et al. Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 59, 2175–2181 (2012).

    Google Scholar 

  84. Mewton, N. et al. Postconditioning attenuates no-reflow in STEMI patients. Basic Res. Cardiol. 108, 383 (2013).

    Google Scholar 

  85. Traverse, J. H. et al. NHLBI-sponsored randomized trial of postconditioning during primary percutaneous coronary intervention for ST-elevation myocardial infarction. Circ. Res. 124, 769–778 (2019).

    CAS  Google Scholar 

  86. Thibault, H. et al. Long-term benefit of postconditioning. Circulation 117, 1037–1044 (2008).

    CAS  Google Scholar 

  87. Ma, X. J., Zhang, X. H., Li, C. M. & Luo, M. Effect of postconditioning on coronary blood flow velocity and endothelial function in patients with acute myocardial infarction. Scand. Cardiovasc. J. 40, 327–333 (2006).

    Google Scholar 

  88. Yang, X. C. et al. Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J. Invasive Cardiol. 19, 424–430 (2007).

    Google Scholar 

  89. Laskey, W. K., Yoon, S., Calzada, N. & Ricciardi, M. J. Concordant improvements in coronary flow reserve and ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit of postconditioning. Catheter. Cardiovasc. Interv. 72, 212–220 (2008).

    Google Scholar 

  90. Zhao, W. S. et al. A 60-s postconditioning protocol by percutaneous coronary intervention inhibits myocardial apoptosis in patients with acute myocardial infarction. Apoptosis 14, 1204–1211 (2009).

    Google Scholar 

  91. Lonborg, J. et al. Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ. Cardiovasc. Interv. 3, 34–41 (2010).

    Google Scholar 

  92. Sörensson, P. et al. Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart 96, 1710–1715 (2010).

    Google Scholar 

  93. Xue, F. et al. Postconditioning the human heart in percutaneous coronary intervention. Clin. Cardiol. 33, 439–444 (2010).

    Google Scholar 

  94. Garcia, S. et al. Long-term follow-up of patients undergoing postconditioning during ST-elevation myocardial infarction. J. Cardiovasc. Transl. Res. 4, 92–98 (2011).

    Google Scholar 

  95. Liu, T. K., Mishra, A. K. & Ding, F. X. Protective effect of ischemia postconditioning on reperfusion injury in patients with ST-segment elevation acute myocardial infarction [Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi 39, 35–39 (2011).

    Google Scholar 

  96. Freixa, X. et al. Ischaemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur. Heart J. 33, 103–112 (2012).

    Google Scholar 

  97. Tarantini, G. et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int. J. Cardiol. 162, 33–38 (2012).

    Google Scholar 

  98. Ugata, Y., Nakamura, T., Taniguchi, Y., Ako, J. & Momomura, S. Effect of postconditioning in patients with ST-elevation acute myocardial infarction. Cardiovasc. Interv. Ther. 27, 14–18 (2012).

    Google Scholar 

  99. Dwyer, N. B. et al. No cardioprotective benefit of ischemic postconditioning in patients with ST-segment elevation myocardial infarction. J. Interv. Cardiol. 26, 482–490 (2013).

    Google Scholar 

  100. Elzbieciak, M. et al. Effect of postconditioning on infarction size, adverse left ventricular remodeling, and improvement in left ventricular systolic function in patients with first anterior ST segment elevation myocardial infarction. Pol. Arch. Med. Wewn. 123, 268–276 (2013).

    CAS  Google Scholar 

  101. Hahn, J. Y. et al. Ischemic postconditioning during primary percutaneous coronary intervention: the POST randomized trial. Circulation 128, 1889–1896 (2013).

    CAS  Google Scholar 

  102. Liu, S. H., Huo, Y. E., Yin, B. Y., Li, X. H. & Wang, Y. F. Ischemic postconditioning may increase serum fetuin-A level in patients with acute ST-segment elevation myocardial infarction undergoing percutaneous intervention. Clin. Lab. 59, 59–64 (2013).

    Google Scholar 

  103. Araszkiewicz, A. et al. Postconditioning reduces enzymatic infarct size and improves microvascular reperfusion in patients with ST-segment elevation myocardial infarction. Cardiology 129, 250–257 (2014).

    Google Scholar 

  104. Bodi, V. et al. Effect of ischemic postconditioning on microvascular obstruction in reperfused myocardial infarction. Results of a randomized study in patients and of an experimental model in swine. Int. J. Cardiol. 175, 138–146 (2014).

    Google Scholar 

  105. Dong, M. et al. The beneficial effects of postconditioning on no-reflow phenomenon after percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. J. Thromb. Thrombolysis 38, 208–214 (2014).

    Google Scholar 

  106. Limalanathan, S. et al. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI: results of the POSTEMI (Postconditioning in ST-Elevation Myocardial Infarction) randomized trial. J. Am. Heart Assoc. 3, e000679 (2014).

    Google Scholar 

  107. Luz, A. et al. Lack of benefit of ischemic postconditioning after routine thrombus aspiration during reperfusion: immediate and midterm results. J. Cardiovasc. Pharmacol. Ther. 20, 523–531 (2015).

    Google Scholar 

  108. Yetgin, T. et al. Impact of multiple balloon inflations during primary percutaneous coronary intervention on infarct size and long-term clinical outcomes in ST-segment elevation myocardial infarction: real-world postconditioning. Basic Res. Cardiol. 109, 403 (2014).

    Google Scholar 

  109. Eitel, I. et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur. Heart J. 36, 3049–3057 (2015).

    Google Scholar 

  110. Kim, E. K. et al. Effect of ischemic postconditioning on myocardial salvage in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: cardiac magnetic resonance substudy of the POST randomized trial. Int. J. Cardiovasc. Imaging 31, 629–637 (2015).

    Google Scholar 

  111. Engstrøm, T. et al. Effect of ischemic postconditioning during primary percutaneous coronary intervention for patients with ST-segment elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2, 490–497 (2017).

    Google Scholar 

  112. Araszkiewicz, A. et al. Ischemic postconditioning reduces infarct size and microvascular obstruction zone in acute ST-elevation myocardial infarction — a randomized study. Postepy Kardiol Interwencyjnej 15, 292–300 (2019).

    Google Scholar 

  113. Mukherjee, P. & Jain, M. Effect of ischemic postconditioning during primary percutaneous coronary intervention for patients with ST-segment elevation myocardial infarction: a single-center cross-sectional study. Ann. Card. Anaesth. 22, 347–352 (2019).

    Google Scholar 

  114. Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A. & Whittaker, P. Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87, 893–899 (1993).

    CAS  Google Scholar 

  115. Heusch, G., Bøtker, H. E., Przyklenk, K., Redington, A. & Yellon, D. Remote ischemic conditioning. J. Am. Coll. Cardiol. 65, 177–195 (2015).

    CAS  Google Scholar 

  116. Kleinbongard, P., Skyschally, A. & Heusch, G. Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch. 469, 159–181 (2017).

    CAS  Google Scholar 

  117. Bøtker, H. E. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375, 727–734 (2010).

    Google Scholar 

  118. Sloth, A. D. et al. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur. Heart J. 35, 168–175 (2014).

    Google Scholar 

  119. Munk, K. et al. Remote ischemic conditioning in patients with myocardial infarction treated with primary angioplasty: impact on left ventricular function assessed by comprehensive echocardiography and gated single-photon emission CT. Circ. Cardiovasc. Imaging 3, 656–662 (2010).

    Google Scholar 

  120. Rentoukas, I. et al. Cardioprotective role of remote ischemic periconditioning in primary percutaneous coronary intervention: enhancement by opioid action. J. Am. Coll. Cardiol. Cardiovasc. Interv. 3, 49–55 (2010).

    Google Scholar 

  121. Crimi, G. et al. Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. J. Am. Coll. Cardiol. Cardiovasc. Interv. 6, 1055–1063 (2013).

    Google Scholar 

  122. Prunier, F. et al. The RIPOST-MI study, assessing remote ischemic perconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Res. Cardiol. 109, 400 (2014).

    Google Scholar 

  123. White, S. K. et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. Cardiovasc. Interv. 8, 178–188 (2015).

    Google Scholar 

  124. Yamanaka, T. et al. Remote ischemic preconditioning reduces contrast-induced acute kidney injury in patients with ST-elevation myocardial infarction: a randomized controlled trial. Int. J. Cardiol. 178, 136–141 (2015).

    Google Scholar 

  125. Yellon, D. M. et al. Remote ischemic conditioning reduces myocardial infarct size in STEMI patients treated by thrombolysis. J. Am. Coll. Cardiol. 65, 2764–2765 (2015).

    Google Scholar 

  126. Liu, Z., Zhao, L., Hong, D. & Gao, J. Remote ischaemic preconditioning reduces myocardial ischaemic reperfusion injury in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Acta Cardiol. 71, 596–603 (2016).

    CAS  Google Scholar 

  127. Verouhis, D. et al. Effect of remote ischemic conditioning on infarct size in patients with anterior ST-elevation myocardial infarction. Am. Heart J. 181, 66–73 (2016).

    Google Scholar 

  128. Elbadawi, A. et al. Impact of remote ischemic postconditioning during primary percutaneous coronary intervention on left ventricular remodeling after anterior wall ST-segment elevation myocardial infarction: a single-center experience. Int. J. Angiol. 26, 241–248 (2017).

    Google Scholar 

  129. Ladejobi, A. et al. Association of remote ischemic peri-conditioning with reduced incidence of clinical heart failure after primary percutaneous coronary intervention. Cardiovasc. Revasc. Med. 18, 105–109 (2017).

    Google Scholar 

  130. Cao, B., Wang, H., Zhang, C., Xia, M. & Yang, X. Remote ischemic postconditioning (RIPC) of the upper arm results in protection from cardiac ischemia–reperfusion injury following primary percutaneous coronary intervention (PCI) for acute ST-segment elevation myocardial infarction (STEMI). Med. Sci. Monit. 24, 1017–1026 (2018).

    CAS  Google Scholar 

  131. Ghaffari, S., Pourafkari, L., Manzouri, S. & Nader, N. D. Effect of remote ischemic postconditioning during thrombolysis in STEMI. Herz 43, 161–168 (2018).

    CAS  Google Scholar 

  132. Cheskes, S. et al. Field implementation of remote ischemic conditioning in ST-elevation myocardial infarction: the FIRST study. Can. J. Cardiol. https://doi.org/10.1016/j.cjca.2019.11.029 (2020).

    Article  PubMed  Google Scholar 

  133. Thourani, V. H. et al. Ischemic preconditioning attenuates postischemic coronary artery endothelial dysfunction in a model of minimally invasive direct coronary artery bypass. J. Thorac. Cardiovasc. Surg. 117, 383–389 (1999).

    CAS  Google Scholar 

  134. Tofukuji, M. et al. Effects of ischemic preconditioning on myocardial perfusion, function, and microvascular regulation. Circulation 98, II-197–II-205 (1998).

    CAS  Google Scholar 

  135. Kurzelewski, M., Czarnowska, E., Maczewski, M. & Beresewicz, A. Effect of ischemic preconditioning on endothelial dysfunction and granulocyte adhesion in isolated guinea-pig hearts subjected to ischemia/reperfusion. J. Physiol. Pharmacol. 50, 617–628 (1999).

    CAS  Google Scholar 

  136. Zhao, J. L., Yang, Y. J., You, S. J., Cui, C. J. & Gao, R. L. Different effects of postconditioning on myocardial no-reflow in the normal and hypercholesterolemic mini-swines. Microvasc. Res. 73, 137–142 (2007).

    Google Scholar 

  137. Skyschally, A., Amanakis, G., Neuhauser, M., Kleinbongard, P. & Heusch, G. Impact of electrical defibrillation on infarct size and no-reflow in pigs subjected to myocardial ischemia–reperfusion without and with ischemic conditioning. Am. J. Physiol. Heart Circ. Physiol. 313, H871–H878 (2017).

    Google Scholar 

  138. Liu, G. S. et al. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84, 350–356 (1991).

    CAS  Google Scholar 

  139. Ytrehus, K., Liu, Y. & Downey, J. M. Preconditioning protects ischemic rabbit heart by protein C activation. Am. J. Physiol. Heart Circ. Physiol. 266, H1145–H1152 (1994).

    CAS  Google Scholar 

  140. Schulz, R., Cohen, M., Behrends, M., Downey, J. M. & Heusch, G. Signal transduction of ischemic preconditioning. Cardiovasc. Res. 52, 181–198 (2001).

    CAS  Google Scholar 

  141. Heusch, G., Boengler, K. & Schulz, R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118, 1915–1919 (2008).

    Google Scholar 

  142. Heusch, G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 116, 674–699 (2015).

    CAS  Google Scholar 

  143. Cohen, M. V. & Downey, J. M. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br. J. Pharmacol. 172, 1913–1932 (2015).

    CAS  Google Scholar 

  144. Schulz, R., Rose, J., Post, H. & Heusch, G. Involvement of endogenous adenosine in ischaemic preconditioning in swine. Pflügers Arch. 430, 273–282 (1995).

    CAS  Google Scholar 

  145. Goto, M. et al. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ. Res. 77, 611–621 (1995).

    CAS  Google Scholar 

  146. Schulz, R., Post, H., Vahlhaus, C. & Heusch, G. Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation 98, 1022–1029 (1998).

    CAS  Google Scholar 

  147. Cohen, M. V., Yang, X.-M., Liu, G. S., Heusch, G. & Downey, J. M. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial KATP channels. Circ. Res. 89, 273–278 (2001).

    CAS  Google Scholar 

  148. Schultz, J. E. L., Rose, E., Yao, Z. & Gross, G. J. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am. J. Physiol. 268, H2157–H2161 (1995).

    CAS  Google Scholar 

  149. Schulz, R., Gres, P. & Heusch, G. Role of endogenous opioids in ischemic preconditioning but not in short-term hibernation in pigs. Am. J. Physiol. Heart Circ. Physiol. 280, H2175–H2181 (2001).

    CAS  Google Scholar 

  150. Smith, R. M., Suleman, N., McCarthy, J. & Sack, M. N. Classic ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNFα gene. Cardiovasc. Res. 55, 553–560 (2002).

    CAS  Google Scholar 

  151. Dawn, B. et al. Tumor necrosis factor-α does not modulate ischemia/reperfusion injury in naive myocardium but is essential for the development of late preconditioning. J. Mol. Cell Cardiol. 37, 51–61 (2004).

    CAS  Google Scholar 

  152. Skyschally, A. et al. Bidirectional role of tumor necrosis factor-α in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ. Res. 100, 140–146 (2007).

    CAS  Google Scholar 

  153. Gysembergh, A. et al. Stretch-induced protection shares a common mechanism with ischemic preconditioning in rabbit heart. Am. J. Physiol. Heart Circ. Physiol. 274, H955–H964 (1998).

    CAS  Google Scholar 

  154. Cohen, M. V. & Downey, J. M. Adenosine: trigger and mediator of cardioprotection. Basic Res. Cardiol. 103, 203–215 (2008).

    CAS  Google Scholar 

  155. Schulz, R., Kelm, M. & Heusch, G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc. Res. 61, 402–413 (2004).

    CAS  Google Scholar 

  156. Rossello, X. & Yellon, D. M. The RISK pathway and beyond. Basic Res. Cardiol. 113, 2 (2017).

    Google Scholar 

  157. Hadebe, N., Cour, M. & Lecour, S. The SAFE pathway for cardioprotection: is this a promising target? Basic Res. Cardiol. 113, 9 (2018).

    Google Scholar 

  158. Simkhovich, B. Z., Przyklenk, K. & Kloner, R. A. Role of protein kinase C in ischemic “conditioning”: from first evidence to current perspectives. J. Cardiovasc. Pharmacol. Ther. 18, 525–532 (2013).

    CAS  Google Scholar 

  159. Costa, A. D. T. et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ. Res. 97, 329–336 (2005).

    CAS  Google Scholar 

  160. Inserte, J. et al. cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. J. Mol. Cell Cardiol. 50, 903–909 (2011).

    CAS  Google Scholar 

  161. Inserte, J. et al. Delayed phospholamban phosphorylation in post-conditioned heart favours Ca2+ normalization and contributes to protection. Cardiovasc. Res. 103, 542–553 (2014).

    CAS  Google Scholar 

  162. Juhaszova, M. et al. Role of glycogen synthase kinase-3beta in cardioprotection. Circ. Res. 104, 1240–1252 (2009).

    CAS  Google Scholar 

  163. Gomez, L., Paillard, M., Thibault, H., Derumeaux, G. & Ovize, M. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117, 2761–2768 (2008).

    CAS  Google Scholar 

  164. Nishino, Y. et al. Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ. Res. 103, 307–314 (2008).

    CAS  Google Scholar 

  165. Nikolaou, P. E. et al. Investigating and re-evaluating the role of glycogen synthase kinase 3 beta kinase as a molecular target for cardioprotection by using novel pharmacological inhibitors. Cardiovasc. Res. 115, 1228–1243 (2019).

    CAS  Google Scholar 

  166. Boengler, K., Lochnit, G. & Schulz, R. Mitochondria “THE” target of myocardial conditioning. Am. J. Physiol. Heart Circ. Physiol. 315, H1215–H1231 (2018).

    CAS  Google Scholar 

  167. Heusch, G., Boengler, K. & Schulz, R. Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res. Cardiol. 105, 151–154 (2010).

    Google Scholar 

  168. Hausenloy, D., Wynne, A., Duchen, M. & Yellon, D. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109, 1714–1717 (2004).

    CAS  Google Scholar 

  169. Liu, Y., Sato, T., O’Rourke, B. & Marban, E. Mitochondrial ATP-dependent potassium channels. Novel effectors of cardioprotection? Circulation 97, 2463–2469 (1998).

    CAS  Google Scholar 

  170. Boengler, K. et al. Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc. Res. 67, 234–244 (2005).

    CAS  Google Scholar 

  171. Boengler, K., Ungefug, E., Heusch, G., Leybaert, L. & Schulz, R. Connexin 43 impacts on mitochondrial potassium uptake. Front. Pharmacol. 4, 73 (2013).

    CAS  Google Scholar 

  172. Heinzel, F. R. et al. Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ. Res. 97, 583–586 (2005).

    CAS  Google Scholar 

  173. Pain, T. et al. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ. Res. 87, 460–466 (2000).

    CAS  Google Scholar 

  174. Wegrzyn, J. et al. Function of mitochondrial Stat3 in cellular respiration. Science 323, 793–797 (2009).

    CAS  Google Scholar 

  175. Heusch, G., Musiolik, J., Gedik, N. & Skyschally, A. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ. Res. 109, 1302–1308 (2011).

    CAS  Google Scholar 

  176. Heusch, G. et al. STAT5 activation and cardioprotection by remote ischemic preconditioning in humans. Circ. Res. 110, 111–115 (2012).

    CAS  Google Scholar 

  177. Kohr, M. J. et al. Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ. Res. 108, 418–426 (2011).

    CAS  Google Scholar 

  178. Hernando, V. et al. Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J. Mol. Cell Cardiol. 49, 271–279 (2010).

    CAS  Google Scholar 

  179. Xuan, Y.-T., Guo, Y., Han, H., Zhu, Y. & Bolli, R. An essential role of the JAK–STAT pathway in ischemic preconditioning. Proc. Natl Acad. Sci. USA 98, 9050–9055 (2001).

    CAS  Google Scholar 

  180. Basalay, M. V., Davidson, S. M., Gourine, A. V. & Yellon, D. M. Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res. Cardiol. 113, 25 (2018).

    Google Scholar 

  181. Steensrud, T. et al. Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am. J. Physiol. Heart Circ. Physiol. 299, H1598–H1603 (2010).

    CAS  Google Scholar 

  182. Merlocco, A. C. et al. Transcutaneous electrical nerve stimulation as a novel method of remote preconditioning: in vitro validation in an animal model and first human observations. Basic Res. Cardiol. 109, 406 (2014).

    Google Scholar 

  183. Skyschally, A. et al. Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by reperfusion injury salvage kinase and survival activating factor enhancement pathways. Circ. Res. 117, 279–288 (2015).

    CAS  Google Scholar 

  184. Gedik, N. et al. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci. Rep. 7, 12660 (2017).

    Google Scholar 

  185. Maciel, L., Oliveira, D. F., Verissimo da Costa, G. C., Bisch, P. M. & Nascimento, J. H. M. Cardioprotection by transfer of coronary effluent from ischemic preconditioned rat hearts: identification of cardioprotective humoral factors. Basic Res. Cardiol. 112, 52 (2016).

    Google Scholar 

  186. Lieder, H. R. et al. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res. 123, 1152–1163 (2018).

    CAS  Google Scholar 

  187. Rohailla, S. et al. Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS ONE 9, e111291 (2014).

    Google Scholar 

  188. Kleinbongard, P. & Heusch, G. Extracellular signalling molecules in the ischaemic/reperfused heart — druggable and translatable for cardioprotection? Br. J. Pharmacol. 172, 2010–2025 (2015).

    CAS  Google Scholar 

  189. Gersh, B. J., Stone, G. W., White, H. D. & Holmes, D. R. Jr. Pharmacological facilitation of primary percutaneous coronary intervention for acute myocardial infarction: is the slope of the curve the shape of the future? JAMA 293, 979–986 (2005).

    CAS  Google Scholar 

  190. Homeister, J. W., Hoff, P. T., Fletcher, D. D. & Lucchesi, B. R. Combined adenosine and lidocaine administration limits myocardial reperfusion injury. Circulation 82, 595–608 (1990).

    CAS  Google Scholar 

  191. Vander Heide, R. S. & Reimer, K. A. Effect of adenosine therapy at reperfusion and myocardial infarct size in dogs. Cardiovasc. Res. 31, 711–718 (1996).

    Google Scholar 

  192. Baxter, G. F. et al. Adenosine A1 agonist at reperfusion trial (AART): results of a three-center, blinded, randomized, controlled experimental infarct study. Cardiovasc. Drugs Ther. 14, 607–614 (2000).

    CAS  Google Scholar 

  193. Bulluck, H., Sirker, A., Loke, Y. K., Garcia-Dorado, D. & Hausenloy, D. J. Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: an updated meta-analysis of randomized controlled trials. Int. J. Cardiol. 202, 228–237 (2016).

    Google Scholar 

  194. Duranski, M. R. et al. Cytoprotective effects of nitrite during in vivo ischemia–reperfusion of the heart and liver. J. Clin. Invest. 115, 1232–1240 (2005).

    CAS  Google Scholar 

  195. Lefer, D. et al. Sodium nitrite fails to limit myocardial infarct size: results from the CAESAR cardioprotection consortium [abstract LB645]. FASEB J. 28 (2014).

  196. Siddiqi, N. et al. Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI). Eur. Heart J. 35, 1255–1262 (2014).

    CAS  Google Scholar 

  197. Jones, D. A. et al. Randomized phase 2 trial of intracoronary nitrite during acute myocardial infarction. Circ. Res. 116, 437–447 (2015).

    CAS  Google Scholar 

  198. Mayr, M. et al. Loss of PKC-δ alters cardiac metabolism. Am. J. Physiol. Heart Circ. Physiol. 287, H937–H945 (2004).

    CAS  Google Scholar 

  199. Chen, L. et al. Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC. Proc. Natl Acad. Sci. USA 98, 11114–11119 (2001).

    CAS  Google Scholar 

  200. Fryer, R. M. et al. PKC-δ inhibition does not block preconditioning-induced preservation in mitochondrial ATP synthesis and infarct size reduction in rats. Basic Res. Cardiol. 97, 47–54 (2002).

    CAS  Google Scholar 

  201. Lincoff, A. M. et al. Inhibition of delta-protein kinase C by delcasertib as an adjunct to primary percutaneous coronary intervention for acute anterior ST-segment elevation myocardial infarction: results of the PROTECTION AMI randomized controlled trial. Eur. Heart J. 35, 2516–2523 (2014).

    Google Scholar 

  202. Argaud, L. et al. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J. Mol. Cell Cardiol. 38, 367–374 (2005).

    CAS  Google Scholar 

  203. Boengler, K., Hilfiker-Kleiner, D., Heusch, G. & Schulz, R. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res. Cardiol. 105, 771–785 (2010).

    CAS  Google Scholar 

  204. Skyschally, A., Schulz, R. & Heusch, G. Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc. Drugs Ther. 24, 85–87 (2010).

    Google Scholar 

  205. Lie, R. H. et al. Post-conditioning with cyclosporine A fails to reduce the infarct size in an in vivo porcine model. Acta Anaesthesiol. Scand. 54, 804–813 (2010).

    CAS  Google Scholar 

  206. Karlsson, L. O., Bergh, N. & Grip, L. Cyclosporine A, 2.5mg/kg, does not reduce myocardial infarct size in a porcine model of ischemia and reperfusion. J. Cardiovasc. Pharmacol. Ther. 17, 159–163 (2012).

    CAS  Google Scholar 

  207. Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481 (2008).

    CAS  Google Scholar 

  208. Ottani, F. et al. Cyclosporine A in reperfused myocardial infarction. The multicenter, controlled, open-label CYCLE trial. J. Am. Coll. Cardiol. 67, 365–374 (2016).

    CAS  Google Scholar 

  209. Botker, H. E., Cabrera-Fuentes, H. A., Ruiz-Meana, M., Heusch, G. & Ovize, M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J. Cell Mol. Med. 24, 2717–2729 (2020).

    Google Scholar 

  210. Ibanez, B. et al. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 115, 2909–2916 (2007).

    CAS  Google Scholar 

  211. Ibanez, B. et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) trial. Circulation 128, 1495–1503 (2013).

    CAS  Google Scholar 

  212. Garcia-Prieto, J. et al. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun. 8, 14780 (2017).

    CAS  Google Scholar 

  213. Roolvink, V. et al. Early administration of intravenous beta blockers in patients with ST-elevation myocardial infarction before primary PCI. J. Am. Coll. Cardiol. 67, 2705–2715 (2016).

    CAS  Google Scholar 

  214. Timmers, L. et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J. Am. Coll. Cardiol. 53, 501–510 (2009).

    CAS  Google Scholar 

  215. Alburquerque-Bejar, J. J. et al. Combination therapy with remote ischaemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovasc. Res. 107, 246–254 (2015).

    Google Scholar 

  216. Lonborg, J. et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur. Heart J. 33, 1491–1499 (2012).

    CAS  Google Scholar 

  217. Kyhl, K. et al. A post hoc analysis of long-term prognosis after exenatide treatment in patients with ST-segment elevation myocardial infarction. EuroIntervention 12, 449–455 (2016).

    Google Scholar 

  218. Dominguez-Rodriguez, A. et al. Effect of intravenous and intracoronary melatonin as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: results of the melatonin adjunct in the acute myocardial infarction treated with angioplasty trial. J. Pineal Res. 62, e12374 (2017).

    Google Scholar 

  219. Hausenloy, D. J. et al. Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply. Cardiovasc. Res. 113, 1418–1419 (2017).

    Google Scholar 

  220. Galaup, A. et al. Protection against myocardial infarction and no-reflow through preservation of vascular integrity by angiopoietin-like 4. Circulation 125, 140–149 (2012).

    CAS  Google Scholar 

  221. Bouleti, C. et al. Angiopoietin-like 4 serum levels on admission for acute myocardial infarction are associated with no-reflow. Int. J. Cardiol. 187, 511–516 (2015).

    Google Scholar 

  222. Do Carmo, H., Arjun, S., Petrucci, O., Yellon, D. M. & Davidson, S. M. The caspase 1 inhibitor VX-765 protects the isolated rat heart via the RISK pathway. Cardiovasc. Drugs Ther. 32, 165–168 (2018).

    Google Scholar 

  223. Vicencio, J. M. et al. Plasma exosomes protect the myocardium from ischemia–reperfusion injury. J. Am. Coll. Cardiol. 65, 1525–1536 (2015).

    CAS  Google Scholar 

  224. Davidson, S. M. et al. Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovasc. Res. 115, 1156–1166 (2019).

    CAS  Google Scholar 

  225. Duncker, D. J. et al. Effect of temperature on myocardial infarction in swine. Am. J. Physiol. 270, H1189–H1199 (1996).

    CAS  Google Scholar 

  226. Gotberg, M. et al. Optimal timing of hypothermia in relation to myocardial reperfusion. Basic Res. Cardiol. 106, 697–708 (2011).

    Google Scholar 

  227. Yang, X. et al. Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity. Basic Res. Cardiol. 106, 421–430 (2011).

    CAS  Google Scholar 

  228. Dai, W., Hale, S. & Kloner, R. A. Delayed therapeutic hypothermia protects against the myocardial no-reflow phenomenon independently of myocardial infarct size in a rat ischemia/reperfusion model. Int. J. Cardiol. 236, 400–404 (2017).

    Google Scholar 

  229. Dixon, S. R. et al. Induction of mild systemic hypothermia with endovascular cooling during primary percutaneous coronary intervention for acute myocardial infarction. J. Am. Coll. Cardiol. 40, 1928–1934 (2002).

    Google Scholar 

  230. Erlinge, D. et al. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction (the CHILL-MI trial). J. Am. Coll. Cardiol. 63, 1857–1865 (2014).

    Google Scholar 

  231. Nichol, G. et al. Prospective, multicenter, randomized, controlled pilot trial of peritoneal hypothermia in patients with ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Interv. 8, e001965 (2015).

    Google Scholar 

  232. Shinlapawittayatorn, K. et al. Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia–reperfusion injury. Heart Rhythm 10, 1700–1707 (2013).

    Google Scholar 

  233. Uitterdijk, A. et al. Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow. Basic Res. Cardiol. 110, 508 (2015).

    Google Scholar 

  234. Yu, L. et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc. Interv. 10, 1511–1520 (2017).

    Google Scholar 

  235. Lindsey, M. L. et al. Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Physiol. Heart Circ. Physiol. 314, H812–H838 (2018).

    CAS  Google Scholar 

  236. Lecour, S. et al. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc. Res. 104, 399–411 (2014).

    CAS  Google Scholar 

  237. Hausenloy, D. J. et al. Novel targets and future strategies for acute cardioprotection: position paper of the European Society of Cardiology working group on cellular biology of the heart. Cardiovasc. Res. 113, 564–585 (2017).

    CAS  Google Scholar 

  238. Jones, S. P. et al. The NHLBI-sponsored consortium for preclinical assessment of cardioprotective therapies (CAESAR): a new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ. Res. 116, 572–586 (2015).

    CAS  Google Scholar 

  239. Rossello, X. et al. CIBER-CLAP (CIBERCV Cardioprotection Large Animal Platform): a multicenter preclinical network for testing reproducibility in cardiovascular interventions. Sci. Rep. 9, 20290 (2019).

    CAS  Google Scholar 

  240. Heusch, G., Skyschally, A. & Schulz, R. The in-situ pig heart with regional ischemia/reperfusion — ready for translation. J. Mol. Cell Cardiol. 50, 951–963 (2011).

    CAS  Google Scholar 

  241. Heusch, G. Cardioprotection research must leave its comfort zone. Eur. Heart J. 39, 3393–3395 (2018).

    Google Scholar 

  242. Ferdinandy, P., Hausenloy, D. J., Heusch, G., Baxter, G. F. & Schulz, R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol. Rev. 66, 1142–1174 (2014).

    CAS  Google Scholar 

  243. Kleinbongard, P., Botker, H. E., Ovize, M., Hausenloy, D. J. & Heusch, G. Co-morbidities and co-medications as confounders of cardioprotection — does it matter in the clinical setting? Br. J. Pharmacol. https://doi.org/10.1111/bph.14839 (2019).

    Article  Google Scholar 

  244. Cohen, M. V. & Downey, J. M. The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Res. Cardiol. 112, 64 (2017).

    Google Scholar 

  245. Heusch, G. Reduction of infarct size by ischaemic post-conditioning in humans: fact or fiction? Eur. Heart J. 33, 13–15 (2012).

    Google Scholar 

  246. Heusch, G. & Gersh, B. J. Is cardioprotection salvageable? Circulation 141, 415–417 (2020).

    Google Scholar 

  247. Hausenloy, D. J. et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomized controlled trial. Lancet 370, 575–579 (2007).

    Google Scholar 

  248. Thielmann, M. et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382, 597–604 (2013).

    Google Scholar 

  249. Hausenloy, D. J. et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N. Engl. J. Med. 373, 1408–1417 (2015).

    CAS  Google Scholar 

  250. Meybohm, P. et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med. 373, 1397–1407 (2015).

    CAS  Google Scholar 

  251. Kottenberg, E. et al. Protection by remote ischaemic preconditioning during coronary artery bypass grafting with isoflurane but not with propofol anesthesia — a clinical trial. Acta Anaesthesiol. Scand. 56, 30–38 (2012).

    CAS  Google Scholar 

  252. Kottenberg, E. et al. Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 147, 376–382 (2014).

    CAS  Google Scholar 

  253. Andreadou, I. et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc. Res. 115, 1117–1130 (2019).

    CAS  Google Scholar 

  254. Hausenloy, D. J. et al. Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovasc. Res. 115, 1167–1177 (2019).

    CAS  Google Scholar 

  255. Rossello, X. & Ibanez, B. Infarct size reduction by targeting ischemic injury: back to square one. Circ. Res. 122, 1041–1043 (2018).

    CAS  Google Scholar 

  256. Davidson, S. M. et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 89–99 (2019).

    Google Scholar 

  257. Wei, M. et al. Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ. Res. 108, 1220–1225 (2011).

    CAS  Google Scholar 

  258. Pryds, K. et al. Effect of long-term remote ischemic conditioning on inflammation and cardiac remodeling. Scand. Cardiovasc. J. 53, 183–191 (2019).

    CAS  Google Scholar 

  259. Pryds, K. et al. Effect of long-term remote ischemic conditioning in patients with chronic ischemic heart failure. Basic Res. Cardiol. 112, 67 (2017).

    Google Scholar 

  260. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03155022 (2019).

Download references

Acknowledgements

The author receives support from the German Research Foundation (SFB 1116, B8) and the European Union COST ACTION (CA 16225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Heusch.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks S. Lavandero, A. Lochner, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mitochondrial permeability transition pore

(MPTP). High-conductance channel in the inner mitochondrial membrane that opens in response to increased concentrations of Ca2+ and inorganic phosphate. The molecular identity of the MPTP is not fully clear but seems to be formed from F1/F0 ATP synthase. MPTP opening is modulated by cyclophilin D.

Necrosome

Complex of phosphorylated specific receptor-interacting serine/threonine-protein kinases with phosphorylated mixed-lineage kinase domain-like proteins; formation of this complex indicates the activation of necroptosis.

No-reflow phenomenon

Lack of flow into the coronary microcirculation despite reopening of the previously occluded epicardial coronary artery; a consequence of vascular injury by ischaemia–reperfusion.

Pre-infarction angina

Angina caused by reversible myocardial ischaemia in the hours and days before an acute myocardial infarction with irreversible injury.

Killip class

Grading classification for the haemodynamic consequences of acute myocardial infarction, from I (no signs of heart failure) to IV (cardiogenic shock).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heusch, G. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17, 773–789 (2020). https://doi.org/10.1038/s41569-020-0403-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0403-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing