Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effects of endurance exercise on the heart: panacea or poison?

Abstract

Regular aerobic physical exercise of moderate intensity is undeniably associated with improved health and increased longevity, with some studies suggesting that more is better. Endurance athletes exceed the usual recommendations for exercise by 15-fold to 20-fold. The need to sustain a large cardiac output for prolonged periods is associated with a 10–20% increase in left and right ventricular size and a substantial increase in left ventricular mass. A large proportion of endurance athletes have raised levels of cardiac biomarkers (troponins and B-type natriuretic peptide) and cardiac dysfunction for 24–48 h after events, but what is the relevance of these findings? In the longer term, some endurance athletes have an increased prevalence of coronary artery disease, myocardial fibrosis and arrhythmias. The inherent association between these ‘maladaptations’ and sudden cardiac death in the general population raises the question of whether endurance exercise could be detrimental for some individuals. However, despite speculation that these abnormalities confer an increased risk of future adverse events, elite endurance athletes have an increased life expectancy compared with the general population.

Key points

  • Regular, moderate, aerobic physical exercise reduces cardiovascular and all-cause morbidity and mortality.

  • Endurance exercise imposes huge demands on the cardiovascular system and, therefore, endurance athletes develop profound adaptations to exercise.

  • Sinus bradycardia, large QRS voltages, modest increases in left and right ventricular cavity size and high peak oxygen consumption are well-recognized features of an endurance athlete’s heart.

  • Some lifelong endurance athletes have an increased prevalence of high coronary artery calcium scores, myocardial fibrosis, right ventricular dysfunction, atrial fibrillation and sinus node disease compared with healthy non-athletes, with unknown consequences.

  • Long-term outcome data and information from studies identifying the concurrent factors that predispose healthy endurance athletes to developing these abnormalities are needed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The cardiovascular benefits of regular, moderate physical exercise.
Fig. 2: Typical electrocardiographic features of endurance athletes.
Fig. 3: Physiological and pathological adaptations to endurance exercise.
Fig. 4: Proposed aetiology of myocardial fibrosis in endurance athletes.

References

  1. Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, I.-M. Physical activity and cancer prevention — data from epidemiologic studies. Med. Sci. Sports Exerc. 35, 1823–1827 (2003).

    Article  PubMed  Google Scholar 

  3. O’Keefe, J. H. et al. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin. Proc. 87, 587–595 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  4. Rao, P., Hutter, A. M. & Baggish, A. L. The limits of cardiac performance: can too much exercise damage the heart? Am. J. Med. 131, 1279–1284 (2018).

    Article  PubMed  Google Scholar 

  5. Levine, B. D. Can intensive exercise harm the heart? The benefits of competitive endurance training for cardiovascular structure and function. Circulation 130, 987–991 (2014).

    Article  PubMed  Google Scholar 

  6. Eijsvogels, T. M. H., Fernandez, A. B. & Thompson, P. D. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiol. Rev. 96, 99–125 (2016).

    Article  PubMed  Google Scholar 

  7. Morris, J. N., Heady, J. A., Raffle, P. A., Roberts, C. G. & Parks, J. W. Coronary heart-disease and physical activity of work. Lancet 265, 1111–1120 (1953).

    Article  Google Scholar 

  8. Pedisic, Z. et al. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. Br. J. Sports Med. https://doi.org/10.1136/bjsports-2018-100493 (2019).

    Article  PubMed  Google Scholar 

  9. Nocon, M. et al. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur. J. Cardiovasc. Prev. Rehabil. 15, 239–246 (2008).

    Article  PubMed  Google Scholar 

  10. Ekelund, U. et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ 366, l4570 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wen, C. P. et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378, 1244–1253 (2011).

    Article  PubMed  Google Scholar 

  12. Williams, C. J. et al. Genes to predict VO2max trainability: a systematic review. BMC Genomics 18, 831 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Skinner, J. S. et al. Age, sex, race, initial fitness, and response to training: the HERITAGE Family Study. J. Appl. Physiol. 90, 1770–1776 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Roberts, M. A., O’Dea, J., Boyce, A. & Mannix, E. T. Fitness levels of firefighter recruits before and after a supervised exercise training program. J. Strength. Cond. Res. 16, 271–277 (2002).

    PubMed  Google Scholar 

  15. Mandsager, K. et al. Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA Netw. Open 1, e183605 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Tanasescu, M. et al. Exercise type and intensity in relation to coronary heart disease in men. JAMA 288, 1994–2000 (2002).

    Article  PubMed  Google Scholar 

  17. Mora, S., Cook, N., Buring, J. E., Ridker, P. M. & Lee, I.-M. Physical activity and reduced risk of cardiovascular events. Circulation 116, 2110–2118 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kokkinos, P. et al. Exercise capacity and mortality in older men: a 20-year follow-up study. Circulation 122, 790–797 (2010).

    Article  PubMed  Google Scholar 

  19. Myers, J. et al. Fitness versus physical activity patterns in predicting mortality in men. Am. J. Med. 117, 912–918 (2004).

    Article  PubMed  Google Scholar 

  20. Kodama, S. et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301, 2024–2035 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Berry, J. D. et al. Physical fitness and risk for heart failure and coronary artery disease. Circ. Heart Fail. 6, 627–634 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Pandey, A. et al. Changes in mid-life fitness predicts heart failure risk at a later age independent of interval development of cardiac and noncardiac risk factors: the Cooper Center longitudinal study. Am. Heart J. 169, 290–297.e1 (2015).

    Article  PubMed  Google Scholar 

  23. Howden, E. J. et al. Reversing the cardiac effects of sedentary aging in middle age — a randomized controlled trial: implications for heart failure prevention. Circulation 137, 1549–1560 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. ExTraMATCH Collaborative. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 328, 189 (2004).

    Article  PubMed Central  Google Scholar 

  25. Lavie, C. J., Berra, K. & Arena, R. Formal cardiac rehabilitation and exercise training programs in heart failure: evidence for substantial clinical benefits. J. Cardiopulm. Rehabil. Prev. 33, 209–211 (2013).

    Article  PubMed  Google Scholar 

  26. Bhuva, A. N. et al. Training for a first-time marathon reverses age-related aortic stiffening. J. Am. Coll. Cardiol. 75, 60 (2020).

    Article  PubMed  Google Scholar 

  27. World Health Organization. Global Recommendations on Physical Activity for Health https://www.who.int/dietphysicalactivity/factsheet_recommendations/en/ (WHO, 2010).

  28. Arem, H. et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 175, 959–967 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kyu, H. H. et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease study 2013. BMJ 354, i3857 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  30. Schnohr, P., O’Keefe, J. H., Marott, J. L., Lange, P. & Jensen, G. B. Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J. Am. Coll. Cardiol. 65, 411–419 (2015).

    Article  PubMed  Google Scholar 

  31. Lee, D.-C. et al. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol. 64, 472–481 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  32. Lee, D.-C., Lavie, C. J., Sui, X. & Blair, S. N. Running and mortality: is more actually worse? Mayo Clin. Proc. 91, 534–536 (2016).

    Article  PubMed  Google Scholar 

  33. Maron, B. J., Poliac, L. C. & Roberts, W. O. Risk for sudden cardiac death associated with marathon running. J. Am. Coll. Cardiol. 28, 428–431 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Harris, K. M., Henry, J. T., Rohman, E., Haas, T. S. & Maron, B. J. Sudden death during the triathlon. JAMA 303, 1255–1257 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, J. H. et al. Cardiac arrest during long-distance running races. N. Engl. J. Med. 366, 130–140 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Finocchiaro, G. et al. Etiology of sudden death in sports: insights from a United Kingdom regional registry. J. Am. Coll. Cardiol. 67, 2108–2115 (2016).

    Article  PubMed  Google Scholar 

  37. Maron, B. J., Doerer, J. J., Haas, T. S., Tierney, D. M. & Mueller, F. O. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation 119, 1085–1092 (2009).

    Article  PubMed  Google Scholar 

  38. Corrado, D., Basso, C., Schiavon, M. & Thiene, G. Does sports activity enhance the risk of sudden cardiac death? J. Cardiovasc. Med. 7, 228–233 (2006).

    Article  Google Scholar 

  39. Maron, B. J. et al. Sudden death in young competitive athletes: clinical, demographic, and pathological profiles. JAMA 276, 199–204 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Harmon, K. G., Asif, I. M., Klossner, D. & Drezner, J. A. Incidence of sudden cardiac death in National Collegiate Athletic Association athletes. Circulation 123, 1594–1600 (2011).

    Article  PubMed  Google Scholar 

  41. Eckart, R. E. et al. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J. Am. Coll. Cardiol. 58, 1254–1261 (2011).

    Article  PubMed  Google Scholar 

  42. Marijon, E. et al. Sudden cardiac arrest during sports activity in middle age. Circulation 131, 1384–1391 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  43. Marijon, E. et al. Sports-related sudden death in the general population. Circulation 124, 672–681 (2011).

    Article  PubMed  Google Scholar 

  44. Chugh, S. S. & Weiss, J. B. Sudden cardiac death in the older athlete. J. Am. Coll. Cardiol. 65, 493–502 (2015).

    Article  PubMed  Google Scholar 

  45. Siscovick, D. S., Weiss, N. S., Fletcher, R. H. & Lasky, T. The incidence of primary cardiac arrest during vigorous exercise. N. Engl. J. Med. 311, 874–877 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. Waller, B. F. & Roberts, W. C. Sudden death while running in conditioned runners aged 40 years or over. Am. J. Cardiol. 45, 1292–1300 (1980).

    Article  CAS  PubMed  Google Scholar 

  47. Mittleman, M. A. et al. Triggering of acute myocardial infarction by heavy physical exertion — protection against triggering by regular exertion. N. Engl. J. Med. 329, 1677–1683 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Albert, C. M. et al. Triggering of sudden death from cardiac causes by vigorous exertion. N. Engl. J. Med. 343, 1355–1361 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Sharma, S. et al. International recommendations for electrocardiographic interpretation in athletes. J. Am. Coll. Cardiol. 69, 1057–1075 (2017).

    Article  PubMed  Google Scholar 

  50. Maron, B. J. Structural features of the athlete heart as defined by echocardiography. J. Am. Coll. Cardiol. 7, 190–203 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Pelliccia, A., Culasso, F., Di Paolo, F. M. & Maron, B. J. Physiologic left ventricular cavity dilatation in elite athletes. Ann. Intern. Med. 130, 23–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Pelliccia, A., Maron, B. J., Spataro, A., Proschan, M. A. & Spirito, P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N. Engl. J. Med. 324, 295–301 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Scharhag, J. et al. Athlete’s heart: right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J. Am. Coll. Cardiol. 40, 1856–1863 (2002).

    Article  PubMed  Google Scholar 

  54. Zaidi, A. et al. Physiological right ventricular adaptation in elite athletes of African and Afro-Caribbean origin. Circulation 127, 1783–1792 (2013).

    Article  PubMed  Google Scholar 

  55. Merghani, A. et al. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation 136, 126–137 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Grimsmo, J., Grundvold, I., Maehlum, S. & Arnesen, H. Echocardiographic evaluation of aged male cross country skiers. Scand. J. Med. Sci. Sports 21, 412–419 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part II: the aging heart in health: links to heart disease. Circulation 107, 346–354 (2003).

    Article  PubMed  Google Scholar 

  58. Hollingsworth, K. G., Blamire, A. M., Keavney, B. D. & Macgowan, G. A. Left ventricular torsion, energetics, and diastolic function in normal human aging. Am. J. Physiol. Heart Circ. Physiol. 302, H885–H892 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Oxenham, H. C. et al. Age-related changes in myocardial relaxation using three-dimensional tagged magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 5, 421–430 (2003).

    Article  PubMed  Google Scholar 

  60. Gledhill, N., Cox, D. & Jamnik, R. Endurance athletes’ stroke volume does not plateau: major advantage is diastolic function. Med. Sci. Sports Exerc. 26, 1116–1121 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Hieda, M. et al. Impact of lifelong exercise training dose on ventricular–arterial coupling. Circulation 138, 2638–2647 (2018).

    Article  PubMed  Google Scholar 

  62. Bhella, P. S. et al. Impact of lifelong exercise ‘dose’ on left ventricular compliance and distensibility. J. Am. Coll. Cardiol. 64, 1257–1266 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  63. Chirinos, J. A. The run against arterial aging. J. Am. Coll. Cardiol. 75, 72–75 (2020).

    Article  PubMed  Google Scholar 

  64. Shibata, S. et al. The effect of lifelong exercise frequency on arterial stiffness. J. Physiol. 596, 2783–2795 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Pelliccia, A. et al. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation 105, 944–949 (2002).

    Article  PubMed  Google Scholar 

  66. Benito, B. et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123, 13–22 (2011).

    Article  PubMed  Google Scholar 

  67. Rao, Z., Wang, S., Bunner, W. P., Chang, Y. & Shi, R. Exercise induced right ventricular fibrosis is associated with myocardial damage and inflammation. Korean Circ. J. 48, 1014–1024 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Shave, R. et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J. Am. Coll. Cardiol. 56, 169–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Sharma, S., Papadakis, M. & Whyte, G. Chronic ultra-endurance exercise: implications in arrhythmogenic substrates in previously normal hearts. Heart 96, 1255–1256 (2010).

    Article  PubMed  Google Scholar 

  70. Aengevaeren, V. L. et al. Exercise-induced cardiac troponin I increase and incident mortality and cardiovascular events. Circulation 140, 804–814 (2019).

    Article  PubMed  Google Scholar 

  71. Neilan, T. G. et al. Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur. Heart J. 27, 1079–1084 (2006).

    Article  PubMed  Google Scholar 

  72. La Gerche, A., Connelly, K. A., Mooney, D. J., MacIsaac, A. I. & Prior, D. L. Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart 94, 860–866 (2008).

    Article  PubMed  Google Scholar 

  73. Whyte, G. P. et al. Cardiac fatigue following prolonged endurance exercise of differing distances. Med. Sci. Sports Exerc. 32, 1067–1072 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Middleton, N. et al. Left ventricular function immediately following prolonged exercise: a meta-analysis. Med. Sci. Sports Exerc. 38, 681–687 (2006).

    Article  PubMed  Google Scholar 

  75. Douglas, P. S., O’Toole, M. L. & Woolard, J. Regional wall motion abnormalities after prolonged exercise in the normal left ventricle. Circulation 82, 2108–2114 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Niemelä, K. O., Palatsi, I. J., Ikäheimo, M. J., Takkunen, J. T. & Vuori, J. J. Evidence of impaired left ventricular performance after an uninterrupted competitive 24 hour run. Circulation 70, 350–356 (1984).

    Article  PubMed  Google Scholar 

  77. Utomi, V. et al. The impact of chronic endurance and resistance training upon the right ventricular phenotype in male athletes. Eur. J. Appl. Physiol. 115, 1673–1682 (2015).

    Article  PubMed  Google Scholar 

  78. D’Andrea, A. et al. Range of right heart measurements in top-level athletes: the training impact. Int. J. Cardiol. 164, 48–57 (2013).

    Article  PubMed  Google Scholar 

  79. Dávila-Román, V. G. et al. Transient right but not left ventricular dysfunction after strenuous exercise at high altitude. J. Am. Coll. Cardiol. 30, 468–473 (1997).

    Article  PubMed  Google Scholar 

  80. La Gerche, A. et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur. Heart J. 33, 998–1006 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Neilan, T. G. et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 114, 2325–2333 (2006).

    Article  PubMed  Google Scholar 

  82. Urhausen, A., Scharhag, J., Herrmann, M. & Kindermann, W. Clinical significance of increased cardiac troponins T and I in participants of ultra-endurance events. Am. J. Cardiol. 94, 696–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Leetmaa, T. H., Dam, A., Glintborg, D. & Markenvard, J. D. Myocardial response to a triathlon in male athletes evaluated by Doppler tissue imaging and biochemical parameters. Scand. J. Med. Sci. Sports 18, 698–705 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Mousavi, N. et al. Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am. J. Cardiol. 103, 1467–1472 (2009).

    Article  PubMed  Google Scholar 

  85. O’Hanlon, R. et al. Troponin release following endurance exercise: is inflammation the cause? A cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 12, 38 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  86. Gaudreault, V. et al. Transient myocardial tissue and function changes during a marathon in less fit marathon runners. Can. J. Cardiol. 29, 1269–1276 (2013).

    Article  PubMed  Google Scholar 

  87. La Gerche, A. et al. Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med. Sci. Sports Exerc. 43, 974–981 (2011).

    Article  PubMed  Google Scholar 

  88. Heidbuchel, H. et al. High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur. Heart J. 24, 1473–1480 (2003).

    Article  PubMed  Google Scholar 

  89. Ector, J. et al. Reduced right ventricular ejection fraction in endurance athletes presenting with ventricular arrhythmias: a quantitative angiographic assessment. Eur. Heart J. 28, 345–353 (2007).

    Article  PubMed  Google Scholar 

  90. La Gerche, A. et al. Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin. Heart 96, 1268–1274 (2010).

    Article  PubMed  Google Scholar 

  91. Sawant, A. C. et al. Exercise has a disproportionate role in the pathogenesis of arrhythmogenic right ventricular dysplasia/cardiomyopathy in patients without desmosomal mutations. J. Am. Heart Assoc. 3, e001471 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  92. Bohm, P. et al. Right and left ventricular function and mass in male elite master athletes: a controlled contrast-enhanced cardiovascular magnetic resonance study. Circulation 133, 1927–1935 (2016).

    Article  PubMed  Google Scholar 

  93. Kirchhof, P. et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation 114, 1799–1806 (2006).

    Article  PubMed  Google Scholar 

  94. Cruz, F. M. et al. Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J. Am. Coll. Cardiol. 65, 1438–1450 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Ruwald, A.-C. et al. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 36, 1735–1743 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  96. Saberniak, J. et al. Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members. Eur. J. Heart Fail. 16, 1337–1344 (2014).

    Article  PubMed  Google Scholar 

  97. Pelliccia, A. et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the sport cardiology section of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 40, 19–33 (2019).

    Article  PubMed  Google Scholar 

  98. Lie, Ø. H. et al. Prediction of life-threatening ventricular arrhythmia in patients with arrhythmogenic cardiomyopathy: a primary prevention cohort study. JACC Cardiovasc. Imaging 11, 1377–1386 (2018).

    Article  PubMed  Google Scholar 

  99. Wilson, M. et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J. Appl. Physiol. 110, 1622–1626 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Breuckmann, F. et al. Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology 251, 50–57 (2009).

    Article  PubMed  Google Scholar 

  101. Tahir, E. et al. Myocardial fibrosis in competitive triathletes detected by contrast-enhanced CMR correlates with exercise-induced hypertension and competition history. JACC Cardiovasc. Imaging 11, 1260–1270 (2018).

    Article  PubMed  Google Scholar 

  102. van de Schoor, F. R. et al. Myocardial fibrosis in athletes. Mayo Clin. Proc. 91, 1617–1631 (2016).

    Article  PubMed  Google Scholar 

  103. Friedrich, M. G. et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J. Am. Coll. Cardiol. 53, 1475–1487 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  104. Kwong, R. Y. et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113, 2733–2743 (2006).

    Article  PubMed  Google Scholar 

  105. Zorzi, A. et al. Nonischemic left ventricular scar as a substrate of life-threatening ventricular arrhythmias and sudden cardiac death in competitive athletes. Circ. Arrhythm. Electrophysiol. 9, e004229 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  106. Schnell, F. et al. Subepicardial delayed gadolinium enhancement in asymptomatic athletes: let sleeping dogs lie? Br. J. Sports Med. 50, 111–117 (2016).

    Article  PubMed  Google Scholar 

  107. Mitchell, J. D., Paisley, R., Moon, P., Novak, E. & Villines, T. C. Coronary artery calcium and long-term risk of death, myocardial infarction, and stroke: the Walter Reed Cohort study. JACC Cardiovasc. Imaging 11, 1799–1806 (2018).

    Article  PubMed  Google Scholar 

  108. Bamberg, F. et al. Meta-analysis and systematic review of the long-term predictive value of assessment of coronary atherosclerosis by contrast-enhanced coronary computed tomography angiography. J. Am. Coll. Cardiol. 57, 2426–2436 (2011).

    Article  PubMed  Google Scholar 

  109. Möhlenkamp, S. et al. Quantification of coronary atherosclerosis and inflammation to predict coronary events and all-cause mortality. J. Am. Coll. Cardiol. 57, 1455–1464 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Dores, H. et al. Subclinical coronary artery disease in veteran athletes: is a new preparticipation methodology required? Br. J. Sports Med. 54, 349–353 (2020).

    PubMed  Google Scholar 

  111. Möhlenkamp, S. et al. Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur. Heart J. 29, 1903–1910 (2008).

    Article  PubMed  Google Scholar 

  112. Braber, T. L. et al. Occult coronary artery disease in middle-aged sportsmen with a low cardiovascular risk score: the measuring athlete’s risk of cardiovascular events (MARC) study. Eur. J. Prev. Cardiol. 23, 1677–1684 (2016).

    Article  PubMed  Google Scholar 

  113. Aengevaeren, V. L. et al. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation 136, 138–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Franck, G. et al. Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis. Eur. Heart J. 40, 928–937 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Libby, P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev. 65, 140–146 (2007).

    Article  Google Scholar 

  116. Puri, R. et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J. Am. Coll. Cardiol. 65, 1273–1282 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Henein, M. et al. High dose and long-term statin therapy accelerate coronary artery calcification. Int. J. Cardiol. 184, 581–586 (2015).

    Article  PubMed  Google Scholar 

  118. Andelius, L., Mortensen, M. B., Nørgaard, B. L. & Abdulla, J. Impact of statin therapy on coronary plaque burden and composition assessed by coronary computed tomographic angiography: a systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 19, 850–858 (2018).

    Article  PubMed  Google Scholar 

  119. Lee, S.-E. et al. Effects of statins on coronary atherosclerotic plaques: the PARADIGM study. JACC Cardiovasc. Imaging 11, 1475–1484 (2018).

    Article  PubMed  Google Scholar 

  120. Adamson, P. D. & Newby, D. E. Non-invasive imaging of the coronary arteries. Eur. Heart J. 40, 2444–2454 (2019).

    Article  PubMed  Google Scholar 

  121. Radford, N. B. et al. Cardiorespiratory fitness, coronary artery calcium, and cardiovascular disease events in a cohort of generally healthy middle-age men. Circulation 137, 1888–1895 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. DeFina, L. F. et al. Association of all-cause and cardiovascular mortality with high levels of physical activity and concurrent coronary artery calcification. JAMA Cardiol. 4, 174–181 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  123. Pathak, R. K. et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J. Am. Coll. Cardiol. 66, 985–996 (2015).

    Article  PubMed  Google Scholar 

  124. Elosua, R. et al. Sport practice and the risk of lone atrial fibrillation: a case-control study. Int. J. Cardiol. 108, 332–337 (2006).

    Article  PubMed  Google Scholar 

  125. Mohanty, S. et al. Differential association of exercise intensity with risk of atrial fibrillation in men and women: evidence from a meta-analysis. J. Cardiovasc. Electrophysiol. 27, 1021–1029 (2016).

    Article  PubMed  Google Scholar 

  126. Drca, N., Wolk, A., Jensen-Urstad, M. & Larsson, S. C. Atrial fibrillation is associated with different levels of physical activity levels at different ages in men. Heart 100, 1037–1042 (2014).

    Article  PubMed  Google Scholar 

  127. Li, X., Cui, S., Xuan, D., Xuan, C. & Xu, D. Atrial fibrillation in athletes and general population: a systematic review and meta-analysis. Medicine 97, e13405 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  128. Mont, L. et al. Long-lasting sport practice and lone atrial fibrillation. Eur. Heart J. 23, 477–482 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Baldesberger, S. et al. Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur. Heart J. 29, 71–78 (2008).

    Article  PubMed  Google Scholar 

  130. Andersen, K. et al. Risk of arrhythmias in 52,755 long-distance cross-country skiers: a cohort study. Eur. Heart J. 34, 3624–3631 (2013).

    Article  PubMed  Google Scholar 

  131. Aizer, A. et al. Relation of vigorous exercise to risk of atrial fibrillation. Am. J. Cardiol. 103, 1572–1577 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  132. Guasch, E. et al. Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model. J. Am. Coll. Cardiol. 62, 68–77 (2013).

    Article  PubMed  Google Scholar 

  133. Molina, L. et al. Long-term endurance sport practice increases the incidence of lone atrial fibrillation in men: a follow-up study. Europace 10, 618–623 (2008).

    Article  PubMed  Google Scholar 

  134. Iskandar, A., Mujtaba, M. T. & Thompson, P. D. Left atrium size in elite athletes. JACC Cardiovasc. Imaging 8, 753–762 (2015).

    Article  PubMed  Google Scholar 

  135. Mont, L. et al. Physical activity, height, and left atrial size are independent risk factors for lone atrial fibrillation in middle-aged healthy individuals. Europace 10, 15–20 (2008).

    Article  PubMed  Google Scholar 

  136. Grimsmo, J., Grundvold, I., Maehlum, S. & Arnesen, H. High prevalence of atrial fibrillation in long-term endurance cross-country skiers: echocardiographic findings and possible predictors — a 28–30 years follow-up study. Eur. J. Cardiovasc. Prev. Rehabil. 17, 100–105 (2010).

    Article  PubMed  Google Scholar 

  137. Svedberg, N. et al. Long-term incidence of atrial fibrillation and stroke among cross-country skiers. Circulation 140, 910–920 (2019).

    PubMed  Google Scholar 

  138. Zorzi, A. et al. Burden of ventricular arrhythmias at 12-lead 24-hour ambulatory ECG monitoring in middle-aged endurance athletes versus sedentary controls. Eur. J. Prev. Cardiol. 25, 2003–2011 (2018).

    Article  PubMed  Google Scholar 

  139. Zorzi, A. et al. Ventricular arrhythmias in young competitive athletes: prevalence, determinants, and underlying substrate. J. Am. Heart Assoc. 7, e009171 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Jensen-Urstad, K., Bouvier, F., Saltin, B. & Jensen-Urstad, M. High prevalence of arrhythmias in elderly male athletes with a lifelong history of regular strenuous exercise. Heart 79, 161–164 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Northcote, R. J., Canning, G. P. & Ballantyne, D. Electrocardiographic findings in male veteran endurance athletes. Br. Heart J. 61, 155–160 (1989).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. D’Souza, A., Sharma, S. & Boyett, M. R. CrossTalk opposing view: bradycardia in the trained athlete is attributable to a downregulation of a pacemaker channel in the sinus node. J. Physiol. 593, 1749–1751 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Stein, R., Medeiros, C. M., Rosito, G. A., Zimerman, L. I. & Ribeiro, J. P. Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J. Am. Coll. Cardiol. 39, 1033–1038 (2002).

    Article  PubMed  Google Scholar 

  144. Ruiz, J. R., Morán, M., Arenas, J. & Lucia, A. Strenuous endurance exercise improves life expectancy: it’s in our genes. Br. J. Sports Med. 45, 159–161 (2011).

    Article  PubMed  Google Scholar 

  145. Sarna, S., Sahi, T., Koskenvuo, M. & Kaprio, J. Increased life expectancy of world class male athletes. Med. Sci. Sports Exerc. 25, 237–244 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Clarke, P. M. et al. Survival of the fittest: retrospective cohort study of the longevity of Olympic medallists in the modern era. Br. J. Sports Med. 49, 898–902 (2015).

    Article  PubMed  Google Scholar 

  147. Marijon, E. et al. Mortality of French participants in the Tour de France (1947–2012). Eur. Heart J. 34, 3145–3150 (2013).

    Article  PubMed  Google Scholar 

  148. Farahmand, B. Y. et al. Mortality amongst participants in Vasaloppet: a classical long-distance ski race in Sweden. J. Intern. Med. 253, 276–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Pelliccia, A., Maron, B. J., Culasso, F., Spataro, A. & Caselli, G. Athlete’s heart in women: echocardiographic characterization of highly trained elite female athletes. JAMA 276, 211–215 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Finocchiaro, G. et al. Effect of sex and sporting discipline on LV adaptation to exercise. JACC Cardiovasc. Imaging 10, 965–972 (2017).

    Article  PubMed  Google Scholar 

  151. Colombo, C. S. S. S. & Finocchiaro, G. The female athlete’s heart: facts and fallacies. Curr. Treat. Options Cardiovasc. Med. 20, 101–114 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  152. Phillips, S. A., Mahmoud, A. M., Brown, M. D. & Haus, J. M. Exercise interventions and peripheral arterial function: implications for cardio-metabolic disease. Prog. Cardiovasc. Dis. 57, 521–534 (2015).

    Article  PubMed  Google Scholar 

  153. Androulakis, E. & Swoboda, P. P. The role of cardiovascular magnetic resonance in sports cardiology; current utility and future perspectives. Curr. Treat. Options Cardiovasc. Med. 20, 86 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article and discussed its content. G.P-W. wrote the manuscript, and S.S. reviewed and edited it before submission.

Corresponding author

Correspondence to Sanjay Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks T. Eijsvogels, A. La Gerche and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parry-Williams, G., Sharma, S. The effects of endurance exercise on the heart: panacea or poison?. Nat Rev Cardiol 17, 402–412 (2020). https://doi.org/10.1038/s41569-020-0354-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0354-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing