Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence

Abstract

The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.

Key points

  • Diabetic cardiomyopathy is characterized by adverse structural remodelling (including cardiac hypertrophy and fibrosis), early-onset diastolic dysfunction and late-onset systolic dysfunction.

  • At present, treatment regimens for diabetes-associated cardiovascular disease rely on conventional therapies that focus on optimizing glycaemic control, lowering lipid levels and reducing oxidative stress.

  • Pathophysiological factors that contribute to diabetic cardiomyopathy include metabolic disturbances, insulin resistance, formation and crosslinking of advanced glycation end products, mitochondrial damage, oxidative stress, inflammation and cell death.

  • Several new potential treatment strategies that target myocardial fibrosis, inflammation, oxidative stress and insulin resistance have shown promising results in preclinical studies but require validation in randomized clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of diabetic cardiomyopathy.
Fig. 2: Main signalling pathways that regulate cardiac remodelling in the diabetic heart.
Fig. 3: Pro-inflammatory pathways that regulate the development of diabetic cardiomyopathy.
Fig. 4: Signalling pathways involved in promoting cardiac oxidative stress in type 2 diabetes mellitus.
Fig. 5: Insulin signalling in the heart in normal conditions and in type 2 diabetes mellitus.

Similar content being viewed by others

References

  1. Rubler, S. et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 30, 595–602 (1972).

    CAS  PubMed  Google Scholar 

  2. Kannel, W. B., Hjortland, M. & Castelli, W. P. Role of diabetes in congestive heart failure: the Framingham study. Am. J. Cardiol. 34, 29–34 (1974).

    CAS  PubMed  Google Scholar 

  3. Tarquini, R. et al. Clinical approach to diabetic cardiomyopathy: a review of human studies. Curr. Med. Chem. 25, 1510–1524 (2018).

    CAS  PubMed  Google Scholar 

  4. Bouthoorn, S. et al. The prevalence of left ventricular diastolic dysfunction and heart failure with preserved ejection fraction in men and women with type 2 diabetes: a systematic review and meta-analysis. Diab. Vasc. Dis. Res. 15, 477–493 (2018).

    PubMed  Google Scholar 

  5. Dauriz, M. et al. Prognostic impact of diabetes on long-term survival outcomes in patients with heart failure: a meta-analysis. Diabetes Care 40, 1597–1605 (2017).

    PubMed  Google Scholar 

  6. Dauriz, M. et al. Prognostic impact of diabetes and prediabetes on survival outcomes in patients with chronic heart failure: a post-hoc analysis of the GISSI-HF (Gruppo Italiano per lo Studio della Sopravvivenza nella Insufficienza Cardiaca-Heart Failure) trial. J. Am. Heart Assoc. 6, e005156 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Konduracka, E. et al. Myocardial dysfunction and chronic heart failure in patients with long-lasting type 1 diabetes: a 7-year prospective cohort study. Acta Diabetol. 50, 597–606 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jia, G., Hill, M. A. & Sowers, J. R. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 122, 624–638 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. [No authors listed] Professional Practice Committee: Standards of Medical Care in Diabetes–2018. Diabetes Care 41, S3 (2018).

  10. Zheng, S. L. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: a systematic review and meta-analysis. JAMA 319, 1580–1591 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Scirica, B. M. et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 130, 1579–1588 (2014).

    CAS  PubMed  Google Scholar 

  12. McGuire, D. K. et al. Linagliptin effects on heart failure and related outcomes in individuals with type 2 diabetes mellitus at high cardiovascular and renal risk in CARMELINA. Circulation 139, 351–361 (2019).

    CAS  PubMed  Google Scholar 

  13. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    CAS  PubMed  Google Scholar 

  14. Kato, E. T. et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 139, 2528–2536 (2019).

    CAS  PubMed  Google Scholar 

  15. Furtado, R. H. M. et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation 139, 2516–2527 (2019).

    CAS  PubMed  Google Scholar 

  16. Bethel, M. A. et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 6, 105–113 (2018).

    PubMed  Google Scholar 

  17. Svanstrom, H. et al. Use of liraglutide and risk of major cardiovascular events: a register-based cohort study in Denmark and Sweden. Lancet Diabetes Endocrinol. 7, 106–114 (2019).

    PubMed  Google Scholar 

  18. Bizino, M. B. et al. Effect of liraglutide on cardiac function in patients with type 2 diabetes mellitus: randomized placebo-controlled trial. Cardiovasc. Diabetol. 18, 55 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    CAS  PubMed  Google Scholar 

  20. Riehle, C. & Bauersachs, J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res. Cardiol. 114, 2 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Holscher, M. E., Bode, C. & Bugger, H. Diabetic cardiomyopathy: does the type of diabetes matter? Int. J. Mol. Sci. 17, E2136 (2016).

    PubMed  Google Scholar 

  22. Jia, G., DeMarco, V. G. & Sowers, J. R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol. 12, 144–153 (2016).

    CAS  PubMed  Google Scholar 

  23. Jia, G., Whaley-Connell, A. & Sowers, J. R. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 61, 21–28 (2018).

    CAS  PubMed  Google Scholar 

  24. Bonen, A. et al. Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats. Diabetologia 58, 2381–2391 (2015).

    CAS  PubMed  Google Scholar 

  25. Buchanan, J. et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146, 5341–5349 (2005).

    CAS  PubMed  Google Scholar 

  26. Duncan, J. G. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim. Biophys. Acta 1813, 1351–1359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lebeche, D., Davidoff, A. J. & Hajjar, R. J. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy. Nat. Clin. Pract. Cardiovasc. Med. 5, 715–724 (2008).

    CAS  PubMed  Google Scholar 

  28. Vinik, A. I., Casellini, C., Parson, H. K., Colberg, S. R. & Nevoret, M. L. Cardiac autonomic neuropathy in diabetes: a predictor of cardiometabolic events. Front. Neurosci. 12, 591 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Goldberger, J. J., Arora, R., Buckley, U. & Shivkumar, K. Autonomic nervous system dysfunction: JACC focus seminar. J. Am. Coll. Cardiol. 73, 1189–1206 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Seferovic, P. M. & Paulus, W. J. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur. Heart J. 36, 1718–1727 (2015).

    PubMed  Google Scholar 

  31. Radovits, T. et al. Comparative investigation of the left ventricular pressure-volume relationship in rat models of type 1 and type 2 diabetes mellitus. Am. J. Physiol. Heart Circ. Physiol. 297, H125–H133 (2009).

    CAS  PubMed  Google Scholar 

  32. Shah, S. J. et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134, 73–90 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. van Heerebeek, L. et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117, 43–51 (2008).

    PubMed  Google Scholar 

  34. Vulesevic, B. et al. Methylglyoxal-induced endothelial cell loss and inflammation contribute to the development of diabetic cardiomyopathy. Diabetes 65, 1699–1713 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wan, A. & Rodrigues, B. Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc. Res. 111, 172–183 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brunvand, L., Fugelseth, D., Stensaeth, K. H., Dahl-Jorgensen, K. & Margeirsdottir, H. D. Early reduced myocardial diastolic function in children and adolescents with type 1 diabetes mellitus a population-based study. BMC Cardiovasc. Disord. 16, 103 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Brunvand, L. et al. Advanced glycation end products in children with type 1 diabetes and early reduced diastolic heart function. BMC Cardiovasc. Disord. 17, 133 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Raev, D. C. Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care 17, 633–639 (1994).

    CAS  PubMed  Google Scholar 

  39. Fang, Z. Y. et al. Screening for heart disease in diabetic subjects. Am. Heart J. 149, 349–354 (2005).

    PubMed  Google Scholar 

  40. Fontes-Carvalho, R., Ladeiras-Lopes, R., Bettencourt, P., Leite-Moreira, A. & Azevedo, A. Diastolic dysfunction in the diabetic continuum: association with insulin resistance, metabolic syndrome and type 2 diabetes. Cardiovasc. Diabetol. 14, 4 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Suran, D., Sinkovic, A. & Naji, F. Tissue Doppler imaging is a sensitive echocardiographic technique to detect subclinical systolic and diastolic dysfunction of both ventricles in type 1 diabetes mellitus. BMC Cardiovasc. Disord. 16, 72 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Matyas, C. et al. Comparison of speckle-tracking echocardiography with invasive hemodynamics for the detection of characteristic cardiac dysfunction in type-1 and type-2 diabetic rat models. Cardiovasc. Diabetol. 17, 13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Marwick, T. H., Ritchie, R., Shaw, J. E. & Kaye, D. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 71, 339–351 (2018).

    PubMed  Google Scholar 

  44. Parim, B., Sathibabu Uddandrao, V. V. & Saravanan, G. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail. Rev. 24, 279–299 (2019).

    PubMed  Google Scholar 

  45. Nunes, S., Soares, E., Pereira, F. & Reis, F. The role of inflammation in diabetic cardiomyopathy. Int. J. Infereron Cytokine Mediator Res. 4, 59–73 (2012).

    Google Scholar 

  46. Kenny, H. C. & Abel, E. D. Heart failure in type 2 diabetes mellitus. Circ. Res. 124, 121–141 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hopf, A. E. et al. Diabetes-induced cardiomyocyte passive stiffening is caused by impaired insulin-dependent titin modification and can be modulated by neuregulin-1. Circ. Res. 123, 342–355 (2018).

    CAS  PubMed  Google Scholar 

  48. Al Kury, L. et al. Calcium signaling in the ventricular myocardium of the Goto-Kakizaki type 2 diabetic rat. J. Diabetes Res. 2018, 2974304 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Maack, C. et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur. Heart J. 39, 4243–4254 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mishra, P. K., Givvimani, S., Chavali, V. & Tyagi, S. C. Cardiac matrix: a clue for future therapy. Biochim. Biophys. Acta 1832, 2271–2276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Horn, M. A. Cardiac physiology of aging: extracellular considerations. Compr. Physiol. 5, 1069–1121 (2015).

    PubMed  Google Scholar 

  52. Norton, G. R., Candy, G. & Woodiwiss, A. J. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 93, 1905–1912 (1996).

    CAS  PubMed  Google Scholar 

  53. Berg, T. J. et al. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 22, 1186–1190 (1999).

    CAS  PubMed  Google Scholar 

  54. Choi, S. Y. et al. Long-term exercise training attenuates age-related diastolic dysfunction: association of myocardial collagen cross-linking. J. Korean Med. Sci. 24, 32–39 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Souders, C. A., Bowers, S. L. & Baudino, T. A. Cardiac fibroblast: the renaissance cell. Circ. Res. 105, 1164–1176 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Van Linthout, S. et al. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res. Cardiol. 103, 319–327 (2008).

    PubMed  Google Scholar 

  57. Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    CAS  PubMed  Google Scholar 

  59. Smith, C. L., Baek, S. T., Sung, C. Y. & Tallquist, M. D. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ. Res. 108, e15–e26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Franssen, C. et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 4, 312–324 (2016).

    PubMed  Google Scholar 

  61. Cruz, L. & Ryan, J. J. Nitric oxide signaling in heart failure with preserved ejection fraction. JACC Basic. Transl Sci. 2, 341–343 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Matyas, C. et al. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes. Eur. J. Heart Fail. 19, 326–336 (2017).

    CAS  PubMed  Google Scholar 

  63. Sorop, O. et al. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc. Res. 114, 954–964 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wong, T. C. et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur. Heart J. 35, 657–664 (2014).

    CAS  PubMed  Google Scholar 

  65. Nunoda, S. et al. Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessel. 1, 43–47 (1985).

    CAS  Google Scholar 

  66. Sutherland, C. G. et al. Endomyocardial biopsy pathology in insulin-dependent diabetic patients with abnormal ventricular function. Histopathology 14, 593–602 (1989).

    CAS  PubMed  Google Scholar 

  67. Shimizu, M. et al. Collagen remodelling in myocardia of patients with diabetes. J. Clin. Pathol. 46, 32–36 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fischer, V. W., Barner, H. B. & Larose, L. S. Pathomorphologic aspects of muscular tissue in diabetes mellitus. Hum. Pathol. 15, 1127–1136 (1984).

    CAS  PubMed  Google Scholar 

  69. van Hoeven, K. H. & Factor, S. M. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 82, 848–855 (1990).

    PubMed  Google Scholar 

  70. Dinh, W. et al. Elevated plasma levels of TNF-alpha and interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders. Cardiovasc. Diabetol. 8, 58 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Masters, S. L., Latz, E. & O’Neill, L. A. The inflammasome in atherosclerosis and type 2 diabetes. Sci. Transl Med. 3, 81ps17 (2011).

    PubMed  Google Scholar 

  72. Biernacka, A. et al. Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circ. Heart Fail. 8, 788–798 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bajpai, A. & Tilley, D. G. The role of leukocytes in diabetic cardiomyopathy. Front. Physiol. 9, 1547 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Lin, Y., Tang, Y. & Wang, F. The protective effect of HIF-1alpha in T lymphocytes on cardiac damage in diabetic mice. Ann. Clin. Lab. Sci. 46, 32–43 (2016).

    CAS  PubMed  Google Scholar 

  75. Laroumanie, F. et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 129, 2111–2124 (2014).

    CAS  PubMed  Google Scholar 

  76. Nevers, T. et al. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ. Heart Fail. 8, 776–787 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Abdullah, C. S. & Jin, Z. Q. Targeted deletion of T-cell S1P receptor 1 ameliorates cardiac fibrosis in streptozotocin-induced diabetic mice. FASEB J. 32, 5426–5435 (2018).

    CAS  PubMed  Google Scholar 

  78. Abdullah, C. S., Li, Z., Wang, X. & Jin, Z. Q. Depletion of T lymphocytes ameliorates cardiac fibrosis in streptozotocin-induced diabetic cardiomyopathy. Int. Immunopharmacol. 39, 251–264 (2016).

    CAS  PubMed  Google Scholar 

  79. Frantz, S. et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J. Clin. Invest. 104, 271–280 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Y. et al. Prevention of hyperglycemia-induced myocardial apoptosis by gene silencing of Toll-like receptor-4. J. Transl Med. 8, 133 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dong, B. et al. TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. Am. J. Physiol. Heart Circ. Physiol. 303, H732–H742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tao, A. et al. Cardiomyocyte-fibroblast interaction contributes to diabetic cardiomyopathy in mice: role of HMGB1/TLR4/IL-33 axis. Biochim. Biophys. Acta 1852, 2075–2085 (2015).

    CAS  PubMed  Google Scholar 

  83. Wang, Y. et al. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat. Commun. 8, 13997 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lei, L., Hu, H., Lei, Y. & Feng, J. Leukocytic toll-like receptor 2 knockout protects against diabetes-induced cardiac dysfunction. Biochem. Biophys. Res. Commun. 506, 668–673 (2018).

    CAS  PubMed  Google Scholar 

  85. Hu, N. & Zhang, Y. TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-kappaB/JNK-dependent activation of autophagy. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 2001–2011 (2017).

    CAS  PubMed  Google Scholar 

  86. Wang, S. et al. Ablation of toll-like receptor 4 attenuates aging-induced myocardial remodeling and contractile dysfunction through NCoRI-HDAC1-mediated regulation of autophagy. J. Mol. Cell Cardiol. 119, 40–50 (2018).

    CAS  PubMed  Google Scholar 

  87. Kokkola, R. et al. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand. J. Immunol. 61, 1–9 (2005).

    CAS  PubMed  Google Scholar 

  88. Volz, H. C., Kaya, Z., Katus, H. A. & Andrassy, M. The role of HMGB1/RAGE in inflammatory cardiomyopathy. Semin. Thromb. Hemost. 36, 185–194 (2010).

    CAS  PubMed  Google Scholar 

  89. Volz, H. C. et al. HMGB1: the missing link between diabetes mellitus and heart failure. Basic. Res. Cardiol. 105, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  90. O’Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    CAS  PubMed  Google Scholar 

  91. Youn, J. H., Oh, Y. J., Kim, E. S., Choi, J. E. & Shin, J. S. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-α production in human monocytes. J. Immunol. 180, 5067–5074 (2008).

    CAS  PubMed  Google Scholar 

  92. Youn, J. H. et al. Identification of lipopolysaccharide-binding peptide regions within HMGB1 and their effects on subclinical endotoxemia in a mouse model. Eur. J. Immunol. 41, 2753–2762 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Paudel, Y. N. et al. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: updates on receptor signalling. Eur. J. Pharmacol. 858, 172487 (2019).

    CAS  PubMed  Google Scholar 

  94. Wang, W. K. et al. Inhibition of high-mobility group box 1 improves myocardial fibrosis and dysfunction in diabetic cardiomyopathy. Int. J. Cardiol. 172, 202–212 (2014).

    PubMed  Google Scholar 

  95. Nakamura, M. & Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15, 387–407 (2018).

    CAS  PubMed  Google Scholar 

  96. Gordon, J. W., Shaw, J. A. & Kirshenbaum, L. A. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ. Res. 108, 1122–1132 (2011).

    CAS  PubMed  Google Scholar 

  97. Van Tassell, B. W., Seropian, I. M., Toldo, S., Mezzaroma, E. & Abbate, A. Interleukin-1β induces a reversible cardiomyopathy in the mouse. Inflamm. Res. 62, 637–640 (2013).

    PubMed  Google Scholar 

  98. Zhang, Y. et al. Ablation of interleukin-17 alleviated cardiac interstitial fibrosis and improved cardiac function via inhibiting long non-coding RNA-AK081284 in diabetic mice. J. Mol. Cell Cardiol. 115, 64–72 (2018).

    PubMed  Google Scholar 

  99. Skyschally, A. et al. Bidirectional role of tumor necrosis factor-α in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ. Res. 100, 140–146 (2007).

    CAS  PubMed  Google Scholar 

  100. Yu, X., Kennedy, R. H. & Liu, S. J. JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J. Biol. Chem. 278, 16304–16309 (2003).

    CAS  PubMed  Google Scholar 

  101. Prabhu, S. D. Cytokine-induced modulation of cardiac function. Circ. Res. 95, 1140–1153 (2004).

    CAS  PubMed  Google Scholar 

  102. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou, G. et al. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J. Am. Coll. Cardiol. 52, 655–666 (2008).

    CAS  PubMed  Google Scholar 

  104. Villegas, S., Villarreal, F. J. & Dillmann, W. H. Leukemia inhibitory factor and interleukin-6 downregulate sarcoplasmic reticulum Ca2+ ATPase (SERCA2) in cardiac myocytes. Basic Res. Cardiol. 95, 47–54 (2000).

    CAS  PubMed  Google Scholar 

  105. McTiernan, C. F. et al. Interleukin-1β inhibits phospholamban gene expression in cultured cardiomyocytes. Circ. Res. 81, 493–503 (1997).

    CAS  PubMed  Google Scholar 

  106. Monnerat, G. et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. Nat. Commun. 7, 13344 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, Y. et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways. Sci. Rep. 6, 23010 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Thomas, C. M. et al. Cardiac-specific suppression of NF-κB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am. J. Physiol. Heart Circ. Physiol. 307, H1036–H1045 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. He, Y., Hara, H. & Nunez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Luo, B. et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One 9, e104771 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Luo, B. et al. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc. Drugs Ther. 28, 33–43 (2014).

    CAS  PubMed  Google Scholar 

  112. Snodgrass, R. G. & Brune, B. Regulation and functions of 15-lipoxygenases in human macrophages. Front. Pharmacol. 10, 719 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Suzuki, H. et al. Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes 64, 618–630 (2015).

    CAS  PubMed  Google Scholar 

  114. Kayama, Y. et al. Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J. Exp. Med. 206, 1565–1574 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Vasan, R. S. et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 107, 1486–1491 (2003).

    CAS  PubMed  Google Scholar 

  116. Sciarretta, S. et al. Markers of inflammation and fibrosis are related to cardiovascular damage in hypertensive patients with metabolic syndrome. Am. J. Hypertens. 20, 784–791 (2007).

    CAS  PubMed  Google Scholar 

  117. Suzuki, T. et al. Metabolic syndrome, inflammation, and incident heart failure in the elderly: the Cardiovascular Health Study. Circ. Heart Fail. 1, 242–248 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bahrami, H. et al. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J. Am. Coll. Cardiol. 51, 1775–1783 (2008).

    CAS  PubMed  Google Scholar 

  119. Frati, G. et al. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc. Res. 113, 378–388 (2017).

    CAS  PubMed  Google Scholar 

  120. Cai, L. & Kang, Y. J. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc. Toxicol. 1, 181–193 (2001).

    CAS  PubMed  Google Scholar 

  121. Wilson, A. J. et al. Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart 104, 293–299 (2018).

    CAS  PubMed  Google Scholar 

  122. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).

    CAS  PubMed  Google Scholar 

  123. Cai, L. et al. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 54, 1829–1837 (2005).

    CAS  PubMed  Google Scholar 

  124. Tan, Y. et al. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes 60, 625–633 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 107, 1058–1070 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fukai, T. & Ushio-Fukai, M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15, 1583–1606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ni, R. et al. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free. Radic. Biol. Med. 90, 12–23 (2016).

    CAS  PubMed  Google Scholar 

  128. Shen, X., Zheng, S., Metreveli, N. S. & Epstein, P. N. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55, 798–805 (2006).

    CAS  PubMed  Google Scholar 

  129. Ye, G. et al. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53, 1336–1343 (2004).

    CAS  PubMed  Google Scholar 

  130. Liang, Q. et al. Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes 51, 174–181 (2002).

    CAS  PubMed  Google Scholar 

  131. Cai, L. et al. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 48, 1688–1697 (2006).

    CAS  PubMed  Google Scholar 

  132. He, X., Kan, H., Cai, L. & Ma, Q. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J. Mol. Cell Cardiol. 46, 47–58 (2009).

    CAS  PubMed  Google Scholar 

  133. Xin, Y. et al. Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ss/Fyn pathway. Redox Biol. 15, 405–417 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gu, J. et al. Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy. Diabetes 66, 529–542 (2017).

    CAS  PubMed  Google Scholar 

  135. Soinio, M. et al. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care 30, 523–528 (2007).

    CAS  PubMed  Google Scholar 

  136. Yoshihisa, A. et al. Association of serum zinc level with prognosis in patients with heart failure. J. Card. Fail. 24, 375–383 (2018).

    CAS  PubMed  Google Scholar 

  137. Huang, L. et al. The relationship between serum zinc levels, cardiac markers and the risk of acute myocardial infarction by zinc quartiles. Heart Lung Circ. 27, 66–72 (2018).

    PubMed  Google Scholar 

  138. Salle, A. et al. Zinc deficiency: a frequent and underestimated complication after bariatric surgery. Obes. Surg. 20, 1660–1670 (2010).

    PubMed  Google Scholar 

  139. Mahawar, K. K. et al. Zinc deficiency after gastric bypass for morbid obesity: a systematic review. Obes. Surg. 27, 522–529 (2017).

    PubMed  Google Scholar 

  140. Ripa, S., Ripa, R. & Giustiniani, S. Are failured cardiomyopathies a zinc-deficit related disease? A study on Zn and Cu in patients with chronic failured dilated and hypertrophic cardiomyopathies. Minerva Med. 89, 397–403 (1998).

    CAS  PubMed  Google Scholar 

  141. Frustaci, A. et al. Selenium- and zinc-deficient cardiomyopathy in human intestinal malabsorption: preliminary results of selenium/zinc infusion. Eur. J. Heart Fail. 14, 202–210 (2012).

    CAS  PubMed  Google Scholar 

  142. Cao, J. W., Duan, S. Y., Zhang, H. X., Chen, Y. & Guo, M. Zinc deficiency promoted fibrosis via ROS and TIMP/MMPs in the myocardium of mice. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-019-01902-4 (2019).

  143. Bertrand, L., Horman, S., Beauloye, C. & Vanoverschelde, J. L. Insulin signalling in the heart. Cardiovasc. Res. 79, 238–248 (2008).

    CAS  PubMed  Google Scholar 

  144. Zorzano, A. et al. Regulation of glucose transport, and glucose transporters expression and trafficking in the heart: studies in cardiac myocytes. Am. J. Cardiol. 80, 65A–76A (1997).

    CAS  PubMed  Google Scholar 

  145. Abel, E. D. Glucose transport in the heart. Front. Biosci. 9, 201–215 (2004).

    CAS  PubMed  Google Scholar 

  146. Fischer, Y. et al. Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J. Biol. Chem. 272, 7085–7092 (1997).

    CAS  PubMed  Google Scholar 

  147. Kessler, A., Uphues, I., Ouwens, D. M., Till, M. & Eckel, J. Diversification of cardiac insulin signaling involves the p85α/β subunits of phosphatidylinositol 3-kinase. Am. J. Physiol. Endocrinol. Metab. 280, E65–E74 (2001).

    CAS  PubMed  Google Scholar 

  148. Luiken, J. J. et al. Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51, 3113–3119 (2002).

    CAS  PubMed  Google Scholar 

  149. Luiken, J. J. et al. Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52, 1627–1634 (2003).

    CAS  PubMed  Google Scholar 

  150. Glatz, J. F. C. & Luiken, J. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J. Lipid Res. 59, 1084–1093 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ouwens, D. M. et al. Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 50, 1938–1948 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Angin, Y. et al. CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes. Biochem. J. 448, 43–53 (2012).

    CAS  PubMed  Google Scholar 

  153. Lee, T. W. et al. PPARs modulate cardiac metabolism and mitochondrial function in diabetes. J. Biomed. Sci. 24, 5 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. Finck, B. N. et al. The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109, 121–130 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang, J. et al. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ. Res. 100, 1208–1217 (2007).

    CAS  PubMed  Google Scholar 

  156. Gu, J. et al. Metallothionein preserves Akt2 activity and cardiac function via inhibiting TRB3 in diabetic hearts. Diabetes 67, 507–517 (2018).

    CAS  PubMed  Google Scholar 

  157. Cook, S. A. et al. Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur. Heart J. 31, 100–111 (2010).

    CAS  PubMed  Google Scholar 

  158. Wright, J. J. et al. Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc. Res. 82, 351–360 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ramirez, E. et al. Sitagliptin improved glucose assimilation in detriment of fatty-acid utilization in experimental type-II diabetes: role of GLP-1 isoforms in Glut4 receptor trafficking. Cardiovasc. Diabetol. 17, 12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Wende, A. R. et al. Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological stresses. Am. J. Physiol. Heart Circ. Physiol. 313, H1098–H1108 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. & Birnbaum, M. J. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276, 38349–38352 (2001).

    CAS  PubMed  Google Scholar 

  162. Calera, M. R. et al. Insulin increases the association of Akt-2 with Glut4-containing vesicles. J. Biol. Chem. 273, 7201–7204 (1998).

    CAS  PubMed  Google Scholar 

  163. Dummler, B. et al. Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol. Cell Biol. 26, 8042–8051 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    CAS  PubMed  Google Scholar 

  165. Garofalo, R. S. et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ. J. Clin. Invest. 112, 197–208 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Chen, C. Y., Chen, J., He, L. & Stiles, B. L. PTEN: tumor suppressor and metabolic regulator. Front. Endocrinol. 9, 338 (2018).

    Google Scholar 

  167. Gum, R. J. et al. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes 52, 21–28 (2003).

    CAS  PubMed  Google Scholar 

  168. Du, K., Herzig, S., Kulkarni, R. N. & Montminy, M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–1577 (2003).

    CAS  PubMed  Google Scholar 

  169. Koh, H. J. et al. Tribbles 3 mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Nat. Commun. 4, 1871 (2013).

    PubMed  Google Scholar 

  170. Kurlawalla-Martinez, C. et al. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol. Cell Biol. 25, 2498–2510 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl Acad. Sci. USA 101, 2082–2087 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Wijesekara, N. et al. Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol. Cell Biol. 25, 1135–1145 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Oudit, G. Y. et al. Loss of PTEN attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovasc. Res. 78, 505–514 (2008).

    CAS  PubMed  Google Scholar 

  174. Ruan, H. et al. Inducible and cardiac specific PTEN inactivation protects ischemia/reperfusion injury. J. Mol. Cell Cardiol. 46, 193–200 (2009).

    CAS  PubMed  Google Scholar 

  175. Zhang, Y. et al. Mitochondrial aldehyde dehydrogenase (ALDH2) protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3β and mitochondrial function. BMC Med. 10, 40 (2012).

    PubMed  PubMed Central  Google Scholar 

  176. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    CAS  PubMed  Google Scholar 

  177. Delibegovic, M. et al. Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol. Cell Biol. 27, 7727–7734 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Nguyen, T. D. et al. Increased protein tyrosine phosphatase 1B (PTP1B) activity and cardiac insulin resistance precede mitochondrial and contractile dysfunction in pressure-overloaded hearts. J. Am. Heart Assoc. 7, e008865 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Kandadi, M. R. et al. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: role of AMPK-dependent autophagy. Biochim. Biophys. Acta 1852, 299–309 (2015).

    CAS  PubMed  Google Scholar 

  180. Besnier, M. et al. Enhanced angiogenesis and increased cardiac perfusion after myocardial infarction in protein tyrosine phosphatase 1B-deficient mice. FASEB J. 28, 3351–3361 (2014).

    CAS  PubMed  Google Scholar 

  181. Ti, Y. et al. TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 60, 2963–2974 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Kwon, M. et al. Skeletal muscle tissue Trib3 links obesity with insulin resistance by autophagic degradation of AKT2. Cell Physiol. Biochem. 48, 1543–1555 (2018).

    CAS  PubMed  Google Scholar 

  183. Avery, J. et al. TRB3 function in cardiac endoplasmic reticulum stress. Circ. Res. 106, 1516–1523 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Zammit, S. C. et al. Evaluation and optimization of antifibrotic activity of cinnamoyl anthranilates. Bioorg. Med. Chem. Lett. 19, 7003–7006 (2009).

    CAS  PubMed  Google Scholar 

  185. Zhang, Y. et al. FT011, a new anti-fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy. Eur. J. Heart Fail. 14, 549–562 (2012).

    CAS  PubMed  Google Scholar 

  186. Tan, S. M. et al. FT23, an orally active antifibrotic compound, attenuates structural and functional abnormalities in an experimental model of diabetic cardiomyopathy. Clin. Exp. Pharmacol. Physiol. 39, 650–656 (2012).

    CAS  PubMed  Google Scholar 

  187. Zhang, Y. et al. A new anti-fibrotic drug attenuates cardiac remodeling and systolic dysfunction following experimental myocardial infarction. Int. J. Cardiol. 168, 1174–1185 (2013).

    PubMed  Google Scholar 

  188. Greene, S. J. et al. The cGMP signaling pathway as a therapeutic target in heart failure with preserved ejection fraction. J. Am. Heart Assoc. 2, e000536 (2013).

    PubMed  PubMed Central  Google Scholar 

  189. Lukowski, R., Krieg, T., Rybalkin, S. D., Beavo, J. & Hofmann, F. Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends Pharmacol. Sci. 35, 404–413 (2014).

    CAS  PubMed  Google Scholar 

  190. Derici, M. K., Sadi, G., Cenik, B., Guray, T. & Demirel-Yilmaz, E. Differential expressions and functions of phosphodiesterase enzymes in different regions of the rat heart. Eur. J. Pharmacol. 844, 118–129 (2019).

    CAS  PubMed  Google Scholar 

  191. Shan, X. et al. Differential expression of PDE5 in failing and nonfailing human myocardium. Circ. Heart Fail. 5, 79–86 (2012).

    CAS  PubMed  Google Scholar 

  192. Koka, S., Das, A., Salloum, F. N. & Kukreja, R. C. Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice. Free. Radic. Biol. Med. 60, 80–88 (2013).

    CAS  PubMed  Google Scholar 

  193. Xue, M. et al. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice. Clin. Sci. 133, 1705–1720 (2019).

    CAS  Google Scholar 

  194. Sherwood, O. D. Relaxin’s physiological roles and other diverse actions. Endocr. Rev. 25, 205–234 (2004).

    CAS  PubMed  Google Scholar 

  195. Martin, B., Romero, G. & Salama, G. Cardioprotective actions of relaxin. Mol. Cell Endocrinol. 487, 45–53 (2019).

    CAS  PubMed  Google Scholar 

  196. Samuel, C. S. et al. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145, 4125–4133 (2004).

    CAS  PubMed  Google Scholar 

  197. Mookerjee, I., Unemori, E. N., Du, X. J., Tregear, G. W. & Samuel, C. S. Relaxin modulates fibroblast function, collagen production, and matrix metalloproteinase-2 expression by cardiac fibroblasts. Ann. N. Y. Acad. Sci. 1041, 190–193 (2005).

    CAS  PubMed  Google Scholar 

  198. Sassoli, C. et al. Relaxin prevents cardiac fibroblast-myofibroblast transition via Notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 8, e63896 (2013).

    PubMed  PubMed Central  Google Scholar 

  199. Samuel, C. S. et al. The relaxin gene-knockout mouse: a model of progressive fibrosis. Ann. N. Y. Acad. Sci. 1041, 173–181 (2005).

    CAS  PubMed  Google Scholar 

  200. Zhang, X. et al. Alterations of relaxin and its receptor system components in experimental diabetic cardiomyopathy rats. Cell Tissue Res. 370, 297–304 (2017).

    CAS  PubMed  Google Scholar 

  201. Samuel, C. S., Hewitson, T. D., Zhang, Y. & Kelly, D. J. Relaxin ameliorates fibrosis in experimental diabetic cardiomyopathy. Endocrinology 149, 3286–3293 (2008).

    CAS  PubMed  Google Scholar 

  202. Zhang, X. et al. H3 relaxin protects against myocardial injury in experimental diabetic cardiomyopathy by inhibiting myocardial apoptosis, fibrosis and inflammation. Cell Physiol. Biochem. 43, 1311–1324 (2017).

    CAS  PubMed  Google Scholar 

  203. Wang, P. et al. Relaxin Inhibits cardiac fibrosis in diabetic rats: roles of protein kinase Cδ. Exp. Clin. Endocrinol. Diabetes 126, 298–305 (2018).

    CAS  PubMed  Google Scholar 

  204. Bathgate, R. A. et al. Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Mol. Cell Endocrinol. 280, 30–38 (2008).

    CAS  PubMed  Google Scholar 

  205. Giannetta, E. et al. Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 125, 2323–2333 (2012).

    CAS  PubMed  Google Scholar 

  206. Di Luigi, L. et al. Phosphodiesterase type 5 inhibitor sildenafil decreases the proinflammatory chemokine CXCL10 in human cardiomyocytes and in subjects with diabetic cardiomyopathy. Inflammation 39, 1238–1252 (2016).

    PubMed  Google Scholar 

  207. Giannattasio, S. et al. The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy: in vivo and in vitro evidence. J. Endocrinol. Invest. 42, 715–725 (2019).

    CAS  PubMed  Google Scholar 

  208. Priksz, D. et al. Upregulation of myocardial and vascular phosphodiesterase 9A in a model of atherosclerotic cardiovascular disease. Int J Mol Sci 19, E2882 (2018).

    PubMed  Google Scholar 

  209. Lee, D. I. et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519, 472–476 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Chun, J. & Hartung, H. P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Yin, Z. et al. FTY720 protects cardiac microvessels of diabetes: a critical role of S1P1/3 in diabetic heart disease. PLoS One 7, e42900 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Xu, H., Jin, Y., Ni, H., Hu, S. & Zhang, Q. Sphingosine-1-phosphate receptor agonist, FTY720, restores coronary flow reserve in diabetic rats. Circ. J. 78, 2979–2986 (2014).

    CAS  PubMed  Google Scholar 

  213. Liu, Z. W. et al. Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway. Acta Pharmacol. Sin. 36, 323–333 (2015).

    PubMed  PubMed Central  Google Scholar 

  214. Guo, X. et al. Protective effects of triptolide on TLR4 mediated autoimmune and inflammatory response induced myocardial fibrosis in diabetic cardiomyopathy. J. Ethnopharmacol. 193, 333–344 (2016).

    CAS  PubMed  Google Scholar 

  215. Nunes, K. P., de Oliveira, A. A., Szasz, T., Biancardi, V. C. & Webb, R. C. Blockade of toll-like receptor 4 attenuates erectile dysfunction in diabetic rats. J. Sex. Med. 15, 1235–1245 (2018).

    PubMed  Google Scholar 

  216. Westermann, D. et al. Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic. Res. Cardiol. 102, 500–507 (2007).

    CAS  PubMed  Google Scholar 

  217. Liu, Z. et al. Circulating interleukin-1β promotes endoplasmic reticulum stress-induced myocytes apoptosis in diabetic cardiomyopathy via interleukin-1 receptor-associated kinase-2. Cardiovasc. Diabetol. 14, 125 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Carbone, S. et al. An orally available NLRP3 inflammasome inhibitor prevents western diet-induced cardiac dysfunction in mice. J. Cardiovasc. Pharmacol. 72, 303–307 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. van Hout, G. P. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J. 38, 828–836 (2017).

    PubMed  Google Scholar 

  220. Pavillard, L. E. et al. NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget 8, 99740–99756 (2017).

    PubMed  PubMed Central  Google Scholar 

  221. Zhang, C. et al. A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes Metab. Syndr. Obes. 12, 1297–1309 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Liang, W., Huang, X. & Chen, W. The effects of baicalin and baicalein on cerebral ischemia: a review. Aging Dis. 8, 850–867 (2017).

    PubMed  PubMed Central  Google Scholar 

  223. Bie, B. et al. Baicalein: a review of its anti-cancer effects and mechanisms in hepatocellular carcinoma. Biomed. Pharmacother. 93, 1285–1291 (2017).

    CAS  PubMed  Google Scholar 

  224. Wang, A. W. et al. Baicalein attenuates angiotensin II-induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-κB, and calcineurin signaling pathways in mice. Am. J. Hypertens. 28, 518–526 (2015).

    CAS  PubMed  Google Scholar 

  225. Ehrentraut, H. et al. The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. Eur. J. Heart Fail. 13, 602–610 (2011).

    CAS  PubMed  Google Scholar 

  226. Rice, T. W. et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med. 38, 1685–1694 (2010).

    CAS  PubMed  Google Scholar 

  227. Opal, S. M. et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309, 1154–1162 (2013).

    CAS  PubMed  Google Scholar 

  228. Monnet, E. et al. Evidence of NI-0101 pharmacological activity, an anti-TLR4 antibody, in a randomized phase I dose escalation study in healthy volunteers receiving LPS. Clin. Pharmacol. Ther. 101, 200–208 (2017).

    CAS  PubMed  Google Scholar 

  229. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03241108?term=NCT03241108&draw=2&rank=1 (2018).

  230. Ridker, P. M. et al. Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 126, 2739–2748 (2012).

    CAS  PubMed  Google Scholar 

  231. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  232. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    CAS  PubMed  Google Scholar 

  233. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    CAS  PubMed  Google Scholar 

  234. Bayes-Genis, A., Adler, Y., de Luna, A. B. & Imazio, M. Colchicine in pericarditis. Eur. Heart J. 38, 1706–1709 (2017).

    CAS  PubMed  Google Scholar 

  235. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    CAS  PubMed  Google Scholar 

  236. Nidorf, S. M. & Thompson, P. L. Why colchicine should be considered for secondary prevention of atherosclerosis: an overview. Clin. Ther. 41, 41–48 (2019).

    CAS  PubMed  Google Scholar 

  237. Vaidya, K. et al. Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: A CT coronary angiography study. JACC Cardiovasc. Imaging 11, 305–316 (2018).

    PubMed  Google Scholar 

  238. Demidowich, A. P. et al. Effects of colchicine in adults with metabolic syndrome: a pilot randomized controlled trial. Diabetes Obes. Metab. 21, 1642–1651 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02035891?term=NCT02035891&draw=2&rank=1 (2019).

  240. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03376698?term=NCT03376698&draw=2&rank=1 (2019).

  241. Fahey, J. W. & Talalay, P. Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem. Toxicol. 37, 973–979 (1999).

    CAS  PubMed  Google Scholar 

  242. Bai, Y. et al. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation. J. Mol. Cell Cardiol. 57, 82–95 (2013).

    CAS  PubMed  Google Scholar 

  243. Xu, Z. et al. Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci. Rep. 6, 30252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhang, Z. et al. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J. Mol. Cell Cardiol. 77, 42–52 (2014).

    CAS  PubMed  Google Scholar 

  245. Xia, Z. et al. N-acetylcysteine attenuates PKCβ2 overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats. Cardiovasc. Res. 73, 770–782 (2007).

    CAS  PubMed  Google Scholar 

  246. Liu, C. et al. N-Acetyl Cysteine improves the diabetic cardiac function: possible role of fibrosis inhibition. BMC Cardiovasc. Disord. 15, 84 (2015).

    PubMed  PubMed Central  Google Scholar 

  247. Okazaki, T. et al. Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart. Free. Radic. Res. 45, 1173–1183 (2011).

    CAS  PubMed  Google Scholar 

  248. Su, W. et al. N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats. Cardiovasc. Diabetol. 15, 146 (2016).

    PubMed  PubMed Central  Google Scholar 

  249. Wang, J. et al. Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 113, 544–554 (2006).

    CAS  PubMed  Google Scholar 

  250. Barman, S., Pradeep, S. R. & Srinivasan, K. Zinc supplementation mitigates its dyshomeostasis in experimental diabetic rats by regulating the expression of zinc transporters and metallothionein. Metallomics 9, 1765–1777 (2017).

    CAS  PubMed  Google Scholar 

  251. Wang, S. et al. Zinc prevents the development of diabetic cardiomyopathy in db/db mice. Int. J. Mol. Sci. 18, E580 (2017).

    PubMed  Google Scholar 

  252. Korkmaz-Icoz, S. et al. Oral treatment with a zinc complex of acetylsalicylic acid prevents diabetic cardiomyopathy in a rat model of type-2 diabetes: activation of the Akt pathway. Cardiovasc. Diabetol. 15, 75 (2016).

    PubMed  PubMed Central  Google Scholar 

  253. Liu, F. et al. Zinc supplementation alleviates diabetic peripheral neuropathy by inhibiting oxidative stress and upregulating metallothionein in peripheral nerves of diabetic rats. Biol. Trace Elem. Res. 158, 211–218 (2014).

    CAS  PubMed  Google Scholar 

  254. Yahalom, M., Koren, O., Rozner, E. & Turgeman, Y. Cardiomyopathy associated with zinc deficiency after bariatric surgery. Int. J. Angiol. 28, 145–146 (2019).

    PubMed  Google Scholar 

  255. Yang, L. et al. Polymorphisms in metallothionein-1 and -2 genes associated with the risk of type 2 diabetes mellitus and its complications. Am. J. Physiol. Endocrinol. Metab. 294, E987–E992 (2008).

    CAS  PubMed  Google Scholar 

  256. Giacconi, R. et al. +647 A/C and +1245 MT1A polymorphisms in the susceptibility of diabetes mellitus and cardiovascular complications. Mol. Genet. Metab. 94, 98–104 (2008).

    CAS  PubMed  Google Scholar 

  257. de Carvalho, G. B., Brandao-Lima, P. N., Maia, C. S., Barbosa, K. B. & Pires, L. V. Zinc’s role in the glycemic control of patients with type 2 diabetes: a systematic review. Biometals 30, 151–162 (2017).

    PubMed  Google Scholar 

  258. Giacconi, R. et al. The +838 C/G MT2A polymorphism, metals, and the inflammatory/immune response in carotid artery stenosis in elderly people. Mol. Med. 13, 388–395 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Mocchegiani, E. et al. Zinc, metallothioneins and immunosenescence: effect of zinc supply as nutrigenomic approach. Biogerontology 12, 455–465 (2011).

    CAS  PubMed  Google Scholar 

  260. Kikuchi, M. et al. Sulforaphane-rich broccoli sprout extract improves hepatic abnormalities in male subjects. World J. Gastroenterol. 21, 12457–12467 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Lopez-Chillon, M. T. et al. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin. Nutr. 38, 745–752 (2019).

    CAS  PubMed  Google Scholar 

  262. Medina, S. et al. The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress-related isoprostanes in healthy humans. Food Chem. 173, 1187–1194 (2015).

    CAS  PubMed  Google Scholar 

  263. Axelsson, A. S. et al. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci. Transl Med. 9, eaah4477 (2017).

    PubMed  Google Scholar 

  264. Mansor, L. S. et al. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Cardiovasc. Res. 113, 737–748 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Drucker, D. J., Habener, J. F. & Holst, J. J. Discovery, characterization, and clinical development of the glucagon-like peptides. J. Clin. Invest. 127, 4217–4227 (2017).

    PubMed  PubMed Central  Google Scholar 

  266. Liu, J., Liu, Y., Chen, L., Wang, Y. & Li, J. Glucagon-Like peptide-1 analog liraglutide protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway. J. Diabetes Res. 2013, 630537 (2013).

    PubMed  PubMed Central  Google Scholar 

  267. Wu, L. et al. Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via the PPARα pathway. Aging Cell 17, e12763 (2018).

    PubMed  PubMed Central  Google Scholar 

  268. Hamdani, N. et al. Left ventricular diastolic dysfunction and myocardial stiffness in diabetic mice is attenuated by inhibition of dipeptidyl peptidase 4. Cardiovasc. Res. 104, 423–431 (2014).

    CAS  PubMed  Google Scholar 

  269. Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088–2093 (1998).

    CAS  PubMed  Google Scholar 

  270. Kim, S. K. et al. Left-ventricular diastolic dysfunction may be prevented by chronic treatment with PPAR-α or -γ agonists in a type 2 diabetic animal model. Diabetes Metab. Res. Rev. 19, 487–493 (2003).

    CAS  PubMed  Google Scholar 

  271. Forcheron, F. et al. Diabetic cardiomyopathy: effects of fenofibrate and metformin in an experimental model–the Zucker diabetic rat. Cardiovasc. Diabetol. 8, 16 (2009).

    PubMed  PubMed Central  Google Scholar 

  272. Baraka, A. & AbdelGawad, H. Targeting apoptosis in the heart of streptozotocin-induced diabetic rats. J. Cardiovasc. Pharmacol. Ther. 15, 175–181 (2010).

    CAS  PubMed  Google Scholar 

  273. Zhang, J. et al. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of type 1 diabetic mice. Clin. Sci. 130, 625–641 (2016).

    CAS  Google Scholar 

  274. Terry, T., Raravikar, K., Chokrungvaranon, N. & Reaven, P. D. Does aggressive glycemic control benefit macrovascular and microvascular disease in type 2 diabetes? Insights from ACCORD, ADVANCE, and VADT. Curr. Cardiol. Rep. 14, 79–88 (2012).

    PubMed  Google Scholar 

  275. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes–2019. Diabetes Care 42, S90–S102 (2019).

    Google Scholar 

  276. Al Khalifah, R. A., Alnhdi, A., Alghar, H., Alanazi, M. & Florez, I. D. The effect of adding metformin to insulin therapy for type 1 diabetes mellitus children: a systematic review and meta-analysis. Pediatr. Diabetes 18, 664–673 (2017).

    CAS  PubMed  Google Scholar 

  277. Petrie, J. R. et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 5, 597–609 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Patel, K. & Carbone, A. Sodium-glucose cotransporters as potential therapeutic targets in patients with type 1 diabetes mellitus: an update on phase 3 clinical trial data. Ann. Pharmacother. 53, 1227–1237 (2019).

    CAS  PubMed  Google Scholar 

  279. Danne, T. et al. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Diabetes Care 42, 1147–1154 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Genuth, S. M. et al. Effects of prior intensive versus conventional therapy and history of glycemia on cardiac function in type 1 diabetes in the DCCT/EDIC. Diabetes 62, 3561–3569 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Braffett, B. H. et al. Association of insulin dose, cardiometabolic risk factors, and cardiovascular disease in type 1 diabetes during 30 years of follow-up in the DCCT/EDIC study. Diabetes Care 42, 657–664 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Eshaghian, S., Horwich, T. B. & Fonarow, G. C. An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure. Am. Heart J. 151, 91 (2006).

    PubMed  Google Scholar 

  283. Mangiavacchi, M. et al. Insulin-treated type 2 diabetes is associated with a decreased survival in heart failure patients after cardiac resynchronization therapy. Pacing Clin. Electrophysiol. 31, 1425–1432 (2008).

    PubMed  Google Scholar 

  284. Cosmi, F. et al. Treatment with insulin is associated with worse outcome in patients with chronic heart failure and diabetes. Eur. J. Heart Fail. 20, 888–895 (2018).

    CAS  PubMed  Google Scholar 

  285. Arturi, F. et al. Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure. Endocrine 57, 464–473 (2017).

    CAS  PubMed  Google Scholar 

  286. Lambadiari, V. et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc. Diabetol. 17, 8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Verma, S. et al. Effects of Liraglutide on cardiovascular outcomes in patients with type 2 diabetes mellitus with or without history of myocardial infarction or stroke. Circulation 138, 2884–2894 (2018).

    CAS  PubMed  Google Scholar 

  289. Margulies, K. B. et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 316, 500–508 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41, 2669–2701 (2018).

    PubMed  PubMed Central  Google Scholar 

  291. Packer, M. Do DPP-4 inhibitors cause heart failure events by promoting adrenergically mediated cardiotoxicity? Clues from laboratory models and clinical trials. Circ. Res. 122, 928–932 (2018).

    CAS  PubMed  Google Scholar 

  292. Sano, M. Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk. J. Cardiol. 73, 28–32 (2019).

    PubMed  Google Scholar 

  293. Chen, Y. H., Feng, B. & Chen, Z. W. Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis. Exp. Clin. Endocrinol. Diabetes 120, 116–120 (2012).

    CAS  PubMed  Google Scholar 

  294. Stone, N. J. et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J. Am. Coll. Cardiol. 63, 2889–2934 (2014).

    PubMed  Google Scholar 

  295. Adhyaru, B. B. & Jacobson, T. A. Safety and efficacy of statin therapy. Nat. Rev. Cardiol. 15, 757–769 (2018).

    CAS  PubMed  Google Scholar 

  296. Lloyd-Jones, D. M. et al. 2017 focused update of the 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J. Am. Coll. Cardiol. 70, 1785–1822 (2017).

    PubMed  Google Scholar 

  297. Fung, C. S. C., Wan, E. Y. F., Chan, A. K. C. & Lam, C. L. K. Statin use reduces cardiovascular events and all-cause mortality amongst Chinese patients with type 2 diabetes mellitus: a 5-year cohort study. BMC Cardiovasc. Disord. 17, 166 (2017).

    PubMed  PubMed Central  Google Scholar 

  298. Chen, P. H. et al. Effects of statins on all-cause mortality at different low-density-lipoprotein cholesterol levels in Asian patients with type 2 diabetes. Curr. Med. Res. Opin. 34, 1885–1892 (2018).

    CAS  PubMed  Google Scholar 

  299. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    CAS  PubMed  Google Scholar 

  300. Scott, R. et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care 32, 493–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Margolis, K. L. et al. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care 37, 1721–1728 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Elam, M. B. et al. Association of fenofibrate therapy with long-term cardiovascular risk in statin-treated patients with type 2 diabetes. JAMA Cardiol. 2, 370–380 (2017).

    PubMed  Google Scholar 

  303. Ghosh, R. K. et al. Sodium glucose co-transporter 2 inhibitors and heart failure. Am. J. Cardiol. 124, 1790–1796 (2019).

    CAS  PubMed  Google Scholar 

  304. Ranasinghe, P. et al. Zinc supplementation in prediabetes: a randomized double-blind placebo-controlled clinical trial. J. Diabetes 10, 386–397 (2018).

    CAS  PubMed  Google Scholar 

  305. Asghari, S., Hosseinzadeh-Attar, M. J., Alipoor, E., Sehat, M. & Mohajeri-Tehrani, M. R. Effects of zinc supplementation on serum adiponectin concentration and glycemic control in patients with type 2 diabetes. J. Trace Elem. Med. Biol. 55, 20–25 (2019).

    CAS  PubMed  Google Scholar 

  306. Eshak, E. S. et al. Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study. J. Nutr. Biochem. 56, 126–132 (2018).

    CAS  PubMed  Google Scholar 

  307. Bashir, A., Azharuddin, M., Rashid, I., Murti, K. & Pandey, K. Predictors of cardiomyopathy in patients with type-2 diabetes mellitus with and without cardiovascular complications: a cross-sectional study. Diabetes Res. Clin. Pract. 154, 90–100 (2019).

    PubMed  Google Scholar 

  308. Seet, R. C. et al. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. Atherosclerosis 219, 231–239 (2011).

    CAS  PubMed  Google Scholar 

  309. Chu, A., Foster, M. & Samman, S. Zinc status and risk of cardiovascular diseases and type 2 diabetes mellitus–a systematic review of prospective cohort studies. Nutrients 8, E707 (2016).

    PubMed  Google Scholar 

  310. Wang, X. et al. Zinc supplementation improves glycemic control for diabetes prevention and management: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 110, 76–90 (2019).

    PubMed  Google Scholar 

  311. Milton, A. H. et al. Prospective study of dietary zinc intake and risk of cardiovascular disease in women. Nutrients 10, E38 (2018).

    PubMed  Google Scholar 

  312. Ruz, M. et al. Nutritional effects of zinc on metabolic syndrome and type 2 diabetes: mechanisms and main findings in human studies. Biol. Trace Elem. Res. 188, 177–188 (2019).

    CAS  PubMed  Google Scholar 

  313. Costantino, S. et al. Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66(Shc). Int. J. Cardiol. 268, 179–186 (2018).

    PubMed  Google Scholar 

  314. Diabetes, C. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Google Scholar 

  315. Reddy, M. A., Zhang, E. & Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58, 443–455 (2015).

    CAS  PubMed  Google Scholar 

  316. Kang, Y., Wang, S., Huang, J., Cai, L. & Keller, B. B. Right ventricular dysfunction and remodeling in diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 316, H113–H122 (2019).

    CAS  PubMed  Google Scholar 

  317. Widya, R. L. et al. Right ventricular involvement in diabetic cardiomyopathy. Diabetes Care 36, 457–462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. van den Brom, C. E. et al. Diabetic cardiomyopathy in Zucker diabetic fatty rats: the forgotten right ventricle. Cardiovasc. Diabetol. 9, 25 (2010).

    PubMed  PubMed Central  Google Scholar 

  319. Chen, Y. Z. et al. Left ventricular remodeling and fibrosis: sex differences and relationship with diastolic function in hypertrophic cardiomyopathy. Eur. J. Radiol. 84, 1487–1492 (2015).

    PubMed  Google Scholar 

  320. Li, Z. et al. Gender differences in fibrosis remodeling in patients with long-standing persistent atrial fibrillation. Oncotarget 8, 53714–53729 (2017).

    PubMed  PubMed Central  Google Scholar 

  321. Lum-Naihe, K. et al. Cardiovascular disease progression in female Zucker diabetic fatty rats occurs via unique mechanisms compared to males. Sci. Rep. 7, 17823 (2017).

    PubMed  PubMed Central  Google Scholar 

  322. Kramer, T. et al. Therapeutic potential of phosphodiesterase type 5 inhibitors in heart failure with preserved ejection fraction and combined post- and pre-capillary pulmonary hypertension. Int. J. Cardiol. 283, 152–158 (2019).

    PubMed  Google Scholar 

  323. Santos-Gallego, C. G. et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J. Am. Coll. Cardiol. 73, 1931–1944 (2019).

    CAS  PubMed  Google Scholar 

  324. Yurista, S. R. et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur. J. Heart Fail. 21, 862–873 (2019).

    CAS  PubMed  Google Scholar 

  325. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    CAS  PubMed  Google Scholar 

  326. Fitchett, D. et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur. Heart J. 37, 1526–1534 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Patorno, E. et al. Empagliflozin and the risk of heart failure hospitalization in routine clinical care. Circulation 139, 2822–2830 (2019).

    CAS  PubMed  Google Scholar 

  328. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 32, S62–S67 (2009).

    PubMed Central  Google Scholar 

  329. Wenzlau, J. M. & Hutton, J. C. Novel diabetes autoantibodies and prediction of type 1 diabetes. Curr. Diab. Rep. 13, 608–615 (2013).

    CAS  PubMed  Google Scholar 

  330. Sosenko, J. M. et al. Use of the diabetes prevention trial-type 1 risk score (DPTRS) for improving the accuracy of the risk classification of type 1 diabetes. Diabetes Care 37, 979–984 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  331. Harjutsalo, V., Sjoberg, L. & Tuomilehto, J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 371, 1777–1782 (2008).

    PubMed  Google Scholar 

  332. Todd, J. A., Bell, J. I. & McDevitt, H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329, 599–604 (1987).

    CAS  PubMed  Google Scholar 

  333. Rewers, M. et al. Newborn screening for HLA markers associated with IDDM: Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia 39, 807–812 (1996).

    CAS  PubMed  Google Scholar 

  334. Ziegler, A. G., Hummel, M., Schenker, M. & Bonifacio, E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB study. Diabetes 48, 460–468 (1999).

    CAS  PubMed  Google Scholar 

  335. Berg, A. K., Korsgren, O. & Frisk, G. Induction of the chemokine interferon-γ-inducible protein-10 in human pancreatic islets during enterovirus infection. Diabetologia 49, 2697–2703 (2006).

    CAS  PubMed  Google Scholar 

  336. Olokoba, A. B., Obateru, O. A. & Olokoba, L. B. Type 2 diabetes mellitus: a review of current trends. Oman Med. J. 27, 269–273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  337. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  338. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  339. Todd, J. N., Srinivasan, S. & Pollin, T. I. Advances in the genetics of youth-onset type 2 diabetes. Curr. Diab Rep. 18, 57 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported in part by grants from the NIH (1R01-HL-125877-01), the American Diabetes Association (1-15-BS-018, 1-18-IBS-082 and 1-13-JF-53), the UofL–China Paediatric Research Exchange Program at the University of Louisville, USA, and a Pilot Award from Norton Children’s Hospital Foundation & Norton Healthcare Foundation. The authors thank N. Mellen (Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA) for help editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.T., Z.Z. and L.C. researched data for the article and wrote the manuscript. Y.T., C.Z., K.A.W., B.B.K. and L.C. contributed substantially to the discussion of its contents. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Yi Tan or Lu Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks J. Ren, J. Glatz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Insulin resistance

Impaired signal transduction and biological actions in response to insulin stimulation.

β-oxidation

Catabolic process that takes place in the mitochondria to generate energy by breaking fatty acid molecules into acetyl coenzyme A, which enters the tricarboxylic acid cycle that generates reduced NAD and reduced flavin adenine dinucleotide, which are co-enzymes used in the electron transport chain.

Advanced glycation end products

(AGEs). Protein or lipid molecules that are modified by glycation when exposed to sugars; AGEs can induce cardiovascular injury through crosslinking of extracellular matrix molecules and by engaging the receptor for AGEs (RAGE) on cardiac cells.

Reactive oxygen species

(ROS). By-products of cellular respiration comprising unstable chemical species containing oxygen, including superoxide and hydroxyl radical; ROS have important roles in cell signalling and homeostasis but can induce cellular damage when dysregulated.

Reactive nitrogen species

(RNS). Reactive compounds derived from nitric oxide, including nitroxyl anion and nitrosonium cation, that are critical for the physiological regulation of living cells but can induce cellular damage when dysregulated.

Oxidative stress

An imbalance between the production of free radicals and the biological system’s capacity to detoxify the reactive intermediates with antioxidants. Oxidative stress is a common pathogenic mechanism in many diseases.

Endoplasmic reticulum (ER) stress

The endoplasmic reticulum (ER) is a major organelle in which proteins are synthesized, folded, modified and delivered to their final intracellular or extracellular destination. Increased stress on this system results in the accumulation of unfolded proteins in the ER lumen.

Autophagy

A regulated cellular process that removes unnecessary or dysfunctional cellular components by lysosome-mediated or vacuole-mediated degradation and recycling.

Extracellular matrix

(ECM). A complex network of extracellular material such as proteins and polysaccharides that are secreted locally by cells and remain crosslinked with each other to provide structural, adhesive and biochemical signalling support.

Inflammasome

Multiprotein intracellular complex that can sense a variety of physiological and pathological stimuli and in response can activate the highly pro-inflammatory cytokines IL-1β and IL-18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Zhang, Z., Zheng, C. et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 17, 585–607 (2020). https://doi.org/10.1038/s41569-020-0339-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0339-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing