Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology of sepsis-induced cardiomyopathy

Subjects

Abstract

Sepsis is the life-threatening organ dysfunction caused by a dysregulated host response to infection and is the leading cause of death in intensive care units. Cardiac dysfunction caused by sepsis, usually termed sepsis-induced cardiomyopathy, is common and has long been a subject of interest. In this Review, we explore the definition, epidemiology, diagnosis and pathophysiology of septic cardiomyopathy, with an emphasis on how best to interpret this condition in the clinical context. Advances in diagnostic techniques have increased the sensitivity of detection of myocardial abnormalities but have posed challenges in linking those abnormalities to therapeutic strategies and relevant clinical outcomes. Sophisticated methodologies have elucidated various pathophysiological mechanisms but the extent to which these are adaptive responses is yet to be definitively answered. Although the indications for monitoring and treating septic cardiomyopathy are clinical and directed towards restoring tissue perfusion, a better understanding of the course and implications of septic cardiomyopathy can help to optimize interventions and improve clinical outcomes.

Key points

  • Advances in diagnostic techniques have increased the sensitivity of detection of myocardial abnormalities in patients with sepsis but have increased uncertainty about how sepsis-induced cardiomyopathy should be defined.

  • The variability in definitions of septic cardiomyopathy poses challenges in linking these abnormalities to therapeutic strategies and relevant clinical outcomes.

  • Sophisticated methodologies have helped to elucidate the mechanisms of septic cardiomyopathy, but the degree to which these mechanisms are adaptive remains uncertain.

  • The indications for monitoring and treating septic cardiomyopathy are clinical and aimed at tissue perfusion.

  • A better understanding of the course and implications of septic cardiomyopathy can help to optimize interventions and improve clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of sepsis-induced cardiomyopathy.
Fig. 2: Potential physiological implications of systolic dysfunction and downregulation of mitochondrial function in sepsis-induced cardiomyopathy.

Similar content being viewed by others

References

  1. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Weil, M. H. & Shubin, H. in The Fundamental Mechanisms of Shock (eds Hinshaw, L. N. & Cox, B. G.) 13–23 (Plenum Press, 1972).

  3. Hollenberg, S. M. & Parrillo, J. E. in Harrison’s Principles of Internal Medicine (eds Fauci, A. S. et al.) 214–222 (McGraw-Hill, 1997).

  4. Parker, M. M. et al. Profound but reversible myocardial depression in patients with septic shock. Ann. Intern. Med. 100, 483–490 (1984).

    CAS  PubMed  Google Scholar 

  5. Cunnion, R. E., Schaer, G. L., Parker, M. M., Natanson, C. & Parrillo, J. E. The coronary circulation in human septic shock. Circulation 73, 637–644 (1986).

    CAS  PubMed  Google Scholar 

  6. Parker, M. et al. Responses of left ventricular function in survivors and nonsurvivors of septic shock. J. Crit. Care 4, 19–25 (1989).

    Google Scholar 

  7. Walkey, A. J., Wiener, R. S., Ghobrial, J. M., Curtis, L. H. & Benjamin, E. J. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA 306, 2248–2254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Werdan, K. et al. Impaired regulation of cardiac function in sepsis, SIRS, and MODS. Can. J. Physiol. Pharmacol. 87, 266–274 (2009).

    CAS  PubMed  Google Scholar 

  9. Rossi, M. A., Celes, M. R., Prado, C. M. & Saggioro, F. P. Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Shock 27, 10–18 (2007).

    CAS  PubMed  Google Scholar 

  10. Schmittinger, C. A. et al. Histologic pathologies of the myocardium in septic shock: a prospective observational study. Shock 39, 329–335 (2013).

    CAS  PubMed  Google Scholar 

  11. Beesley, S. J. et al. Septic cardiomyopathy. Crit. Care Med. 46, 625–634 (2018).

    PubMed  Google Scholar 

  12. Manovel, A., Dawson, D., Smith, B. & Nihoyannopoulos, P. Assessment of left ventricular function by different speckle-tracking software. Eur. J. Echocardiogr. 11, 417–421 (2010).

    PubMed  Google Scholar 

  13. Calvin, J. E., Driedger, A. A. & Sibbald, W. J. An assessment of myocardial function in human sepsis utilizing ECG gated cardiac scintigraphy. Chest 80, 579–586 (1981).

    CAS  PubMed  Google Scholar 

  14. Jardin, F. et al. Persistent preload defect in severe sepsis despite fluid loading: a longitudinal echocardiographic study in patients with septic shock. Chest 116, 1354–1359 (1999).

    CAS  PubMed  Google Scholar 

  15. Vieillard-Baron, A. et al. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit. Care Med. 36, 1701–1706 (2008).

    PubMed  Google Scholar 

  16. Ehrman, R. R. et al. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: a review of the literature. Crit. Care 22, 112 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Sevilla Berrios, R. A., O’Horo, J. C., Velagapudi, V. & Pulido, J. N. Correlation of left ventricular systolic dysfunction determined by low ejection fraction and 30-day mortality in patients with severe sepsis and septic shock: a systematic review and meta-analysis. J. Crit. Care 29, 495–499 (2014).

    PubMed  Google Scholar 

  18. Huang, S. J., Nalos, M. & McLean, A. S. Is early ventricular dysfunction or dilatation associated with lower mortality rate in adult severe sepsis and septic shock? A meta-analysis. Crit. Care 17, R96 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Cruz, J. & Hollenberg, S. M. in Evidence-Based Practice of Critical Care (eds Deutschman, C. S. & Neligan, P. J.) 338–343 (Saunders, 2019).

  20. Marwick, T. H., Shah, S. J. & Thomas, J. D. Myocardial strain in the assessment of patients with heart failure: a review. JAMA Cardiol. 4, 287–294 (2019).

    PubMed  Google Scholar 

  21. De Geer, L., Engvall, J. & Oscarsson, A. Strain echocardiography in septic shock - a comparison with systolic and diastolic function parameters, cardiac biomarkers and outcome. Crit. Care 19, 122 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Orde, S. R. et al. Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit. Care 18, R149 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Lanspa, M. J. et al. Association of left ventricular longitudinal strain with central venous oxygen saturation and serum lactate in patients with early severe sepsis and septic shock. Crit. Care 19, 304 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Kalam, K., Otahal, P. & Marwick, T. H. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100, 1673–1680 (2014).

    PubMed  Google Scholar 

  25. Werdan, K. et al. Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications. Clin. Res. Cardiol. 100, 661–668 (2011).

    PubMed  Google Scholar 

  26. Wilhelm, J. et al. Severity of cardiac impairment in the early stage of community-acquired sepsis determines worse prognosis. Clin. Res. Cardiol. 102, 735–744 (2013).

    CAS  PubMed  Google Scholar 

  27. Asanoi, H., Sasayama, S. & Kameyama, T. Ventriculoarterial coupling in normal and failing heart in humans. Circ. Res. 65, 483–493 (1989).

    CAS  PubMed  Google Scholar 

  28. Chen, C. H. et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 38, 2028–2034 (2001).

    CAS  PubMed  Google Scholar 

  29. Guarracino, F. et al. Ventriculoarterial decoupling in human septic shock. Crit. Care 18, R80 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Munt, B., Jue, J., Gin, K., Fenwick, J. & Tweeddale, M. Diastolic filling in human severe sepsis: an echocardiographic study. Crit. Care Med. 26, 1829–1833 (1998).

    CAS  PubMed  Google Scholar 

  31. Jafri, S. M., Lavine, S., Field, B. E., Bahorozian, M. T. & Carlson, R. W. Left ventricular diastolic function in sepsis. Crit. Care Med. 18, 709–714 (1990).

    CAS  PubMed  Google Scholar 

  32. Poelaert, J., Declerck, C., Vogelaers, D., Colardyn, F. & Visser, C. A. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med. 23, 553–560 (1997).

    CAS  PubMed  Google Scholar 

  33. Sanfilippo, F. et al. Tissue Doppler assessment of diastolic function and relationship with mortality in critically ill septic patients: a systematic review and meta-analysis. Br. J. Anaesth. 119, 583–594 (2017).

    CAS  PubMed  Google Scholar 

  34. Brown, S. M. et al. Diastolic dysfunction and mortality in early severe sepsis and septic shock: a prospective, observational echocardiography study. Crit. Ultrasound J. 4, 8 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Zanotti Cavazzoni, S. L. et al. Ventricular dilation is associated with improved cardiovascular performance and survival in sepsis. Chest 138, 848–855 (2010).

    PubMed  Google Scholar 

  36. Hollenberg, S. M. et al. Characterization of a hyperdynamic murine model of resuscitated sepsis using echocardiography. Am. J. Respir. Crit. Care Med. 164, 891–895 (2001).

    CAS  PubMed  Google Scholar 

  37. Hollenberg, S. M. Vasoactive drugs in circulatory shock. Am. J. Respir. Crit. Care Med. 183, 847–855 (2011).

    CAS  PubMed  Google Scholar 

  38. Hollenberg, S. M. et al. Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit. Care Med. 32, 1928–1948 (2004).

    PubMed  Google Scholar 

  39. Oh, J. K., Park, S. J. & Nagueh, S. F. Established and novel clinical applications of diastolic function assessment by echocardiography. Circ. Cardiovasc. Imaging 4, 444–455 (2011).

    PubMed  Google Scholar 

  40. Landesberg, G. et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur. Heart J. 33, 895–903 (2012).

    CAS  PubMed  Google Scholar 

  41. Singer, M. Catecholamine treatment for shock–equally good or bad? Lancet 370, 636–637 (2007).

    PubMed  Google Scholar 

  42. Carluccio, E. et al. Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction: superiority of longitudinal strain over tricuspid annular plane systolic excursion. Circ. Cardiovasc. Imaging 11, e006894 (2018).

    PubMed  Google Scholar 

  43. van Diepen, S. et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation 136, e232–e268 (2017).

    PubMed  Google Scholar 

  44. Dhainaut, J. F. et al. Right ventricular dysfunction in patients with septic shock. Intensive Care Med. 14, 488–491 (1988).

    PubMed  Google Scholar 

  45. Winkelhorst, J. C., Bootsma, I. T., Koetsier, P. M., de Lange, F. & Boerma, E. C. Right ventricular function and long-term outcome in sepsis: a retrospective cohort study. Shock 53, 537–543 (2020).

    PubMed  Google Scholar 

  46. Bouferrache, K. & Vieillard-Baron, A. Acute respiratory distress syndrome, mechanical ventilation, and right ventricular function. Curr. Opin. Crit. Care 17, 30–35 (2011).

    PubMed  Google Scholar 

  47. Vallabhajosyula, S. et al. Prognostic impact of isolated right ventricular dysfunction in sepsis and septic shock: an 8-year historical cohort study. Ann. Intensive Care 7, 94 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). J. Am. Coll. Cardiol. 72, 2231–2264 (2018).

    PubMed  Google Scholar 

  49. Turner, A., Tsamitros, M. & Bellomo, R. Myocardial cell injury in septic shock. Crit. Care Med. 27, 1775–1780 (1999).

    CAS  PubMed  Google Scholar 

  50. Maeder, M., Fehr, T., Rickli, H. & Ammann, P. Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 129, 1349–1366 (2006).

    CAS  PubMed  Google Scholar 

  51. Ammann, P. et al. Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J. Am. Coll. Cardiol. 41, 2004–2009 (2003).

    CAS  PubMed  Google Scholar 

  52. Bessiere, F., Khenifer, S., Dubourg, J., Durieu, I. & Lega, J. C. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 39, 1181–1189 (2013).

    CAS  PubMed  Google Scholar 

  53. Rosjo, H. et al. Circulating high sensitivity troponin T in severe sepsis and septic shock: distribution, associated factors, and relation to outcome. Intensive Care Med. 37, 77–85 (2011).

    CAS  PubMed  Google Scholar 

  54. Wu, A. H. Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med. 27, 959–961 (2001).

    CAS  PubMed  Google Scholar 

  55. Ostermann, M. et al. Cardiac troponin release is associated with biomarkers of inflammation and ventricular dilatation during critical illness. Shock 47, 702–708 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Forfia, P. R., Watkins, S. P., Rame, J. E., Stewart, K. J. & Shapiro, E. P. Relationship between B-type natriuretic peptides and pulmonary capillary wedge pressure in the intensive care unit. J. Am. Coll. Cardiol. 45, 1667–1671 (2005).

    CAS  PubMed  Google Scholar 

  57. Jefic, D., Lee, J. W., Jefic, D., Savoy-Moore, R. T. & Rosman, H. S. Utility of B-type natriuretic peptide and N-terminal pro B-type natriuretic peptide in evaluation of respiratory failure in critically ill patients. Chest 128, 288–295 (2005).

    CAS  PubMed  Google Scholar 

  58. Papanikolaou, J. et al. New insights into the mechanisms involved in B-type natriuretic peptide elevation and its prognostic value in septic patients. Crit. Care 18, R94 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Boyd, J. H., Mathur, S., Wang, Y., Bateman, R. M. & Walley, K. R. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72, 384–393 (2006).

    CAS  PubMed  Google Scholar 

  60. Levy, R. J. et al. Evidence of myocardial hibernation in the septic heart. Crit. Care Med. 33, 2752–2756 (2005).

    PubMed  Google Scholar 

  61. Zanotti-Cavazzoni, S. L. & Hollenberg, S. M. Cardiac dysfunction in severe sepsis and septic shock. Curr. Opin. Crit. Care 15, 392–397 (2009).

    PubMed  Google Scholar 

  62. Altmann, D. R. et al. Elevated cardiac troponin I in sepsis and septic shock: no evidence for thrombus associated myocardial necrosis. PLoS ONE 5, e9017 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Solomon, M. A. et al. Myocardial energy metabolism and morphology in a canine model of sepsis. Am. J. Physiol. 266 (2 Pt 2), H757–H768 (1994).

    Google Scholar 

  64. Van Lambalgen, A. A., van Kraats, A. A., Mulder, M. F., Teerlink, T. & van den Bos, G. C. High-energy phosphates in heart, liver, kidney, and skeletal muscle of endotoxemic rats. Am. J. Physiol. 266 (4 Pt 2), H1581–1587 (1994).

    Google Scholar 

  65. Parrillo, J. E. et al. A circulating myocardial depressant substance in humans with septic shock: septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J. Clin. Invest. 76, 1539–1553 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hollenberg, S. M., Cunnion, R. E., Lawrence, M., Kelly, J. L. & Parrillo, J. E. Tumor necrosis factor depresses myocardial cell function: results using an in vitro assay of myocyte performance. Clin. Res. 37, 528A (1989).

    Google Scholar 

  67. Kumar, A. et al. Tumor necrosis factor-a and interleukin-1b are responsible for in vitro myocardial cell depression induced by human septic shock serum. J. Exp. Med. 183, 949–958 (1996).

    CAS  PubMed  Google Scholar 

  68. Conway-Morris, A., Wilson, J. & Shankar-Hari, M. Immune activation in sepsis. Crit. Care Clin. 34, 29–42 (2018).

    PubMed  Google Scholar 

  69. Wang, H., Ward, M. F. & Sama, A. E. Novel HMGB1-inhibiting therapeutic agents for experimental sepsis. Shock 32, 348–357 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rastaldo, R. et al. Nitric oxide and cardiac function. Life Sci. 81, 779–793 (2007).

    CAS  PubMed  Google Scholar 

  71. Kakihana, Y., Ito, T., Nakahara, M., Yamaguchi, K. & Yasuda, T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J. Intensive Care 4, 22 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Haileselassie, B. et al. Myocardial oxidative stress correlates with left ventricular dysfunction on strain echocardiography in a rodent model of sepsis. Intensive Care Med. Exp. 5, 21 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Liaudet, L., Rosenblatt-Velin, N. & Pacher, P. Role of peroxynitrite in the cardiovascular dysfunction of septic shock. Curr. Vasc. Pharmacol. 11, 196–207 (2013).

    CAS  PubMed  Google Scholar 

  74. Matejovic, M. et al. Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock 21, 458–465 (2004).

    CAS  PubMed  Google Scholar 

  75. Lopez, A. et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit. Care Med. 32, 21–30 (2004).

    CAS  PubMed  Google Scholar 

  76. Hollenberg, S. M., Broussard, M., Osman, J. & Parrillo, J. E. Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circ. Res. 86, 774–778 (2000).

    CAS  PubMed  Google Scholar 

  77. Wang, Z. et al. Pharmacological inhibition of DDAH1 improves survival, haemodynamics and organ function in experimental septic shock. Biochem. J. 460, 309–316 (2014).

    CAS  PubMed  Google Scholar 

  78. Angus, D. C. & van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 369, 840–851 (2013).

    CAS  PubMed  Google Scholar 

  79. Venet, F. et al. Early assessment of leukocyte alterations at diagnosis of septic shock. Shock 34, 358–363 (2010).

    CAS  PubMed  Google Scholar 

  80. Ruparelia, N., Chai, J. T., Fisher, E. A. & Choudhury, R. P. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat. Rev. Cardiol. 14, 133–144 (2017).

    CAS  PubMed  Google Scholar 

  81. Hu, Y. F., Chen, Y. J., Lin, Y. J. & Chen, S. A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 12, 230–243 (2015).

    CAS  PubMed  Google Scholar 

  82. Yende, S. et al. Risk of cardiovascular events in survivors of severe sepsis. Am. J. Respir. Crit. Care Med. 189, 1065–1074 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Mankowski, R. T., Yende, S. & Angus, D. C. Long-term impact of sepsis on cardiovascular health. Intensive Care Med. 45, 78–81 (2019).

    CAS  PubMed  Google Scholar 

  84. Hollenberg, S. M., Cunnion, R. E. & Zimmerberg, J. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am. J. Physiol. Heart Circ. Physiol. 264, H660–H663 (1993).

    CAS  Google Scholar 

  85. Rudiger, A. et al. Early functional and transcriptomic changes in the myocardium predict outcome in a long-term rat model of sepsis. Clin. Sci. 124, 391–401 (2013).

    CAS  Google Scholar 

  86. Bernardin, G., Strosberg, A. D., Bernard, A., Mattei, M. & Marullo, S. Beta-adrenergic receptor-dependent and -independent stimulation of adenylate cyclase is impaired during severe sepsis in humans. Intensive Care Med. 24, 1315–1322 (1998).

    CAS  PubMed  Google Scholar 

  87. Lyon, A. R., Rees, P. S., Prasad, S., Poole-Wilson, P. A. & Harding, S. E. Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat. Clin. Pract. Cardiovasc. Med. 5, 22–29 (2008).

    CAS  PubMed  Google Scholar 

  88. Hollenberg, S. M. Understanding stress cardiomyopathy. Intensive Care Med. 42, 432–435 (2016).

    PubMed  Google Scholar 

  89. Zhang, C. et al. High-mobility group Box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca2+ leak through TLR4-ROS signaling in cardiomyocytes. J. Mol. Cell. Cardiol. 74, 260–273 (2014).

    CAS  PubMed  Google Scholar 

  90. Layland, J. et al. Protection against endotoxemia-induced contractile dysfunction in mice with cardiac-specific expression of slow skeletal troponin I. FASEB J. 19, 1137–1139 (2005).

    CAS  PubMed  Google Scholar 

  91. Pinto, B. B. et al. Improved survival in a long-term rat model of sepsis is associated with reduced mitochondrial calcium uptake despite increased energetic demand. Crit. Care Med. 45, e840–e848 (2017).

    CAS  PubMed  Google Scholar 

  92. Hotchkiss, R. S. & Nicholson, D. W. Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol. 6, 813–822 (2006).

    CAS  PubMed  Google Scholar 

  93. Brealey, D. et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360, 219–223 (2002).

    CAS  PubMed  Google Scholar 

  94. Brealey, D. et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R491–R497 (2004).

    CAS  PubMed  Google Scholar 

  95. Stanzani, G., Duchen, M. R. & Singer, M. The role of mitochondria in sepsis-induced cardiomyopathy. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 759–773 (2019).

    CAS  PubMed  Google Scholar 

  96. Crouser, E. D. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4, 729–741 (2004).

    CAS  PubMed  Google Scholar 

  97. Suliman, H. B., Carraway, M. S. & Piantadosi, C. A. Postlipopolysaccharide oxidative damage of mitochondrial DNA. Am. J. Respir. Crit. Care Med. 167, 570–579 (2003).

    PubMed  Google Scholar 

  98. Dikalov, S. Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51, 1289–1301 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bernardi, P. & Di Lisa, F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J. Mol. Cell. Cardiol. 78, 100–106 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Larche, J. et al. Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J. Am. Coll. Cardiol. 48, 377–385 (2006).

    CAS  PubMed  Google Scholar 

  101. Carre, J. E. et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am. J. Respir. Crit. Care Med. 182, 745–751 (2010).

    PubMed  PubMed Central  Google Scholar 

  102. Levy, R. J. Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 28, 24–28 (2007).

    CAS  PubMed  Google Scholar 

  103. Stanzani, G., Tidswell, R. & Singer, M. Do critical care patients hibernate? Theoretical support for less is more. Intensive Care Med. 46, 495–497 (2020).

    PubMed  Google Scholar 

  104. Rudiger, A. & Singer, M. Mechanisms of sepsis-induced cardiac dysfunction. Crit. Care Med. 35, 1599–1608 (2007).

    PubMed  Google Scholar 

  105. Matkovich, S. J. et al. Widespread down-regulation of cardiac mitochondrial and sarcomeric genes in patients with sepsis. Crit. Care Med. 45, 407–414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dhainaut, J. F. et al. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75, 533–541 (1987).

    CAS  PubMed  Google Scholar 

  107. Ince, C. et al. The endothelium in sepsis. Shock 45, 259–270 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hollenberg, S. M., Piotrowski, M. J. & Parrillo, J. E. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to endothelin-1 in septic rats. Am. J. Physiol. Heart Circ. Physiol. 272 (3 Pt 2), R969–R974 (1997).

    Google Scholar 

  109. Vellinga, N. A. et al. International study on microcirculatory shock occurrence in acutely ill patients. Crit. Care Med. 43, 48–56 (2015).

    PubMed  Google Scholar 

  110. Hollenberg, S. M. Think locally: evaluation of the microcirculation in sepsis. Intensive Care Med. 36, 1807–1809 (2010).

    PubMed  Google Scholar 

  111. Bateman, R. M., Sharpe, M. D., Goldman, D., Lidington, D. & Ellis, C. G. Inhibiting nitric oxide overproduction during hypotensive sepsis increases local oxygen consumption in rat skeletal muscle. Crit. Care Med. 36, 225–231 (2008).

    CAS  PubMed  Google Scholar 

  112. Bouhemad, B. et al. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit. Care Med. 36, 766–774 (2008).

    PubMed  Google Scholar 

  113. Mann, D. L., Barger, P. M. & Burkhoff, D. Myocardial recovery and the failing heart. J. Am. Coll. Cardiol. 60, 2465–2472 (2012).

    PubMed  PubMed Central  Google Scholar 

  114. Halliday, B. P. et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 393, 61–73 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Ambardekar, A. V. & Buttrick, P. M. Reverse remodeling with left ventricular assist devices. Circ. Heart Fail. 4, 224–233 (2011).

    PubMed  PubMed Central  Google Scholar 

  116. Jardin, F., Brun-Ney, D., Auvert, B., Beauchet, A. & Bourdarias, J. P. Sepsis-related cardiogenic shock. Crit. Care Med. 18, 1055–1060 (1990).

    CAS  PubMed  Google Scholar 

  117. Rhodes, A. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit. Care Med. 45, 486–552 (2017).

    PubMed  Google Scholar 

  118. Rivers, E. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345, 1368–1377 (2001).

    CAS  PubMed  Google Scholar 

  119. ARISE Investigators. et al. Goal-directed resuscitation for patients with early septic shock. N. Engl. J. Med. 371, 1496–1506 (2014).

    Google Scholar 

  120. ProCESS Investigators. et al. A randomized trial of protocol-based care for early septic shock. N. Engl. J. Med. 370, 1683–1693 (2014).

    Google Scholar 

  121. Mouncey, P. R. et al. Trial of early, goal-directed resuscitation for septic shock. N. Engl. J. Med. 372, 1301–1311 (2015).

    CAS  PubMed  Google Scholar 

  122. Annane, D. et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet 370, 676–684 (2007).

    CAS  PubMed  Google Scholar 

  123. Rhodes, A. et al. A prospective study of the use of a dobutamine stress test to identify outcome in patients with sepsis, severe sepsis, or septic shock. Crit. Care Med. 27, 2361–2366 (1999).

    CAS  PubMed  Google Scholar 

  124. Wilkman, E., Kaukonen, K. M., Pettila, V., Kuitunen, A. & Varpula, M. Association between inotrope treatment and 90-day mortality in patients with septic shock. Acta Anaesthesiol. Scand. 57, 431–442 (2013).

    CAS  PubMed  Google Scholar 

  125. Andreis, D. T. & Singer, M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 42, 1387–1397 (2016).

    CAS  PubMed  Google Scholar 

  126. Morelli, A. et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310, 1683–1691 (2013).

    PubMed  Google Scholar 

  127. Morelli, A. et al. Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med. 31, 638–644 (2005).

    PubMed  Google Scholar 

  128. Gordon, A. C. et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N. Engl. J. Med. 375, 1638–1648 (2016).

    CAS  PubMed  Google Scholar 

  129. Hayes, M. A. et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N. Engl. J. Med. 330, 1717–1722 (1994).

    CAS  PubMed  Google Scholar 

  130. Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1–39.e14 (2015).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.M.H. wrote the manuscript, and M.S. reviewed and edited the article before submission.

Corresponding authors

Correspondence to Steven M. Hollenberg or Mervyn Singer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks K. Werdan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Fluid resuscitation

Administration of intravenous fluids to restore intravascular volume.

Global longitudinal strain

(GLS). GLS is a parameter derived from speckle tracking echocardiography that expresses longitudinal shortening. GLS is calculated by convention as final length minus baseline length divided by baseline length as a percentage, and so left ventricular (LV) shortening yields a negative strain.

Arterial elastance

A representation of the change in pressure for a given change in arterial volume on an LV pressure–volume loop. Arterial elastance is usually estimated as end-systolic pressure divided by stroke volume.

End-systolic elastance

A measure of the net arterial load exerted on the ventricle. LV end-systolic elastance is usually estimated clinically as LV end-systolic pressure divided by end-systolic volume, although this is a simplification.

Lusitropic effects

Effects related to the rate of relaxation of the LV myocardium. Lusitropy is correlated with calcium reuptake into the sarcoplasmic reticulum, which is an energy-dependent process.

Immunoparesis

Excessive downregulation of immune function, often in response to a previous inflammatory stimulus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollenberg, S.M., Singer, M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol 18, 424–434 (2021). https://doi.org/10.1038/s41569-020-00492-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00492-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing