Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systems biology in cardiovascular disease: a multiomics approach

Abstract

Omics techniques generate large, multidimensional data that are amenable to analysis by new informatics approaches alongside conventional statistical methods. Systems theories, including network analysis and machine learning, are well placed for analysing these data but must be applied with an understanding of the relevant biological and computational theories. Through applying these techniques to omics data, systems biology addresses the problems posed by the complex organization of biological processes. In this Review, we describe the techniques and sources of omics data, outline network theory, and highlight exemplars of novel approaches that combine gene regulatory and co-expression networks, proteomics, metabolomics, lipidomics and phenomics with informatics techniques to provide new insights into cardiovascular disease. The use of systems approaches will become necessary to integrate data from more than one omic technique. Although understanding the interactions between different omics data requires increasingly complex concepts and methods, we argue that hypothesis-driven investigations and independent validation must still accompany these novel systems biology approaches to realize their full potential.

Key points

  • Cardiovascular diseases are complex states, with the effect of the environment usually being far greater than that of the genetic status of an individual; therefore, the understanding of cardiovascular disease requires investigation of many biological levels.

  • Omics techniques generate very large, complex and non-linear datasets, which mandate a systems biology approach, that is, the understanding of a biological process through examining the interactions between heterogeneous components.

  • Current systems biology approaches applying network theories or machine learning to single-platform omics data have helped to make some progress in understanding cardiovascular disease but caveats remain.

  • Integrated multiomics approaches explain the interactions between omics dimensions and are likely to require new ontological approaches to describe their findings.

  • The lure of obtaining large datasets should not replace thoughtful, well-designed experiments; investigators must understand the technical and biological limitations of omics approaches alongside their strengths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Levels of explanation in systems biology.
Fig. 2: Omics platforms used in systems biology.
Fig. 3: Characterization of genetic determinants of blood lipid phenotypes.
Fig. 4: Combined approaches to proteomics analysis.
Fig. 5: Integrated omics analysis of proteome dynamics during cardiac remodelling.

Similar content being viewed by others

References

  1. Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Gagniuc, P. & Ionescu-Tirgoviste, C. Gene promoters show chromosome-specificity and reveal chromosome territories in humans. BMC Genomics 14, 278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Barwari, T., Joshi, A. & Mayr, M. MicroRNAs in cardiovascular disease. J. Am. Coll. Cardiol. 68, 2577–2584 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Shang, L. L. et al. Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circ. Res. 101, 1146–1154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosas, P. C. et al. Phosphorylation of cardiac myosin-binding protein-C Is a critical mediator of diastolic function. Circ. Hear. Fail. 8, 582–594 (2015).

    Article  CAS  Google Scholar 

  8. Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Russ, A. P. & Lampel, S. The druggable genome: an update. Drug Discov. Today 10, 1607–1610 (2005).

    Article  PubMed  Google Scholar 

  11. Griffith, M. et al. DGIdb: mining the druggable genome. Nat. Methods 10, 1209–1210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kohane, I. S. Using electronic health records to drive discovery in disease genomics. Nat. Rev. Genet. 12, 417–428 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Denny, J. C. Chapter 13: mining electronic health records in the genomics Era. PLoS Comput. Biol. 8, e1002823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jensen, P. B., Jensen, L. J. & Brunak, S. Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13, 395–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Morley, K. I. et al. Defining disease phenotypes using national linked electronic health records: a case study of atrial fibrillation. PLoS ONE 9, e110900 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Berger, B., Peng, J. & Singh, M. Computational solutions for omics data. Nat. Rev. Genet. 14, 333–346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, S.-S. C. & Fraenkel, E. Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci. Signal. 2, ra40 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Auffray, C. et al. From genomic medicine to precision medicine: highlights of 2015. Genome Med. 8, 12 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kathiresan, S. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reilly, M. P. et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet 377, 383–392 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vargas, J. D. et al. Common genetic variants and subclinical atherosclerosis in the multi-ethnic study of atherosclerosis. Circulation 128, 230–236 (2013).

    Google Scholar 

  23. Ellinor, P. T. et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat. Genet. 44, 670–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kao, W. H. L. et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation 119, 940–951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Villard, E. et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 32, 1065–1076 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meder, B. et al. A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur. Heart J. 35, 1069–1077 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Piñero, J. et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, bav028 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu, X. et al. Exome chip meta-analysis identifies novel loci and East Asian–specific coding variants that contribute to lipid levels and coronary artery disease. Nat. Genet. 49, 1722–1730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, W. et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 49, 1450–1457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Larson, M. G. et al. Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes. BMC Med. Genet. 8, S5 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Shen, G.-Q. et al. Four SNPs on chromosome 9p21 in a South Korean Population Implicate a Genetic Locus that confers high cross-race risk for development of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 28, 360–365 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Shen, G.-Q. et al. Association between four SNPs on chromosome 9p21 and myocardial infarction is replicated in an Italian population. J. Hum. Genet. 53, 144–150 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Schunkert, H. et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation 117, 1675–1684 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anderson, J. L. et al. Genetic variation at the 9p21 locus predicts angiographic coronary artery disease prevalence but not extent and has clinical utility. Am. Heart J. 156, 1155–1162.e2 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Samani, N. J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Patel, R. S. et al. Genetic variants at chromosome 9p21 and risk of first versus subsequent coronary heart disease events: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 63, 2234–2245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel, R. S. et al. Association of chromosome 9p21 with subsequent coronary heart disease events: A GENIUS-CHD study of individual participant data. Circ. Genomic Precis. Med. 12, 161–172 (2019).

    Google Scholar 

  40. Holdt, L. M. et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 7, 12429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holdt, L. M. et al. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler. Thromb. Vasc. Biol. 30, 620–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Lo Sardo, V. et al. Unveiling the role of the most impactful cardiovascular risk locus through haplotype editing. Cell 175, 1796–1810.e20 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Inouye, M. et al. Genomic risk prediction of coronary artery disease in 480,000 adults. J. Am. Coll. Cardiol. 72, 1883–1893 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Abraham, G. et al. Genomic prediction of coronary heart disease. Eur. Heart J. 37, 3267–3278 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cornelis, M. C. et al. The gene, environment association studies consortium (GENEVA): maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. Genet. Epidemiol. 34, 364–372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Murcray, C. E., Lewinger, J. P. & Gauderman, W. J. Gene-environment interaction in genome-wide association studies. Am. J. Epidemiol. 169, 219–226 (2009).

    Article  PubMed  Google Scholar 

  48. Mars, N. et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat. Med. 26, 549–557 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Sohail, M. et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife 8, e39702 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK biobank. eLife 8, e39725 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li, Y. et al. Statistical and functional studies identify epistasis of cardiovascular risk genomic variants from genome-wide association studies. J. Am. Heart Assoc. 9, e014146 (2020).

    PubMed  PubMed Central  Google Scholar 

  52. Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N. & Davey Smith, G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

    Article  PubMed  Google Scholar 

  53. Ference, B. A. et al. Mendelian randomization study of ACLY and cardiovascular disease. N. Engl. J. Med. 380, 1033–1042 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Ray, K. K. et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med. 380, 1022–1032 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 48, 713–727 (2019).

    Article  PubMed  Google Scholar 

  56. Zuber, V., Colijn, J. M., Klaver, C. & Burgess, S. Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat. Commun. 11, 29 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature 581, 459–464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Timpson, N. J. et al. C-reactive protein and its role in metabolic syndrome: Mendelian randomisation study. Lancet 366, 1954–1959 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Richardson, T. G., Harrison, S., Hemani, G. & Smith, G. D. An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome. eLife 8, e43657 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tillmann, T. et al. Education and coronary heart disease: Mendelian randomisation study. BMJ 358, j3542 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, X., Li, Y. I. & Pritchard, J. K. Trans effects on gene expression can drive omnigenic inheritance. Cell 177, 1022–1034.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wray, N. R., Wijmenga, C., Sullivan, P. F., Yang, J. & Visscher, P. M. Common disease is more complex than implied by the core gene omnigenic model. Cell 173, 1573–1580 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Greene, C. S. et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47, 569–576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huan, T. et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 33, 1427–1434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Preuss, M. et al. Design of the Coronary Artery Disease Genome-wide Replication and Meta-analysis (CARDIoGRAM) study. Circ. Cardiovasc. Genet. 3, 475–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Holm, H. et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat. Genet. 42, 117 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Chambers, J. C. et al. Genetic variation in SCN10A influences cardiac conduction. Nat. Genet. 42, 149–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Pfeufer, A. et al. Genome-wide association study of PR interval. Nat. Genet. 42, 153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Noseworthy, P. A. & Newton-Cheh, C. Genetic determinants of sudden cardiac death. Circulation 118, 1854–1863 (2008).

    Article  PubMed  Google Scholar 

  72. Lubitz, S. A. et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA 304, 2263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, H. et al. Gene expression and genetic variation in human atria. Heart Rhythm. 11, 266–271 (2014).

    Article  PubMed  Google Scholar 

  74. Kertai, M. D. et al. Genome-wide association study of new-onset atrial fibrillation after coronary artery bypass grafting surgery. Am. Heart J. 170, 580 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gupta, R. M. & Musunuru, K. Mapping novel pathways in cardiovascular disease using eQTL data: the past, present, and future of gene expression analysis. Front. Genet. 3, 232 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nat. Rev. Genet. 10, 184–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brem, R. B. et al. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Rockman, M. V. & Kruglyak, L. Genetics of global gene expression. Nat. Rev. Genet. 7, 862–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Michaelson, J. J., Loguercio, S. & Beyer, A. Detection and interpretation of expression quantitative trait loci (eQTL). Methods 48, 265–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stranger, B. E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ardlie, K. G. et al. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  CAS  Google Scholar 

  84. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed Central  Google Scholar 

  85. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Linsel-Nitschke, P. et al. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis 208, 183–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu, P. Y. et al. Cardiovascular transcriptomics and epigenomics using next-generation sequencing challenges, progress, and opportunities. Circ. Cardiovasc. Genet. 7, 701–710 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Mohammadi, P. et al. Genetic regulatory variation in populations informs transcriptome analysis in rare disease. Science 366, 351–356 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miller, C. L. et al. Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nat. Commun. 7, 12092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Talukdar, H. A. et al. Cross-tissue regulatory gene networks in coronary artery disease. Cell Syst. 2, 196–208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Frades, I. et al. Systems pharmacology identifies an arterial wall regulatory gene network mediating coronary artery disease side effects of antiretroviral therapy. Circ. Genomic Precis. Med. 12, 262–272 (2019).

    Article  CAS  Google Scholar 

  97. Franzén, O. et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science 353, 827–830 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Vilne, B. et al. Network analysis reveals a causal role of mitochondrial gene activity in atherosclerotic lesion formation. Atherosclerosis 267, 39–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Walter, W. et al. Deciphering the dynamic transcriptional and post-transcriptional networks of macrophages in the healthy heart and after myocardial injury. Cell Rep. 23, 622–636 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260.e29 (2019).

    Article  PubMed  CAS  Google Scholar 

  101. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810–817 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Willeit, P. et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ. Res. 112, 595–600 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Kaudewitz, D. et al. Association of microRNAs and YRNAs with platelet function. Circ. Res. 118, 420–432 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Savitski, M. M. et al. Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J. Proteome Res. 12, 3586–3598 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Werner, T. et al. Ion Coalescence of neutron encoded TMT 10-plex reporter ions. Anal. Chem. 86, 3594–3601 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Ong, S.-E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650–2660 (2007).

    Article  CAS  Google Scholar 

  109. Gstaiger, M. & Aebersold, R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genet. 10, 617–627 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Witze, E. S., Old, W. M., Resing, K. A. & Ahn, N. G. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods 4, 798–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Kusebauch, U. et al. Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell 166, 766–778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tu, C. et al. Depletion of abundant plasma proteins and limitations of plasma proteomics. J. Proteome Res. 9, 4982–4991 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schubert, O. T., Röst, H. L., Collins, B. C., Rosenberger, G. & Aebersold, R. Quantitative proteomics: challenges and opportunities in basic and applied research. Nat. Protoc. 12, 1289–1294 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Doerr, A. DIA mass spectrometry. Nat. Methods 12, 35 (2015).

    Article  CAS  Google Scholar 

  115. Bom, M. J. et al. Predictive value of targeted proteomics for coronary plaque morphology in patients with suspected coronary artery disease. EBioMedicine 39, 109–117 (2019).

    Article  PubMed  Google Scholar 

  116. Langley, S. R. et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J. Clin. Invest. 127, 1546–1560 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Willeit, K. et al. Association between vascular cell adhesion molecule 1 and atrial fibrillation. JAMA Cardiol. 2, 516 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Smith, J. G. & Gerszten, R. E. Emerging affinity-based proteomic technologies for large-scale plasma profiling in cardiovascular disease. Circulation 135, 1651–1664 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rohloff, J. C. et al. Nucleic acid ligands with protein-like side chains: Modified aptamers and their use as diagnostic and therapeutic agents. Mol. Ther. Nucleic Acids 3, e201 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ngo, D. et al. Aptamer-based proteomic profiling reveals novel candidate biomarkers and pathways in cardiovascular disease. Circulation 134, 270–285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Benson, M. D. et al. Application of large-scale aptamer-based proteomic profiling to planned myocardial infarctions. Circulation 137, 1270–1277 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Jacquet, S. et al. Identification of cardiac myosin-binding protein C as a candidate biomarker of myocardial infarction by proteomics analysis. Mol. Cell. Proteom. 8, 2687–2699 (2009).

    Article  CAS  Google Scholar 

  123. Marjot, J. et al. Quantifying the release of biomarkers of myocardial necrosis from cardiac myocytes and intact myocardium. Clin. Chem. 63, 990–996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kaier, T. E. et al. Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction. Circulation 136, 1495–1508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ganz, P. et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 315, 2532 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mosley, J. et al. Probing the virtual proteome to identify novel disease biomarkers. Circulation. 138, 2469–2481 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Christiansson, L. et al. The use of multiplex platforms for absolute and relative protein quantification of clinical material. EuPA Open Proteom. 3, 37–47 (2014).

    Article  CAS  Google Scholar 

  130. Wei, W.-Q. et al. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. PLoS ONE 12, e0175508 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Wadhera, R. K. et al. Temporal trends in unstable angina diagnosis codes for outpatient percutaneous coronary interventions. JAMA Intern. Med. 179, 259–261 (2019).

    Article  PubMed  Google Scholar 

  132. Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rual, J.-F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Vidal, M., Cusick, M. E. & Barabasi, A. L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jensen, M. K. et al. Protein interaction-based genome-wide analysis of incident coronary heart disease. Circ. Cardiovasc. Genet. 4, 549–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. O’Reilly, F. J. & Rappsilber, J. Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat. Struct. Mol. Biol. 25, 1000–1008 (2018).

    Article  PubMed  CAS  Google Scholar 

  137. Liao, Y. et al. The cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep. 16, 1456–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shah, S. H. & Newgard, C. B. Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. Circ. Cardiovasc. Genet. 8, 410–419 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hoefer, I. E. et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur. Heart J. 36, 2635–2642 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Mundra, P. A. et al. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight 3, e121326 (2018).

    Article  PubMed Central  Google Scholar 

  141. Huynh, K. et al. High-throughput plasma lipidomics: detailed mapping of the associations with cardiometabolic risk factors. Cell Chem. Biol. 26, 71–84.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Karatasakis, A. et al. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: a meta-analysis of 35 randomized controlled trials. J. Am. Heart Assoc. 6, e006910 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Soininen, P. et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 134, 1781 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Sliz, E. et al. Metabolomic consequences of genetic inhibition of PCSK9 compared with statin treatment. Circulation 138, 2499–2512 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stegemann, C. et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based bruneck study. Circulation 129, 1821–1831 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Pechlaner, R. et al. Very-low-density lipoprotein–associated apolipoproteins predict cardiovascular events and are lowered by inhibition of APOC-III. J. Am. Coll. Cardiol. 69, 789–800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gaudet, D. et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N. Engl. J. Med. 373, 438–447 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Würtz, P. et al. Metabolite profiling and cardiovascular event risk. Circulation 131, 774–785 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Nordestgaard, B. G. & Varbo, A. Triglycerides and cardiovascular disease. Lancet 384, 626–635 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Ference, B. A. et al. Association of triglyceride-lowering LPL variants and LDL-C–lowering LDLR variants with risk of coronary heart disease. JAMA 321, 364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Richardson, T. G. et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 17, e1003062 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Ng, T. W. K. et al. Association of Plasma ceramides and sphingomyelin with VLDL apoB-100 fractional catabolic rate before and after rosuvastatin treatment. J. Clin. Endocrinol. Metab. 100, 2497–2501 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Org, E. et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 18, 70 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Tang, W. H. W. & Hazen, S. L. The gut microbiome and its role in cardiovascular diseases. Circulation 135, 1008–1010 (2017).

    Article  PubMed  Google Scholar 

  156. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Mayr, M. et al. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler. Thromb. Vasc. Biol. 25, 2135–2142 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Klipfell, E. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Haghikia, A. et al. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler. Thromb. Vasc. Biol. 38, 2225–2235 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Roberts, A. B. et al. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. van Mens, T. E., Büller, H. R. & Nieuwdorp, M. Targeted inhibition of gut microbiota proteins involved in TMAO production to reduce platelet aggregation and arterial thrombosis: a blueprint for drugging the microbiota in the treatment of cardiometabolic disease? J. Thromb. Haemost. 17, 3–5 (2019).

    Article  PubMed  Google Scholar 

  165. Manor, O. et al. A multi-omic association study of trimethylamine N-oxide. Cell Rep. 24, 935–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Heianza, Y. et al. Long-term changes in gut microbial metabolite trimethylamine N-oxide and coronary heart disease risk. J. Am. Coll. Cardiol. 75, 763–772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gencer, B. et al. Gut microbiota-dependent trimethylamine N-oxide and cardiovascular outcomes in patients with prior myocardial infarction: a nested case control study from the PEGASUS-TIMI 54 Trial. J. Am. Heart Assoc. 9, e015331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Chan, S. Y. & Loscalzo, J. The emerging paradigm of network medicine in the study of human disease. Circ. Res. 111, 359–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pasea, L. et al. Personalising the decision for prolonged dual antiplatelet therapy: development, validation and potential impact of prognostic models for cardiovascular events and bleeding in myocardial infarction survivors. Eur. Heart J. 38, 1048–1055 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Needham, C. J., Bradford, J. R., Bulpitt, A. J. & Westhead, D. R. A primer on learning in bayesian networks for computational biology. PLoS Comput. Biol. 3, e129 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Shilaskar, S. & Ghatol, A. Feature selection for medical diagnosis: evaluation for cardiovascular diseases. Expert Syst. Appl. 40, 4146–4153 (2013).

    Article  Google Scholar 

  173. Sanz, J. A. et al. Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system. Appl. Soft Comput. 20, 103–111 (2014).

    Article  Google Scholar 

  174. Libbrecht, M. W. & Noble, W. S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16, 321–332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tarca, A. L. et al. Machine learning and its applications to biology. PLoS Comput. Biol. 3, e116 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Liu, Y. et al. Beatquency domain and machine learning improve prediction of cardiovascular death after acute coronary syndrome. Sci. Rep. 6, 34540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shah, S. J. et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131, 269–279 (2015).

    Article  PubMed  Google Scholar 

  178. Sengupta, P. P. et al. Cognitive machine-learning algorithm for cardiac imaging. Circ. Cardiovasc. Imaging 9, e004330 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Motwani, M. et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur. Heart J. 38, 500–507 (2016).

    PubMed Central  Google Scholar 

  180. Raghunath, S. et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat. Med. 26, 886–891 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Dey, D. et al. Artificial intelligence in cardiovascular imaging: jacc state-of-the-art review. J. Am. Coll. Cardiol. 73, 1317–1335 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. McNally, E. M. et al. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Invest. 123, 19–26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hershberger, R. E., Hedges, D. J. & Morales, A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10, 531–547 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Stark, K. et al. Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy. PLoS Genet. 6, e1001167 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Norton, N. et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6, 144–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Camargo, A. & Azuaje, F. Identification of dilated cardiomyopathy signature genes through gene expression and network data integration. Genomics 92, 404–413 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Liu, Y. et al. RNA-seq identifies novel myocardial gene expression signatures of heart failure. Genomics 105, 83–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Lau, E. et al. Integrated omics dissection of proteome dynamics during cardiac remodeling. Nat. Commun. 9, 120 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Isserlin, R. et al. Systems analysis reveals down-regulation of a network of pro-survival miRNAs drives the apoptotic response in dilated cardiomyopathy. Mol. Biosyst. 11, 239–251 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Inouye, M. et al. An immune response network associated with blood lipid levels. PLoS Genet. 6, e1001113 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Inouye, M. et al. Metabonomic, transcriptomic, and genomic variation of a population cohort. Mol. Syst. Biol. 6, 441 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Bartel, J. et al. The human blood metabolome-transcriptome interface. PLoS Genet. 11, e1005274 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Tabassum, R. et al. Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nat. Commun. 10, 4329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Inouye, M. et al. Novel loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet. 8, e1002907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gallois, A. et al. A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context. Nat. Commun. 10, 4788 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Voros, S. et al. Precision phenotyping, panomics, and system-level bioinformatics to delineate complex biologies of atherosclerosis: Rationale and design of the ‘Genetic Loci and the Burden of Atherosclerotic Lesions’ study. J. Cardiovasc. Comput. Tomogr. 8, 442–451 (2014).

    Article  PubMed  Google Scholar 

  197. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Choobdar, S. et al. Assessment of network module identification across complex diseases. Nat. Methods 16, 843–852 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bennett, L., Kittas, A., Muirhead, G., Papageorgiou, L. G. & Tsoka, S. Detection of composite communities in multiplex biological networks. Sci. Rep. 5, 10345 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Wang, D. & Bodovitz, S. Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol. 28, 281–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  PubMed  CAS  Google Scholar 

  205. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sun, Z. et al. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies. Nat. Commun. 10, 1649 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Liu, Z. et al. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature 551, 100–104 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Cascante, M. et al. Metabolic control analysis in drug discovery and disease. Nat. Biotechnol. 20, 243–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  211. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Karlstädt, A. et al. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst. Biol. 6, 114 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Edwards, L. M. et al. Genome-scale methods converge on key mitochondrial genes for the survival of human cardiomyocytes in hypoxia. Circ. Cardiovasc. Genet. 7, 407–415 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. J. S. Mill A System of Logic Bk III, Ch. 6, §1

  215. Califf, R. M. Future of personalized cardiovascular medicine: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 3301–3309 (2018).

    Article  PubMed  Google Scholar 

  216. Smith, G. D. Epidemiology, epigenetics and the ‘Gloomy Prospect’: embracing randomness in population health research and practice. Int. J. Epidemiol. 40, 537–562 (2011).

    Article  PubMed  Google Scholar 

  217. Trachana, K. et al. Taking systems medicine to heart. Circ. Res. 122, 1276–1289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Leopold, J. A. & Loscalzo, J. Emerging role of precision medicine in cardiovascular disease. Circ. Res. 122, 1302–1315 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lempiäinen, H. et al. Network analysis of coronary artery disease risk genes elucidates disease mechanisms and druggable targets. Sci. Rep. 8, 3434 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Chan, S. Y. & Loscalzo, J. The emerging paradigm of network medicine in the study of human disease. Circ. Res. 111, 359–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Ma’ayan, A. Introduction to network analysis in systems biology. Sci. Signal. 4, tr5 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Schadt, E. E. & Lum, P. Y. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J. Lipid Res. 47, 2601–2613 (2006).

    Article  CAS  PubMed  Google Scholar 

  224. Cheng, L. et al. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks. IEEE Trans. Neural Netw. 22, 714–726 (2011).

    Article  PubMed  Google Scholar 

  225. McGeachie, M. J. et al. CGBayesNets: conditional gaussian bayesian network learning and inference with mixed discrete and continuous data. PLoS Comput. Biol. 10, e1003676 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Sarajlic´, A., Janjic´, V., Stojkovic´, N., Radak, D. J. & Pržulj, N. Network topology reveals key cardiovascular disease genes. PLoS ONE 8, e71537 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Dewey, F. E. et al. Gene coexpression network topology of cardiac development, hypertrophy, and failure. Circ. Cardiovasc. Genet. 4, 26–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  228. Ravasz, E. et al. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    Article  CAS  PubMed  Google Scholar 

  229. de la Fuente, A. From ‘differential expression’ to ‘differential networking’ - identification of dysfunctional regulatory networks in diseases. Trends Genet. 26, 326–333 (2010).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A.J. is a British Heart Foundation (BHF) Clinical Research Training Fellow (FS/16/32/32184). M.M. is a BHF Chair Holder (CH/16/3/32406) and receiving BHF programme grant support (RG/16/14/32397). Research by M.M. was made possible through support from the BIRAX Regenerative Medicine Initiative and funding from the EU Horizon 2020 Research and Innovation Programme under Marie Skłodowska-Curie grant agreement No 813716 (TRAIN-HEART), the Leducq Foundation (13CVD02 and 18CVD02), the Excellence Initiative VASCage (Centre for Promoting Vascular Health in the Ageing Community, project number 868624) of the Austrian Research Promotion Agency FFG (COMET program – Competence Centers for Excellent Technologies) funded by the Austrian Ministry for Transport, Innovation and Technology, the Austrian Ministry for Digital and Economic Affairs and the federal states Tyrol (via Standortagentur), Salzburg, and Vienna (via Vienna Business Agency), and the National Institute of Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS (National Health Service) Foundation Trust and King’s College London in partnership with King’s College Hospital. We thank Raimund Pechlaner (Medical University of Innsbruck, Austria) for providing Fig. 4.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Manuel Mayr.

Ethics declarations

Competing interests

M.M. is a named inventor on patents for cardiovascular biomarkers. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks M. Ala-Korpela and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CALIBER research: https://caliberresearch.org/portal

TopHat: https://ccb.jhu.edu/software/tophat/index.shtml

Glossary

Enrichment analysis

A set of bioinformatics and statistical techniques that identify classes of molecules (such as genes or proteins) that are over-represented in a large dataset and might have an association with a functional term, a biological pathway or disease phenotypes.

Expression quantitative trait loci

(eQTL). Places on the genome in which polymorphisms explain a significant proportion of the variation in mRNA expression levels.

Mass spectrometry

A category of analytical tool that is used to measure the mass-to-charge ratio of one or more molecules present in a sample. Typically, mass spectrometry can be used to identify and quantify unknown compounds and to determine the structure and chemical properties of molecules.

Data-independent acquisition

Mode of data collection in mass spectrometry, in which all precursor ions within defined mass to charge windows are fragmented sequentially, rather than the selection and fragmentation of the most abundant precursor ions in data-dependent acquisition approaches.

Aptamers

Molecules, for example, oligonucleotides, that bind to a specific target molecule and are used to perform high-throughput proteomics quantification such as in the SomaScan (SomaLogic) platform.

Protein quantitative trait loci

(pQTL). Genomic loci that explain a significant proportion of the variation in the quantities of a protein in a set of biosamples.

Interactome

The whole set of molecular interactions in a particular sample, tissue or cell in a specific organism or phenotype.

Nuclear magnetic resonance

(NMR). A physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This physical phenomenon is used in NMR spectroscopy, which is a technique for determining the structure of organic compounds with applications in lipoprotein profiling and metabolomics.

Deep neural network

A form of an artificial neural network with many hidden layers, used in classification, regression, clustering and other machine learning applications.

Fine mapping

Process by which a trait-associated region from a genome-wide association study is analysed to identify the particular genetic variants that are most likely to be causal.

Flux balance analysis

Mathematical method for simulating metabolic processes in genome-scale reconstructions of metabolic networks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Rienks, M., Theofilatos, K. et al. Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol 18, 313–330 (2021). https://doi.org/10.1038/s41569-020-00477-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00477-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing