Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging

Abstract

Diabesity is a term used to describe the combined adverse health effects of obesity and diabetes mellitus. The worldwide dual epidemic of obesity and type 2 diabetes is an important public health issue. Projections estimate a sixfold increase in the number of adults with obesity in 40 years and an increase in the number of individuals with diabetes to 642 million by 2040. Increased adiposity is the strongest risk factor for developing diabetes. Early detection of the effects of diabesity on the cardiovascular system would enable the optimal implementation of effective therapies that prevent atherosclerosis progression, cardiac remodelling, and the resulting ischaemic heart disease and heart failure. Beyond conventional imaging techniques, such as echocardiography, CT and cardiac magnetic resonance, novel post-processing tools and techniques provide information on the biological processes that underlie metabolic heart disease. In this Review, we summarize the effects of obesity and diabetes on myocardial structure and function and illustrate the use of state-of-the-art multimodality cardiac imaging to elucidate the pathophysiology of myocardial dysfunction, prognosticate long-term clinical outcomes and potentially guide treatment strategies.

Key points

  • Diabesity describes the combined detrimental health effects of obesity and diabetes mellitus.

  • Early detection of the effects of diabesity on the cardiovascular system would enable the optimal implementation of effective therapies to prevent ischaemic heart disease and heart failure.

  • Advanced imaging techniques have helped us to understand how diabesity leads to atherosclerosis and cardiac remodelling and dysfunction.

  • Advanced imaging techniques have improved our understanding of how various therapies can halt or reverse the atherosclerotic and cardiac remodelling processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Obesity trends in adults and children in the USA.
Fig. 2: Myocardial substrate metabolism.
Fig. 3: Quantification of cardiac energetics.
Fig. 4: Quantification of myocardial fat.
Fig. 5: Quantification of epicardial fat volume.
Fig. 6: Assessment of cardiac sympathetic innervation.
Fig. 7: Quantification of interstitial fibrosis.

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

    Article  Google Scholar 

  2. Ward, Z. J. et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 381, 2440–2450 (2019).

    Article  PubMed  Google Scholar 

  3. Ogurtsova, K. et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128, 40–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Karwi, Q. G., Uddin, G. M., Ho, K. L. & Lopaschuk, G. D. Loss of metabolic flexibility in the failing heart. Front. Cardiovasc. Med. 5, 68 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mudaliar, S., Alloju, S. & Henry, R. R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care 39, 1115–1122 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Wisneski, J. A. et al. Metabolic fate of extracted glucose in normal human myocardium. J. Clin. Invest. 76, 1819–1827 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Wisneski, J. A., Gertz, E. W., Neese, R. A. & Mayr, M. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J. Clin. Invest. 79, 359–366 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Balaban, R. S. & Heineman, F. W. Control of mitochondrial respiration in the heart in vivo. Mol. Cell Biochem. 89, 191–197 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Montaigne, D. et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 130, 554–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Rider, O. J. et al. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation 125, 1511–1519 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Scheuermann-Freestone, M. et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107, 3040–3046 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Ng, A. C. et al. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 122, 2538–2544 (2010).

    Article  PubMed  Google Scholar 

  14. Hernando, D. et al. Joint estimation of water/fat images and field inhomogeneity map. Magn. Reson. Med. 59, 571–580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kellman, P. et al. Multiecho dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn. Reson. Med. 61, 215–221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng, A. C. T. et al. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ. Cardiovasc. Imaging 11, e007372 (2018).

    Article  PubMed  Google Scholar 

  17. Antonopoulos, A. S. & Antoniades, C. Cardiac magnetic resonance imaging of epicardial and intramyocardial adiposity as an early sign of myocardial disease. Circ. Cardiovasc. Imaging 11, e008083 (2018).

    Article  PubMed  Google Scholar 

  18. Gillinder, L. et al. Quantification of intramyocardial metabolites by proton magnetic resonance spectroscopy. Front. Cardiovasc. Med. 2, 24 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Peterson, L. R. et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109, 2191–2196 (2004).

    Article  PubMed  Google Scholar 

  20. Listenberger, L. L., Ory, D. S. & Schaffer, J. E. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276, 14890–14895 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Chokshi, A. et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 125, 2844–2853 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McGavock, J. M. et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116, 1170–1175 (2007).

    Article  PubMed  Google Scholar 

  23. Burkhoff, D. et al. Influence of metabolic substrate on rat heart function and metabolism at different coronary flows. Am. J. Physiol. 261 (3 Pt 2), H741–H750 (1991).

    Google Scholar 

  24. Sacks, H. S. & Fain, J. N. Human epicardial adipose tissue: a review. Am. Heart J. 153, 907–917 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Djaberi, R. et al. Relation of epicardial adipose tissue to coronary atherosclerosis. Am. J. Cardiol. 102, 1602–1607 (2008).

    Article  PubMed  Google Scholar 

  26. Alexopoulos, N. et al. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210, 150–154 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Nelson, R. H., Prasad, A., Lerman, A. & Miles, J. M. Myocardial uptake of circulating triglycerides in nondiabetic patients with heart disease. Diabetes 56, 527–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Malavazos, A. E. et al. Relation of echocardiographic epicardial fat thickness and myocardial fat. Am. J. Cardiol. 105, 1831–1835 (2010).

    Article  PubMed  Google Scholar 

  29. Higuchi, Y. et al. Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation 109, 1892–1897 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Sinagra, E., Perricone, G., Romano, C. & Cottone, M. Heart failure and anti tumor necrosis factor-alpha in systemic chronic inflammatory diseases. Eur. J. Intern. Med. 24, 385–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Greulich, S. et al. Secretory products of guinea pig epicardial fat induce insulin resistance and impair primary adult rat cardiomyocyte function. J. Cell Mol. Med. 15, 2399–2410 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Greulich, S. et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation 126, 2324–2334 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Obokata, M., Reddy, Y. N. V., Pislaru, S. V., Melenovsky, V. & Borlaug, B. A. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136, 6–19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borlaug, B. A. & Reddy, Y. N. V. The role of the pericardium in heart failure: implications for pathophysiology and treatment. JACC Heart Fail. 7, 574–585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. McInnes, I. B. et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann. Rheum. Dis. 74, 694–702 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Mazurek, T. et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108, 2460–2466 (2003).

    Article  PubMed  Google Scholar 

  37. Park, H. Y. et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp. Mol. Med. 33, 95–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Dahl, T. B. et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation 115, 972–980 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Antonopoulos, A. S. et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/adiponectin signalling. Circ. Res. 118, 842–855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, H. et al. Role of TNF-alpha in vascular dysfunction. Clin. Sci. 116, 219–230 (2009).

    Article  CAS  Google Scholar 

  41. Salazar, J. et al. Epicardial fat: physiological, pathological, and therapeutic implications. Cardiol. Res. Pract. 2016, 1291537 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Iacobellis, G., Leonetti, F., Singh, N. & Sharma, M. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int. J. Cardiol. 115, 272–273 (2007).

    Article  PubMed  Google Scholar 

  43. Iacobellis, G., Ribaudo, M. C., Zappaterreno, A., Iannucci, C. V. & Leonetti, F. Relation between epicardial adipose tissue and left ventricular mass. Am. J. Cardiol. 94, 1084–1087 (2004).

    Article  PubMed  Google Scholar 

  44. Nyman, K. et al. Cardiac steatosis and left ventricular function in men with metabolic syndrome. J. Cardiovasc. Magn. Reson. 15, 103 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao, L., Harrop, D. L., Ng, A. C. T. & Wang, W. Y. S. Epicardial adipose tissue is associated with left atrial dysfunction in people without obstructive coronary artery disease or atrial fibrillation. Can. J. Cardiol. 34, 1019–1025 (2018).

    Article  PubMed  Google Scholar 

  46. Ng, A. C., Goo, S. Y., Roche, N., van der Geest, R. J. & Wang, W. Y. Epicardial Adipose tissue volume and left ventricular myocardial function using 3-dimensional speckle tracking echocardiography. Can. J. Cardiol. 32, 1485–1492 (2016).

    Article  PubMed  Google Scholar 

  47. Kinlay, S., Libby, P. & Ganz, P. Endothelial function and coronary artery disease. Curr. Opin. Lipidol. 12, 383–389 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Vinik, A. I., Freeman, R. & Erbas, T. Diabetic autonomic neuropathy. Semin. Neurol. 23, 365–372 (2003).

    Article  PubMed  Google Scholar 

  49. Hanna, P. et al. Cardiac neuroanatomy - Imaging nerves to define functional control. Auton. Neurosci. 207, 48–58 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Matsunari, I. et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ. Cardiovasc. Imaging 3, 595–603 (2010).

    Article  PubMed  Google Scholar 

  51. Tentolouris, N., Liatis, S. & Katsilambros, N. Sympathetic system activity in obesity and metabolic syndrome. Ann. N. Y. Acad. Sci. 1083, 129–152 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Egan, B. M. Insulin resistance and the sympathetic nervous system. Curr. Hypertens. Rep. 5, 247–254 (2003).

    Article  PubMed  Google Scholar 

  53. Falcao-Pires, I. & Leite-Moreira, A. F. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail. Rev. 17, 325–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Pellegrino, T. et al. Impact of obesity and acquisition protocol on 123I-metaiodobenzylguanidine indexes of cardiac sympathetic innervation. Quant. Imaging Med. Surg. 5, 822–828 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. Allman, K. C. et al. Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxyephedrine and positron emission tomography. J. Am. Coll. Cardiol. 22, 1425–1432 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Vinik, A. I. & Ziegler, D. Diabetic cardiovascular autonomic neuropathy. Circulation 115, 387–397 (2007).

    Article  PubMed  Google Scholar 

  57. Nagamachi, S. et al. Prognostic value of cardiac I-123 metaiodobenzylguanidine imaging in patients with non-insulin-dependent diabetes mellitus. J. Nucl. Cardiol. 13, 34–42 (2006).

    Article  PubMed  Google Scholar 

  58. Hattori, N. et al. Regional abnormality of iodine-123-MIBG in diabetic hearts. J. Nucl. Med. 37, 1985–1990 (1996).

    CAS  PubMed  Google Scholar 

  59. Burke, G. L. et al. The impact of obesity on cardiovascular disease risk factors and subclinical vascular disease: the Multi-Ethnic Study of Atherosclerosis. Arch. Intern. Med. 168, 928–935 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kramer, C. K., Zinman, B. & Retnakaran, R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann. Intern. Med. 159, 758–769 (2013).

    Article  PubMed  Google Scholar 

  61. Chang, Y. et al. Metabolically-healthy obesity and coronary artery calcification. J. Am. Coll. Cardiol. 63, 2679–2686 (2014).

    Article  PubMed  Google Scholar 

  62. Echouffo-Tcheugui, J. B. et al. Natural history of obesity sub-phenotypes: dynamic changes over two decades and prognosis in The Framingham Heart Study. J. Clin. Endocrinol. Metab. 104, 738–752 (2019).

    Article  PubMed  Google Scholar 

  63. Kronmal, R. A. et al. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 115, 2722–2730 (2007).

    Article  PubMed  Google Scholar 

  64. Park, G. M. et al. Comparison of coronary computed tomographic angiographic findings in asymptomatic subjects with versus without diabetes mellitus. Am. J. Cardiol. 116, 372–378 (2015).

    Article  PubMed  Google Scholar 

  65. Malik, S. et al. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes: the multi-ethnic study of atherosclerosis. Diabetes Care 34, 2285–2290 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Scholte, A. J. et al. Prevalence of coronary artery disease and plaque morphology assessed by multi-slice computed tomography coronary angiography and calcium scoring in asymptomatic patients with type 2 diabetes. Heart 94, 290–295 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Nance, J. W. Jr. et al. Incremental prognostic value of different components of coronary atherosclerotic plaque at cardiac CT angiography beyond coronary calcification in patients with acute chest pain. Radiology 264, 679–690 (2012).

    Article  PubMed  Google Scholar 

  68. Kwan, A. C. et al. Coronary artery plaque volume and obesity in patients with diabetes: the factor-64 study. Radiology 272, 690–699 (2014).

    Article  PubMed  Google Scholar 

  69. Oikonomou, E. K. et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 392, 929–939 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Antonopoulos, A. S. et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 9, eaal2658 (2017).

    Article  PubMed  CAS  Google Scholar 

  71. Yun, C. H. et al. Pericardial and thoracic peri-aortic adipose tissues contribute to systemic inflammation and calcified coronary atherosclerosis independent of body fat composition, anthropometric measures and traditional cardiovascular risks. Eur. J. Radiol. 81, 749–756 (2012).

    Article  PubMed  Google Scholar 

  72. Marwan, M. & Achenbach, S. Quantification of epicardial fat by computed tomography: why, when and how? J. Cardiovasc. Comput. Tomogr. 7, 3–10 (2013).

    Article  PubMed  Google Scholar 

  73. Iles, L. et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J. Am. Coll. Cardiol. 52, 1574–1580 (2008).

    Article  PubMed  Google Scholar 

  74. Sibley, C. T. et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology 265, 724–732 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Miller, C. A. et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ. Cardiovasc. Imaging 6, 373–383 (2013).

    Article  PubMed  Google Scholar 

  76. Cavalera, M., Wang, J. & Frangogiannis, N. G. Obesity, metabolic dysfunction, and cardiac fibrosis: pathophysiological pathways, molecular mechanisms, and therapeutic opportunities. Transl. Res. 164, 323–335 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wong, C. Y. et al. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 110, 3081–3087 (2004).

    Article  PubMed  Google Scholar 

  78. Ng, A. C. et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study. Circ. Cardiovasc. Imaging 5, 51–59 (2012).

    Article  PubMed  Google Scholar 

  79. Wong, T. C. et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur. Heart J. 35, 657–664 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Ng, A. C. T. et al. Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am. J. Cardiol. 104, 1398–1401 (2009).

    Article  PubMed  Google Scholar 

  81. Ernande, L. et al. Impaired myocardial radial function in asymptomatic patients with type 2 diabetes mellitus: a speckle-tracking imaging study. J. Am. Soc. Echocardiogr. 23, 1266–1272 (2010).

    Article  PubMed  Google Scholar 

  82. Ernande, L. et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J. Am. Soc. Echocardiogr. 24, 1268–1275 (2011).

    Article  PubMed  Google Scholar 

  83. Yingchoncharoen, T., Agarwal, S., Popovic, Z. B. & Marwick, T. H. Normal ranges of left ventricular strain: a meta-analysis. J. Am. Soc. Echocardiogr. 26, 185–191 (2013).

    Article  PubMed  Google Scholar 

  84. Holland, D. J. et al. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart 101, 1061–1066 (2015).

    Article  PubMed  Google Scholar 

  85. Turkbey, E. B. et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). J. Am. Coll. Cardiol. Imaging 3, 266–274 (2010).

    Article  Google Scholar 

  86. Rider, O. J. et al. Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity. J. Am. Coll. Cardiol. 54, 718–726 (2009).

    Article  PubMed  Google Scholar 

  87. de Divitiis, O. et al. Obesity and cardiac function. Circulation 64, 477–482 (1981).

    Article  PubMed  Google Scholar 

  88. Alpert, M. A. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am. J. Med. Sci. 321, 225–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Ng, A. C. T. et al. Impact of diabetes and increasing body mass index category on left ventricular systolic and diastolic function. J. Am. Soc. Echocardiogr. 31, 916–925 (2018).

    Article  PubMed  Google Scholar 

  90. Gustafson, B., Hammarstedt, A., Andersson, C. X. & Smith, U. Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2276–2283 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Andersson, C. X., Gustafson, B., Hammarstedt, A., Hedjazifar, S. & Smith, U. Inflamed adipose tissue, insulin resistance and vascular injury. Diabetes Metab. Res. Rev. 24, 595–603 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Horwich, T. B. & Fonarow, G. C. Glucose, obesity, metabolic syndrome, and diabetes: relevance to incidence of heart failure. J. Am. Coll. Cardiol. 55, 283–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Seferovic, P. M. & Paulus, W. J. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur. Heart J. 36, 1718–1727c (2015).

    Article  PubMed  Google Scholar 

  94. Paulus, W. J. & Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    Article  PubMed  Google Scholar 

  95. van, H. L. et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117, 43–51 (2008).

    Article  Google Scholar 

  96. Shah, S. J. et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 39, 3439–3450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, J. H. et al. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur. J. Heart Fail. 22, 432–441 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Lupon, J. et al. Heart failure with preserved ejection fraction infrequently evolves toward a reduced phenotype in long-term survivors. Circ. Heart Fail. 12, e005652 (2019).

    Article  PubMed  Google Scholar 

  99. Shah, S. J. et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134, 73–90 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Savji, N. et al. The association of obesity and cardiometabolic traits with Incident HFpEF and HFrEF. JACC Heart Fail. 6, 701–709 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pandey, A. et al. Relationship between physical activity, body mass index, and risk of heart failure. J. Am. Coll. Cardiol. 69, 1129–1142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pandey, A. et al. Body mass index and cardiorespiratory fitness in mid-life and risk of heart failure hospitalization in older age: findings from the Cooper Center longitudinal study. JACC Heart Fail. 5, 367–374 (2017).

    Article  PubMed  Google Scholar 

  103. Kenchaiah, S. et al. Obesity and the risk of heart failure. N. Engl. J. Med. 347, 305–313 (2002).

    Article  PubMed  Google Scholar 

  104. Echouffo-Tcheugui, J. B. et al. Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: findings from Get With The Guidelines-Heart Failure registry. Am. Heart J. 182, 9–20 (2016).

    Article  PubMed  Google Scholar 

  105. Yap, J. et al. Association of diabetes mellitus on cardiac remodeling, quality of life, and clinical outcomes in heart failure with reduced and preserved ejection fraction. J. Am. Heart Assoc. 8, e013114 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kristensen, S. L. et al. Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction: a report from the I-Preserve Trial (Irbesartan in Heart Failure With Preserved Ejection Fraction). Circulation 135, 724–735 (2017).

    Article  PubMed  Google Scholar 

  107. Shah, K. S. et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J. Am. Coll. Cardiol. 70, 2476–2486 (2017).

    Article  PubMed  Google Scholar 

  108. Reddy, Y. N. V. et al. Quality of life in heart failure with preserved ejection fraction: importance of obesity, functional capacity, and physical inactivity. Eur. J. Heart Fail. 22, 1009–1018 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Reddy, Y. N. V. et al. Characterization of the obese phenotype of heart failure with preserved ejection fraction: A RELAX trial ancillary study. Mayo Clin. Proc. 94, 1199–1209 (2019).

    Article  PubMed  Google Scholar 

  110. Reddy, Y. N. V. et al. Adverse renal response to decongestion in the obese phenotype of heart failure with preserved ejection fraction. J. Card. Fail. 26, 101–107 (2020).

    Article  PubMed  Google Scholar 

  111. Shah, A. M. et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation 132, 402–414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kannel, W. B., Hjortland, M. & Castelli, W. P. Role of diabetes in congestive heart failure: the Framingham study. Am. J. Cardiol. 34, 29–34 (1974).

    Article  CAS  PubMed  Google Scholar 

  113. Iribarren, C. et al. Glycemic control and heart failure among adult patients with diabetes. Circulation 103, 2668–2673 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Pazin-Filho, A. et al. HbA 1c as a risk factor for heart failure in persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 51, 2197–2204 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Dandamudi, S. et al. The prevalence of diabetic cardiomyopathy: a population-based study in Olmsted County, Minnesota. J. Card. Fail. 20, 304–309 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Liu, J. H. et al. Incremental prognostic value of global longitudinal strain in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 15, 22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hubert, H. B., Feinleib, M., McNamara, P. M. & Castelli, W. P. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67, 968–977 (1983).

    Article  CAS  PubMed  Google Scholar 

  118. Morkedal, B., Vatten, L. J., Romundstad, P. R., Laugsand, L. E. & Janszky, I. Risk of myocardial infarction and heart failure among metabolically healthy but obese individuals: HUNT (Nord-Trondelag Health Study), Norway. J. Am. Coll. Cardiol. 63, 1071–1078 (2014).

    Article  PubMed  Google Scholar 

  119. Haufe, S. et al. Left ventricular mass and function with reduced-fat or reduced-carbohydrate hypocaloric diets in overweight and obese subjects. Hypertension 59, 70–75 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Algahim, M. F. et al. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am. J. Med. 123, 549–555 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Obert, P. et al. Impact of diet and exercise training-induced weight loss on myocardial mechanics in severely obese adolescents. Obesity 21, 2091–2098 (2013).

    Article  PubMed  Google Scholar 

  122. Lambadiari, V. et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc. Diabetol. 17, 8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cuspidi, C., Rescaldani, M., Tadic, M., Sala, C. & Grassi, G. Effects of bariatric surgery on cardiac structure and function: a systematic review and meta-analysis. Am. J. Hypertens. 27, 146–156 (2014).

    Article  PubMed  Google Scholar 

  124. Aggarwal, R. et al. The effects of bariatric surgery on cardiac structure and function: a systematic review of cardiac imaging outcomes. Obes. Surg. 26, 1030–1040 (2016).

    Article  PubMed  Google Scholar 

  125. Kurnicka, K. et al. Improvement of left ventricular diastolic function and left heart morphology in young women with morbid obesity six months after bariatric surgery. Cardiol. J. 25, 97–105 (2018).

    Article  PubMed  Google Scholar 

  126. Kaier, T. E. et al. Ventricular remodelling post-bariatric surgery: is the type of surgery relevant? A prospective study with 3D speckle tracking. Eur. Heart J. Cardiovasc. Imaging 15, 1256–1262 (2014).

    Article  PubMed  Google Scholar 

  127. Tuluce, K. et al. Early reverse cardiac remodeling effect of laparoscopic sleeve gastrectomy. Obes. Surg. 27, 364–375 (2017).

    Article  PubMed  Google Scholar 

  128. Shin, S. H. et al. Beneficial Effects of bariatric surgery on cardiac structure and function in obesity. Obes. Surg. 27, 620–625 (2017).

    Article  PubMed  Google Scholar 

  129. Leung, M., Xie, M., Durmush, E., Leung, D. Y. & Wong, V. W. Weight loss with sleeve gastrectomy in obese type 2 diabetes mellitus: impact on cardiac function. Obes. Surg. 26, 321–326 (2016).

    Article  PubMed  Google Scholar 

  130. Reddy, Y. N. V. et al. Hemodynamic effects of weight loss in obesity: a systematic review and meta-analysis. JACC Heart Fail. 7, 678–687 (2019).

    Article  PubMed  Google Scholar 

  131. Utz, W. et al. Moderate dietary weight loss reduces myocardial steatosis in obese and overweight women. Int. J. Cardiol. 167, 905–909 (2013).

    Article  PubMed  Google Scholar 

  132. Hsuan, C. F. et al. The effect of surgical weight reduction on left ventricular structure and function in severe obesity. Obesity 18, 1188–1193 (2010).

    Article  PubMed  Google Scholar 

  133. de las Fuentes, L. et al. Effect of moderate diet-induced weight loss and weight regain on cardiovascular structure and function. J. Am. Coll. Cardiol. 54, 2376–2381 (2009).

    Article  CAS  Google Scholar 

  134. Olsen, R. H. et al. A randomised trial comparing the effect of exercise training and weight loss on microvascular function in coronary artery disease. Int. J. Cardiol. 185, 229–235 (2015).

    Article  PubMed  Google Scholar 

  135. Schuster, I. et al. Diastolic dysfunction and intraventricular dyssynchrony are restored by low intensity exercise training in obese men. Obesity 20, 134–140 (2012).

    Article  PubMed  Google Scholar 

  136. Umpierre, D. et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 305, 1790–1799 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Swift, D. L. et al. Effects of clinically significant weight loss with exercise training on insulin resistance and cardiometabolic adaptations. Obesity 24, 812–819 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Hordern, M. D. et al. Effects of exercise intervention on myocardial function in type 2 diabetes. Heart 95, 1343–1349 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Jonker, J. T. et al. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function. Radiology 269, 434–442 (2013).

    Article  PubMed  Google Scholar 

  140. Schrauwen-Hinderling, V. B. et al. Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction. Cardiovasc. Diabetol. 10, 47 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Look AHEAD Research Group et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Article  CAS  Google Scholar 

  142. Connolly, H. M. et al. Valvular heart disease associated with fenfluramine-phentermine. N. Engl. J. Med. 337, 581–588 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Fitzgerald, L. W. et al. Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol. Pharmacol. 57, 75–81 (2000).

    CAS  PubMed  Google Scholar 

  144. James, W. P. et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N. Engl. J. Med. 363, 905–917 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Topol, E. J. et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet 376, 517–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Greenway, F. L. et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 376, 595–605 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Apovian, C. M. et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity 21, 935–943 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Smith, S. R. et al. Combination therapy with naltrexone and bupropion for obesity reduces total and visceral adiposity. Diabetes Obes. Metab. 15, 863–866 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Hollander, P. et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care 36, 4022–4029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Allison, D. B. et al. Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obesity 20, 330–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Gadde, K. M. et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet 377, 1341–1352 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Garvey, W. T. et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am. J. Clin. Nutr. 95, 297–308 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Hsia, D. S. et al. A randomized, double-blind, placebo-controlled, pharmacokinetic and pharmacodynamic study of a fixed-dose combination of phentermine/topiramate in adolescents with obesity. Diabetes Obes. Metab. 22, 480–491 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Fidler, M. C. et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J. Clin. Endocrinol. Metab. 96, 3067–3077 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. O’Neil, P. M. et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity 20, 1426–1436 (2012).

    Article  PubMed  CAS  Google Scholar 

  157. Bohula, E. A. et al. Cardiovascular safety of lorcaserin in overweight or obese patients. N. Engl. J. Med. 379, 1107–1117 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    Article  PubMed  CAS  Google Scholar 

  160. Tamborlane, W. V. et al. Liraglutide in children and adolescents with type 2 diabetes. N. Engl. J. Med. 381, 1786–1787 (2019).

    Article  Google Scholar 

  161. le Roux, C. W. et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 389, 1399–1409 (2017).

    Article  PubMed  CAS  Google Scholar 

  162. Kumarathurai, P. et al. Effects of the glucagon-like peptide-1 receptor agonist liraglutide on systolic function in patients with coronary artery disease and type 2 diabetes: a randomized double-blind placebo-controlled crossover study. Cardiovasc. Diabetol. 15, 105 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. O’Neil, P. M. et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 392, 637–649 (2018).

    Article  PubMed  Google Scholar 

  164. Pratley, R. et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet 394, 39–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Hsu, J. C., Wang, C. Y., Su, M. M.-Y., Lin, L. Y. & Yang, W. S. Effect of empagliflozin on cardiac function, adiposity, and diffuse fibrosis in patients with type 2 diabetes mellitus. Sci. Rep. 9, 15348 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Verma, S. et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation 140, 1693–1702 (2019).

    Article  PubMed  Google Scholar 

  171. Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65, 1190–1195 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Tardif, A. et al. Chronic exposure to beta-hydroxybutyrate impairs insulin action in primary cultures of adult cardiomyocytes. Am. J. Physiol. Endocrinol. Metab. 281, E1205–E1212 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Hasselbaink, D. M., Glatz, J. F., Luiken, J. J. F. P., Roemen, T. H. M. & Van der Vusse, G. J. Ketone bodies disturb fatty acid handling in isolated cardiomyocytes derived from control and diabetic rats. Biochem. J. 371 (Pt 3), 753–760 (2003).

    Article  Google Scholar 

  174. Janardhan, A., Chen, J. & Crawford, P. A. Altered systemic ketone body metabolism in advanced heart failure. Tex. Heart Inst. J. 38, 533–538 (2011).

    PubMed  PubMed Central  Google Scholar 

  175. Beer, M. et al. Effects of exercise training on myocardial energy metabolism and ventricular function assessed by quantitative phosphorus-31 magnetic resonance spectroscopy and magnetic resonance imaging in dilated cardiomyopathy. J. Am. Coll. Cardiol. 51, 1883–1891 (2008).

    Article  PubMed  Google Scholar 

  176. Sjostrom, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  177. Adams, T. D. et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Jamaly, S., Carlsson, L., Peltonen, M., Jacobson, P. & Karason, K. Surgical obesity treatment and the risk of heart failure. Eur. Heart J. 40, 2131–2138 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sundstrom, J. et al. Weight loss and heart failure: a nationwide study of gastric bypass surgery versus intensive lifestyle treatment. Circulation 135, 1577–1585 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Owan, T. et al. Favorable changes in cardiac geometry and function following gastric bypass surgery: 2-year follow-up in the Utah obesity study. J. Am. Coll. Cardiol. 57, 732–739 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Shah, R. V. et al. Weight loss and progressive left ventricular remodelling: The Multi-Ethnic Study of Atherosclerosis (MESA). Eur. J. Prev. Cardiol. 22, 1408–1418 (2015).

    Article  PubMed  Google Scholar 

  182. Hannukainen, J. C. et al. Reversibility of myocardial metabolism and remodelling in morbidly obese patients 6 months after bariatric surgery. Diabetes Obes. Metab. 20, 963–973 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. SCOT-HEART Investigators et al. Coronary CT angiography and 5-year risk of myocardial infarction. N. Engl. J. Med. 379, 924–933 (2018).

    Article  Google Scholar 

  184. Davidson, M. H. et al. Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial. JAMA 281, 235–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. Hollander, P. A. et al. Role of orlistat in the treatment of obese patients with type 2 diabetes. A 1-year randomized double-blind study. Diabetes Care 21, 1288–1294 (1998).

    Article  CAS  PubMed  Google Scholar 

  186. Leblanc, E. S., O’Connor, E., Whitlock, E. P., Patnode, C. D. & Kapka, T. Effectiveness of primary care-relevant treatments for obesity in adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 155, 434–447 (2011).

    Article  PubMed  Google Scholar 

  187. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Astrup, A. et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int. J. Obes. 36, 843–854 (2012).

    Article  CAS  Google Scholar 

  189. Wadden, T. A. et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int. J. Obes. 37, 1443–1451 (2013).

    Article  CAS  Google Scholar 

  190. Fryar, C. D., Carroll, M. D., & Ogden, C. L. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2015–2016. CDC https://www.cdc.gov/nchs/data/hestat/obesity_adult_15_16/obesity_adult_15_16.htm#Tables (2018).

  191. Fryar, C. D., Carroll, M. D., & Ogden, C. L. Prevalence of overweight, obesity, and severe obesity among children and adolescents aged 2–19 years: United States, 1963–1965 through 2015–2016. CDC https://www.cdc.gov/nchs/data/hestat/obesity_child_15_16/obesity_child_15_16.htm#Figure (2018).

  192. Beadle, R. & Frenneaux, M. Magnetic resonance spectroscopy in myocardial disease. Expert Rev. Cardiovasc. Ther. 8, 269–277 (2010).

    Article  PubMed  Google Scholar 

  193. Ng, A. C. et al. Multimodality imaging in diabetic heart disease. Curr. Probl. Cardiol. 36, 9–47 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.C.T.N., B.A.B. and J.J.B. researched data for the article. All the authors provided substantial contribution to the discussion of its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Jeroen J. Bax.

Ethics declarations

Competing interests

V.D. and J.J.B. received speaker fees from Abbott Vascular and Edwards Lifesciences. B.A.B. receives support from the NIH (R01 HL128526). The Department of Cardiology of the Leiden University Medical Centre receives unrestricted research grants from Biotronik, Boston Scientific, Edwards Lifesciences, GE Healthcare and Medtronic. A.C.T.N. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, A.C.T., Delgado, V., Borlaug, B.A. et al. Diabesity: the combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol 18, 291–304 (2021). https://doi.org/10.1038/s41569-020-00465-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00465-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing