Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Catheter ablation for atrial fibrillation: current indications and evolving technologies

Abstract

Catheter ablation for atrial fibrillation (AF) has emerged as an important rhythm-control strategy and is by far the most common cardiac ablation procedure performed worldwide. Current guidelines recommend the procedure in symptomatic patients with paroxysmal or persistent AF who are refractory or intolerant to antiarrhythmic drugs. The procedure might also be considered as a first-line approach in selected asymptomatic patients. Data from large registries indicate that AF ablation might reduce mortality and the risk of heart failure and stroke, but evidence from randomized controlled trials is mixed. Pulmonary vein isolation using point-by-point radiofrequency or with the cryoballoon remains the cornerstone technique in AF ablation. Additional atrial ablation can be performed in patients with persistent AF, but its benefits are largely unproven. Technological advances in the past decade have focused on achieving durable vein isolation, reducing procedure duration and improving safety. Numerous exciting new technologies are in various stages of development. In this Review, we discuss the relevant data to support the recommended and evolving indications for catheter ablation of AF, describe the different ablation techniques, and highlight the latest advances in technology that aim to improve its safety and efficacy. We also discuss lifestyle modification strategies to improve ablation outcomes.

Key points

  • Catheter ablation for atrial fibrillation (AF) is a safe and effective rhythm-control strategy for symptomatic patients who do not benefit from or prefer not to take medical therapy.

  • Catheter ablation is currently indicated only for symptom relief but evidence suggests that it might be indicated for mortality reduction in patients with comorbid AF and heart failure, as well as in selected asymptomatic patients after appropriate discussion and evaluation.

  • Pulmonary vein isolation is the cornerstone of current ablation techniques to treat AF; both radiofrequency ablation and cryoballoon ablation have similar efficacy.

  • Adjunctive ablation strategies that target sites beyond the pulmonary veins can be performed in patients with persistent AF but the best approach and additive benefit remain uncertain.

  • Continued advances in catheter ablation technology aim to improve the outcomes and procedural safety and to reduce the duration of the procedure.

  • Mounting evidence demonstrates the importance of risk-factor management to improve outcomes after catheter ablation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emerging tools for pulmonary vein isolation.

Similar content being viewed by others

References

  1. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 129, 837–847 (2014).

    Article  PubMed  Google Scholar 

  2. Kannel, W. B., Wolf, P. A., Benjamin, E. J. & Levy, D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am. J. Cardiol. 82, 2N–9N (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, T. J. et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham heart study. Circulation 107, 2920–2925 (2003).

    Article  PubMed  Google Scholar 

  4. Chen, L. Y., Benditt, D. G. & Alonso, A. Atrial fibrillation and its association with sudden cardiac death. Circ. J. 78, 2588–2593 (2014).

    Article  PubMed  Google Scholar 

  5. Kistler, P. M. et al. Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. Eur. Heart J. 27, 3045–3056 (2006).

    Article  PubMed  Google Scholar 

  6. Abed, H. S. et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm. 10, 90–100 (2013).

    Article  PubMed  Google Scholar 

  7. Munger, T. M. et al. Electrophysiological and hemodynamic characteristics associated with obesity in patients with atrial fibrillation. J. Am. Coll. Cardiol. 60, 851–860 (2012).

    Article  PubMed  Google Scholar 

  8. Dimitri, H. et al. Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation. Heart Rhythm. 9, 321–327 (2012).

    Article  PubMed  Google Scholar 

  9. Voskoboinik, A. et al. Alcohol abstinence in drinkers with atrial fibrillation. N. Engl. J. Med. 382, 20–28 (2020).

    Article  PubMed  Google Scholar 

  10. Voskoboinik, A. et al. Moderate alcohol consumption is associated with atrial electrical and structural changes: Insights from high-density left atrial electroanatomic mapping. Heart Rhythm. 16, 251–259 (2019).

    Article  PubMed  Google Scholar 

  11. Mark, D. B. et al. Effect of catheter ablation vs medical therapy on quality of life among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA 321, 1275–1285 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Packer, D. L. et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA 321, 1261–1274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prabhu, S. et al. Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA-MRI study. J. Am. Coll. Cardiol. 70, 1949–1961 (2017).

    Article  PubMed  Google Scholar 

  14. Marrouche, N. F. et al. Catheter ablation for atrial fibrillation with heart failure. N. Engl. J. Med. 378, 417–427 (2018).

    Article  PubMed  Google Scholar 

  15. Haïssaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).

    Article  PubMed  Google Scholar 

  16. Gupta, A. et al. Complications of catheter ablation of atrial fibrillation: a systematic review. Circ. Arrhythm. Electrophysiol. 6, 1082–1088 (2013).

    Article  PubMed  Google Scholar 

  17. Calkins, H. et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 20, e1–e160 (2018).

    Article  PubMed  Google Scholar 

  18. Noheria, A., Kumar, A., Wylie, J. V. Jr & Josephson, M. E. Catheter ablation vs antiarrhythmic drug therapy for atrial fibrillation: a systematic review. Arch. Intern. Med. 168, 581–586 (2008).

    Article  PubMed  Google Scholar 

  19. Terasawa, T. et al. Systematic review: comparative effectiveness of radiofrequency catheter ablation for atrial fibrillation. Ann. Intern. Med. 151, 191–202 (2009).

    Article  PubMed  Google Scholar 

  20. Chen, H. S., Wen, J. M., Wu, S. N. & Liu, J. P. Catheter ablation for paroxysmal and persistent atrial fibrillation. Cochrane Database Syst. Rev. 4, CD007101 (2012).

    Google Scholar 

  21. Wilber, D. J. et al. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA 303, 333–340 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Packer, D. L. et al. Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation: first results of the North American Arctic Front (STOP AF) pivotal trial. J. Am. Coll. Cardiol. 61, 1713–1723 (2013).

    Article  PubMed  Google Scholar 

  23. Hakalahti, A., Biancari, F., Nielsen, J. C. & Raatikainen, M. J. Radiofrequency ablation vs. antiarrhythmic drug therapy as first line treatment of symptomatic atrial fibrillation: systematic review and meta-analysis. Europace 17, 370–378 (2015).

    Article  PubMed  Google Scholar 

  24. Chen, Y. W. et al. Pacing or ablation: which is better for paroxysmal atrial fibrillation-related tachycardia-bradycardia syndrome? Pacing Clin. Electrophysiol. 37, 403–411 (2014).

    Article  PubMed  Google Scholar 

  25. Inada, K. et al. The role of successful catheter ablation in patients with paroxysmal atrial fibrillation and prolonged sinus pauses: outcome during a 5-year follow-up. Europace 16, 208–213 (2014).

    Article  PubMed  Google Scholar 

  26. Hocini, M. et al. Reverse remodeling of sinus node function after catheter ablation of atrial fibrillation in patients with prolonged sinus pauses. Circulation 108, 1172–1175 (2003).

    Article  PubMed  Google Scholar 

  27. Piccini, J. P. et al. Comparison of symptoms and quality of life in atrial fibrillation: results from the ORBIT-AF registry. J. Am. Coll. Cardiol. 59, E621 (2012).

    Article  Google Scholar 

  28. Dorian, P. et al. The impairment of health-related quality of life in patients with intermittent atrial fibrillation: implications for the assessment of investigational therapy. J. Am. Coll. Cardiol. 36, 1303–1309 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Jais, P. et al. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study. Circulation 118, 2498–2505 (2008).

    Article  PubMed  Google Scholar 

  30. Morillo, C. A. et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of paroxysmal atrial fibrillation (RAAFT-2): a randomized trial. JAMA 311, 692–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Wazni, O. M. et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA 293, 2634–2640 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Siontis, K. C. et al. Radiofrequency ablation versus antiarrhythmic drug therapy for atrial fibrillation: meta-analysis of quality of life, morbidity, and mortality. JACC Clin. Electrophysiol. 2, 170–180 (2016).

    Article  PubMed  Google Scholar 

  33. Blomstrom-Lundqvist, C. et al. Effect of catheter ablation vs antiarrhythmic medication on quality of life in patients with atrial fibrillation: the CAPTAF randomized clinical trial. JAMA 321, 1059–1068 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kirchhof, P. et al. Outcome parameters for trials in atrial fibrillation: executive summary. Eur. Heart J. 28, 2803–2817 (2007).

    Article  PubMed  Google Scholar 

  35. Friberg, L., Tabrizi, F. & Englund, A. Catheter ablation for atrial fibrillation is associated with lower incidence of stroke and death: data from Swedish health registries. Eur. Heart J. 37, 2478–2487 (2016).

    Article  PubMed  Google Scholar 

  36. Saliba, W. et al. Catheter ablation of atrial fibrillation is associated with reduced risk of stroke and mortality: a propensity score-matched analysis. Heart Rhythm. 14, 635–642 (2017).

    Article  PubMed  Google Scholar 

  37. Srivatsa, U. N. et al. CAABL-AF (California study of ablation for atrial fibrillation): mortality and stroke, 2005 to 2013. Circ. Arrhythm. Electrophysiol. 11, e005739 (2018).

    Article  PubMed  Google Scholar 

  38. Khan, M. N. et al. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N. Engl. J. Med. 359, 1778–1785 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. MacDonald, M. R. et al. Radiofrequency ablation for persistent atrial fibrillation in patients with advanced heart failure and severe left ventricular systolic dysfunction: a randomised controlled trial. Heart 97, 740–747 (2011).

    Article  PubMed  Google Scholar 

  40. Jones, D. G. et al. A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. J. Am. Coll. Cardiol. 61, 1894–1903 (2013).

    Article  PubMed  Google Scholar 

  41. Hunter, R. J. et al. A randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (the CAMTAF trial). Circ. Arrhythm. Electrophysiol. 7, 31–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Di Biase, L. et al. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation 133, 1637–1644 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. Turagam, M. K. et al. Catheter ablation of atrial fibrillation in patients with heart failure: a meta-analysis of randomized controlled trials. Ann. Intern. Med. 170, 41–50 (2019).

    Article  PubMed  Google Scholar 

  44. Noseworthy, P. A. et al. Generalizability of the CASTLE-AF trial: catheter ablation for patients with atrial fibrillation and heart failure in routine practice. Heart Rhythm. 17, 1057–1065 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brieger, D. et al. National heart foundation of Australia and the cardiac society of Australia and New Zealand: Australian clinical guidelines for the diagnosis and management of atrial fibrillation 2018. Heart Lung Circ. 27, 1209–1266 (2018).

    Article  PubMed  Google Scholar 

  46. Walters, T. E. et al. Psychological distress and suicidal ideation in patients with atrial fibrillation: prevalence and response to management strategy. J. Am. Heart Assoc. 7, e005502 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Son, Y. J., Baek, K. H., Lee, S. J. & Seo, E. J. Health-related quality of life and associated factors in patients with atrial fibrillation: an integrative literature review. Int. J. Env. Res. Public. Health 16, 3042 (2019).

    Article  Google Scholar 

  48. Australian and New Zealand Clinical Trials Registry. ANZCTR.org.au https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374243 (2020).

  49. Bunch, T. J. et al. Atrial fibrillation is independently associated with senile, vascular, and Alzheimer’s dementia. Heart Rhythm. 7, 433–437 (2010).

    Article  PubMed  Google Scholar 

  50. Knecht, S. et al. Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. Eur. Heart J. 29, 2125–2132 (2008).

    Article  PubMed  Google Scholar 

  51. Santangeli, P. et al. Atrial fibrillation and the risk of incident dementia: a meta-analysis. Heart Rhythm. 9, 1761–1768 (2012).

    Article  PubMed  Google Scholar 

  52. Bunch, T. J. et al. Patients treated with catheter ablation for atrial fibrillation have long-term rates of death, stroke, and dementia similar to patients without atrial fibrillation. J. Cardiovasc. Electrophysiol. 22, 839–845 (2011).

    Article  PubMed  Google Scholar 

  53. Medi, C. et al. Subtle post-procedural cognitive dysfunction after atrial fibrillation ablation. J. Am. Coll. Cardiol. 62, 531–539 (2013).

    Article  PubMed  Google Scholar 

  54. Gaita, F. et al. Radiofrequency catheter ablation of atrial fibrillation: a cause of silent thromboembolism? Magnetic resonance imaging assessment of cerebral thromboembolism in patients undergoing ablation of atrial fibrillation. Circulation 122, 1667–1673 (2010).

    Article  PubMed  Google Scholar 

  55. Lickfett, L. et al. Cerebral diffusion-weighted magnetic resonance imaging: a tool to monitor the thrombogenicity of left atrial catheter ablation. J. Cardiovasc. Electrophysiol. 17, 1–7 (2006).

    PubMed  Google Scholar 

  56. Neumann, T. et al. MEDAFI-Trial (Micro-embolization during ablation of atrial fibrillation): comparison of pulmonary vein isolation using cryoballoon technique vs. radiofrequency energy. Europace 13, 37–44 (2011).

    Article  PubMed  Google Scholar 

  57. Jin, M. N. et al. Atrial fibrillation catheter ablation improves 1-year follow-up cognitive function, especially in patients with impaired cognitive function. Circ. Arrhythm. Electrophysiol. 12, e007197 (2019).

    PubMed  Google Scholar 

  58. Mohanty, S. et al. Catheter ablation of asymptomatic longstanding persistent atrial fibrillation: impact on quality of life, exercise performance, arrhythmia perception, and arrhythmia-free survival. J. Cardiovasc. Electrophysiol. 25, 1057–1064 (2014).

    Article  PubMed  Google Scholar 

  59. Wu, L. et al. Comparison of radiofrequency catheter ablation between asymptomatic and symptomatic persistent atrial fibrillation: a propensity score matched analysis. J. Cardiovasc. Electrophysiol. 27, 531–535 (2016).

    Article  PubMed  Google Scholar 

  60. Kalman, J. M., Sanders, P., Rosso, R. & Calkins, H. Should we perform catheter ablation for asymptomatic atrial fibrillation? Circulation 136, 490–499 (2017).

    Article  PubMed  Google Scholar 

  61. John, R. M. & Kumar, S. Sinus node and atrial arrhythmias. Circulation 133, 1892–1900 (2016).

    Article  PubMed  Google Scholar 

  62. Lamas, G. A. et al. The mode selection trial (MOST) in sinus node dysfunction: design, rationale, and baseline characteristics of the first 1000 patients. Am. Heart J. 140, 541–551 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Ferrer, M. I. The sick sinus syndrome in atrial disease. JAMA 206, 645–646 (1968).

    Article  CAS  PubMed  Google Scholar 

  64. Khaykin, Y. et al. Pulmonary vein isolation for atrial fibrillation in patients with symptomatic sinus bradycardia or pauses. J. Cardiovasc. Electrophysiol. 15, 784–789 (2004).

    Article  PubMed  Google Scholar 

  65. Kundi, H. et al. Relation of frailty to outcomes after catheter ablation of atrial fibrillation. Am. J. Cardiol. 125, 1317–1323 (2020).

    Article  PubMed  Google Scholar 

  66. Nademanee, K. et al. Benefits and risks of catheter ablation in elderly patients with atrial fibrillation. Heart Rhythm. 12, 44–51 (2015).

    Article  PubMed  Google Scholar 

  67. Metzner, I. et al. Ablation of atrial fibrillation in patients ≥75 years: long-term clinical outcome and safety. Europace 18, 543–549 (2016).

    Article  PubMed  Google Scholar 

  68. Bunch, T. J. et al. Long-term clinical efficacy and risk of catheter ablation for atrial fibrillation in octogenarians. Pacing Clin. Electrophysiol. 33, 146–152 (2010).

    Article  PubMed  Google Scholar 

  69. Santangeli, P. et al. Catheter ablation of atrial fibrillation in octogenarians: safety and outcomes. J. Cardiovasc. Electrophysiol. 23, 687–693 (2012).

    Article  PubMed  Google Scholar 

  70. Go, A. S. et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (ATRIA) Study. JAMA 285, 2370–2375 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Agnihotri, K. et al. Abstract 18919: outcomes of catheter ablation for atrial fibrillation in the elderly- data from the largest inpatient registry (2011–2014). Circulation 136, A18919 (2017).

    Google Scholar 

  72. Kirchhof, P. et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. J. Cardiothorac. Surg. 50, e1–e88 (2016).

    Article  PubMed  Google Scholar 

  73. Furlanello, F. et al. Radiofrequency catheter ablation of atrial fibrillation in athletes referred for disabling symptoms preventing usual training schedule and sport competition. J. Cardiovasc. Electrophysiol. 19, 457–462 (2008).

    Article  PubMed  Google Scholar 

  74. Koopman, P. et al. Efficacy of radiofrequency catheter ablation in athletes with atrial fibrillation. Europace 13, 1386–1393 (2011).

    Article  PubMed  Google Scholar 

  75. Calvo, N. et al. Efficacy of circumferential pulmonary vein ablation of atrial fibrillation in endurance athletes. Europace 12, 30–36 (2010).

    Article  PubMed  Google Scholar 

  76. Decroocq, M. et al. No impact of sports practice before or after atrial fibrillation ablation on procedure efficacy in athletes: a case-control study. Europace 21, 1833–1842 (2019).

    Article  PubMed  Google Scholar 

  77. Haïssaguerre, M. et al. Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 101, 1409–1417 (2000).

    Article  PubMed  Google Scholar 

  78. Pappone, C. et al. Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation 100, 1203–1208 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Arentz, T. et al. Small or large isolation areas around the pulmonary veins for the treatment of atrial fibrillation? Results from a prospective randomized study. Circulation 115, 3057–3063 (2007).

    Article  PubMed  Google Scholar 

  80. Redfearn, D. P. et al. Noninvasive assessment of atrial substrate change after wide area circumferential ablation: a comparison with segmental pulmonary vein isolation. Ann. Noninvasive Electrocardiol. 12, 329–337 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Takigawa, M. et al. Simultaneous isolation of superior and inferior pulmonary veins on both the left and right sides could yield better outcomes in patients with paroxysmal atrial fibrillation. Europace 17, 732–740 (2015).

    Article  PubMed  Google Scholar 

  82. Straube, F. et al. First-line catheter ablation of paroxysmal atrial fibrillation: outcome of radiofrequency vs. cryoballoon pulmonary vein isolation. Europace 18, 368–375 (2016).

    Article  PubMed  Google Scholar 

  83. Kis, Z. et al. The short and long-term efficacy of pulmonary vein isolation as a sole treatment strategy for paroxysmal atrial fibrillation: a systematic review and meta-analysis. Curr. Cardiol. Rev. 13, 199–208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Andrade, J. G. et al. Cryoballoon or radiofrequency ablation for atrial fibrillation assessed by continuous monitoring: a randomized clinical trial. Circulation 140, 1779–1788 (2019).

    Article  PubMed  Google Scholar 

  85. Vogt, J. et al. Long-term outcomes after cryoballoon pulmonary vein isolation: results from a prospective study in 605 patients. J. Am. Coll. Cardiol. 61, 1707–1712 (2013).

    Article  PubMed  Google Scholar 

  86. Ouyang, F. et al. Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the pulmonary veins: lessons from double Lasso technique. Circulation 111, 127–135 (2005).

    Article  PubMed  Google Scholar 

  87. Hussein, A. et al. Use of ablation index-guided ablation results in high rates of durable pulmonary vein isolation and freedom from arrhythmia in persistent atrial fibrillation patients: the PRAISE study results. Circ. Arrhythm. Electrophysiol. 11, e006576 (2018).

    Article  PubMed  Google Scholar 

  88. Mattia, L. et al. Prospective evaluation of lesion index-guided pulmonary vein isolation technique in patients with paroxysmal atrial fibrillation: 1-year follow-up. J. Atr. Fibrillation 10, 1858 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Das, M. et al. Ablation index, a novel marker of ablation lesion quality: prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values. Europace 19, 775–783 (2017).

    PubMed  Google Scholar 

  90. Pranata, R., Vania, R. & Huang, I. Ablation-index guided versus conventional contact-force guided ablation in pulmonary vein isolation: systematic review and meta-analysis. Indian Pacing Electrophysiol. J. 19, 155–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Taghji, P. et al. Evaluation of a strategy aiming to enclose the pulmonary veins with contiguous and optimized radiofrequency lesions in paroxysmal atrial fibrillation: a pilot study. JACC Clin. Electrophysiol. 4, 99–108 (2018).

    Article  PubMed  Google Scholar 

  92. Duytschaever, M. et al. Long-term impact of catheter ablation on arrhythmia burden in low-risk patients with paroxysmal atrial fibrillation: the CLOSE to CURE study. Heart Rhythm. 17, 535–543 (2020).

    Article  PubMed  Google Scholar 

  93. Dello Russo, A. et al. Lesion index: a novel guide in the path of successful pulmonary vein isolation. J. Interv. Card. Electrophysiol. 55, 27–34 (2019).

    Article  PubMed  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT03906461 (2020).

  95. Luik, A. et al. Cryoballoon versus open irrigated radiofrequency ablation in patients with paroxysmal atrial fibrillation: the prospective, randomized, controlled, noninferiority FreezeAF study. Circulation 132, 1311–1319 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kuck, K. H. et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N. Engl. J. Med. 374, 2235–2245 (2016).

    Article  PubMed  Google Scholar 

  97. Dorwarth, U. et al. Pulmonary vein electrophysiology during cryoballoon ablation as a predictor for procedural success. J. Interv. Card. Electrophysiol. 32, 205–211 (2011).

    Article  PubMed  Google Scholar 

  98. Straube, F. et al. The fourth cryoballoon generation with a shorter tip to facilitate real-time pulmonary vein potential recording: feasibility and safety results. J. Cardiovasc. Electrophysiol. 30, 918–925 (2019).

    Article  PubMed  Google Scholar 

  99. Ciconte, G. et al. Spontaneous and adenosine-induced pulmonary vein reconnection after cryoballoon ablation with the second-generation device. J. Cardiovasc. Electrophysiol. 25, 845–851 (2014).

    Article  PubMed  Google Scholar 

  100. Aryana, A. et al. Procedural and biophysical indicators of durable pulmonary vein isolation during cryoballoon ablation of atrial fibrillation. Heart Rhythm. 13, 424–432 (2016).

    Article  PubMed  Google Scholar 

  101. Osorio, T. G., Coutino, H. E., Brugada, P., Chierchia, G. B. & De Asmundis, C. Recent advances in cryoballoon ablation for atrial fibrillation. Expert Rev. Med. Devices 16, 799–808 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Heeger, C. H. et al. Second-generation cryoballoon-based pulmonary vein isolation: lessons from a five-year follow-up. Int. J. Cardiol. 312, 73–80 (2020).

    Article  PubMed  Google Scholar 

  103. Voskoboinik, A. et al. Revisiting pulmonary vein isolation alone for persistent atrial fibrillation: a systematic review and meta-analysis. Heart Rhythm. 14, 661–667 (2017).

    Article  PubMed  Google Scholar 

  104. Clarnette, J. A. et al. Outcomes of persistent and long-standing persistent atrial fibrillation ablation: a systematic review and meta-analysis. Europace 20, f366–f376 (2018).

    Article  PubMed  Google Scholar 

  105. Boveda, S. et al. Single-procedure outcomes and quality-of-life improvement 12 months post-cryoballoon ablation in persistent atrial fibrillation: results from the multicenter CRYO4PERSISTENT AF trial. JACC Clin. Electrophysiol. 4, 1440–1447 (2018).

    Article  PubMed  Google Scholar 

  106. Bhaskaran, A. et al. Five seconds of 50–60 W radio frequency atrial ablations were transmural and safe: an in vitro mechanistic assessment and force-controlled in vivo validation. Europace 19, 874–880 (2017).

    PubMed  Google Scholar 

  107. Pambrun, T. et al. High-power (40–50 W) radiofrequency ablation guided by unipolar signal modification for pulmonary vein isolation: experimental findings and clinical results. Circ. Arrhythm. Electrophysiol. 12, e007304 (2019).

    Article  PubMed  Google Scholar 

  108. Reddy, V. Y. et al. Pulmonary vein isolation with a novel multielectrode radiofrequency balloon catheter that allows directionally tailored energy delivery: short-term outcomes from a multicenter first-in-human study (RADIANCE). Circ. Arrhythm. Electrophysiol. 12, e007541 (2019).

    Article  PubMed  Google Scholar 

  109. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03683030 (2020).

  110. Sohara, H. et al. Hot balloon ablation of the pulmonary veins for paroxysmal AF: a multicenter randomized trial in Japan. J. Am. Coll. Cardiol. 68, 2747–2757 (2016).

    Article  PubMed  Google Scholar 

  111. Nagashima, K. et al. Hot balloon versus cryoballoon ablation for atrial fibrillation: lesion characteristics and middle-term outcomes. Circ. Arrhythm. Electrophysiol. 11, e005861 (2018).

    Article  PubMed  Google Scholar 

  112. Al-Ahmad, A. Assessment of the safety and performance of a novel RF balloon catheter system to isolate pulmonary veins: results of the multicenter AF-FICIENT 1 Trial. Presented at the European Heart Rhythm Association. (2019).

  113. Barkagan, M. et al. Expandable lattice electrode ablation catheter: a novel radiofrequency platform allowing high current at low density for rapid, titratable, and durable lesions. Circ. Arrhythm. Electrophysiol. 12, e007090 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Anter, E. et al. A lattice-tip temperature-controlled radiofrequency ablation catheter for wide thermal lesions. JACC Clin. Electrophysiol. 6, 507–519 (2020).

    Article  PubMed  Google Scholar 

  115. Mercader, M. et al. Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps. Am. J. Physiol. Heart Circ. Physiol 302, H2131–H2138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Swift, L. et al. Visualization of epicardial cryoablation lesions using endogenous tissue fluorescence. Circ. Arrhythm. Electrophysiol. 7, 929–937 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kuroki, K. et al. Endogenous nicotinamide adenine dinucleotide fluorescence during irrigated RF ablation: a novel strategy to identify lesion gaps [abstract S-PO06-076]. Heart Rhythm. 16, S522–S572 (2019).

    Article  Google Scholar 

  118. Dukkipati, S. R. et al. Pulmonary vein isolation using a visually guided laser balloon catheter: the first 200-patient multicenter clinical experience. Circ. Arrhythm. Electrophysiol. 6, 467–472 (2013).

    Article  PubMed  Google Scholar 

  119. Schmidt, B. et al. Laser balloon or wide-area circumferential irrigated radiofrequency ablation for persistent atrial fibrillation: a multicenter prospective randomized study. Circ. Arrhythm. Electrophysiol. 10, e005767 (2017).

    PubMed  Google Scholar 

  120. Neuzil, P. et al. Performance of a 3rd generation visually-guided laser balloon catheter for pulmonary vein isolation: results of the X3 study [abstract S-AB26-01]. Heart Rhythm. 16, S1–S92 (2019).

    Article  Google Scholar 

  121. Davalos, R. V., Mir, I. L. & Rubinsky, B. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33, 223–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Edd, J. F., Horowitz, L., Davalos, R. V., Mir, L. M. & Rubinsky, B. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53, 1409–1415 (2006).

    Article  PubMed  Google Scholar 

  123. Scheinman, M. M., Morady, F., Hess, D. S. & Gonzalez, R. Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA 248, 851–855 (1982).

    Article  CAS  PubMed  Google Scholar 

  124. Kaminska, I. et al. Electroporation-induced changes in normal immature rat myoblasts (H9C2). Gen. Physiol. Biophys. 31, 19–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Koruth, J. et al. Preclinical evaluation of pulsed field ablation: electrophysiological and histological assessment of thoracic vein isolation. Circ. Arrhythm. Electrophysiol. 12, e007781 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Koruth, J. S. et al. Pulsed field ablation versus radiofrequency ablation: esophageal injury in a novel porcine model. Circ. Arrhythm. Electrophysiol. 13, e008303 (2020).

    PubMed  PubMed Central  Google Scholar 

  127. Stewart, M. T. et al. Intracardiac pulsed field ablation: proof of feasibility in a chronic porcine model. Heart Rhythm. 16, 754–764 (2019).

    Article  PubMed  Google Scholar 

  128. Reddy, V. Y. et al. Ablation of atrial fibrillation with pulsed electric fields: an ultra-rapid, tissue-selective modality for cardiac ablation. JACC Clin. Electrophysiol. 4, 987–995 (2018).

    Article  PubMed  Google Scholar 

  129. Reddy, V. Y. et al. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J. Am. Coll. Cardiol. 74, 315–326 (2019).

    Article  PubMed  Google Scholar 

  130. Lee, S. H. et al. Predictors of non-pulmonary vein ectopic beats initiating paroxysmal atrial fibrillation: implication for catheter ablation. J. Am. Coll. Cardiol. 46, 1054–1059 (2005).

    Article  PubMed  Google Scholar 

  131. Santangeli, P. et al. Prevalence and distribution of focal triggers in persistent and long-standing persistent atrial fibrillation. Heart Rhythm. 13, 374–382 (2016).

    Article  PubMed  Google Scholar 

  132. Gianni, C., Mohanty, S., Trivedi, C., Di Biase, L. & Natale, A. Novel concepts and approaches in ablation of atrial fibrillation: the role of non-pulmonary vein triggers. Europace 20, 1566–1576 (2018).

    Article  PubMed  Google Scholar 

  133. Di Biase, L. et al. Left atrial appendage: an underrecognized trigger site of atrial fibrillation. Circulation 122, 109–118 (2010).

    Article  PubMed  Google Scholar 

  134. Chen, S. A. & Tai, C. T. Catheter ablation of atrial fibrillation originating from the non-pulmonary vein foci. J. Cardiovasc. Electrophysiol. 16, 229–232 (2005).

    Article  PubMed  Google Scholar 

  135. Kim, K. H. et al. Prevalence of right atrial non-pulmonary vein triggers in atrial fibrillation patients treated with thyroid hormone replacement therapy. J. Interv. Card. Electrophysiol. 49, 111–117 (2017).

    Article  PubMed  Google Scholar 

  136. Lim, H. S. et al. Complexity and distribution of drivers in relation to duration of persistent atrial fibrillation. J. Am. Coll. Cardiol. 69, 1257–1269 (2017).

    Article  PubMed  Google Scholar 

  137. Al Rawahi, M. et al. Incidence of left atrial appendage triggers in patients with atrial fibrillation undergoing catheter ablation. JACC Clin. Electrophysiol. 6, 21–30 (2020).

    Article  PubMed  Google Scholar 

  138. Yorgun, H. et al. Left atrial appendage isolation in addition to pulmonary vein isolation in persistent atrial fibrillation: one-year clinical outcome after cryoballoon-based ablation. Europace 19, 758–768 (2017).

    Article  PubMed  Google Scholar 

  139. Di Biase, L. et al. Left atrial appendage isolation in patients with longstanding persistent AF undergoing catheter ablation: BELIEF trial. J. Am. Coll. Cardiol. 68, 1929–1940 (2016).

    Article  PubMed  Google Scholar 

  140. Romero, J. et al. Benefit of left atrial appendage electrical isolation for persistent and long-standing persistent atrial fibrillation: a systematic review and meta-analysis. Europace 20, 1268–1278 (2018).

    Article  PubMed  Google Scholar 

  141. Kim, Y. G. et al. Electrical isolation of the left atrial appendage increases the risk of ischemic stroke and transient ischemic attack regardless of postisolation flow velocity. Heart Rhythm. 15, 1746–1753 (2018).

    Article  PubMed  Google Scholar 

  142. Rillig, A. et al. Unexpectedly high incidence of stroke and left atrial appendage thrombus formation after electrical isolation of the left atrial appendage for the treatment of atrial tachyarrhythmias. Circ. Arrhythm. Electrophysiol. 9, e003461 (2016).

    PubMed  Google Scholar 

  143. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02513797 (2020).

  144. Alasady, M. et al. Myocardial infarction and atrial fibrillation: importance of atrial ischemia. Circ. Arrhythm. Electrophysiol. 6, 738–745 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Mun, H. S. et al. Does additional linear ablation after circumferential pulmonary vein isolation improve clinical outcome in patients with paroxysmal atrial fibrillation? Prospective randomised study. Heart 98, 480–484 (2012).

    Article  PubMed  Google Scholar 

  146. Kim, J. S. et al. Does isolation of the left atrial posterior wall improve clinical outcomes after radiofrequency catheter ablation for persistent atrial fibrillation?: a prospective randomized clinical trial. Int. J. Cardiol. 181, 277–283 (2015).

    Article  PubMed  Google Scholar 

  147. Lim, T. W. et al. Single-ring posterior left atrial (box) isolation results in a different mode of recurrence compared with wide antral pulmonary vein isolation on long-term follow-up: longer atrial fibrillation-free survival time but similar survival time free of any atrial arrhythmia. Circ. Arrhythm. Electrophysiol. 5, 968–977 (2012).

    Article  PubMed  Google Scholar 

  148. Thiyagarajah, A. et al. Feasibility, safety, and efficacy of posterior wall isolation during atrial fibrillation ablation: a systematic review and meta-analysis. Circ. Arrhythm. Electrophysiol. 12, e007005 (2019).

    Article  PubMed  Google Scholar 

  149. Lee, J. M. et al. The electrical isolation of the left atrial posterior wall in catheter ablation of persistent atrial fibrillation. JACC Clin. Electrophysiol. 5, 1253–1261 (2019).

    Article  PubMed  Google Scholar 

  150. Hansen, B. J. et al. Human atrial fibrillation drivers resolved with integrated functional and structural imaging to benefit clinical mapping. JACC Clin. Electrophysiol. 4, 1501–1515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Jalife, J. Rotors and spiral waves in atrial fibrillation. J. Cardiovasc. Electrophysiol. 14, 776–780 (2003).

    Article  PubMed  Google Scholar 

  152. Narayan, S. M. et al. Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: extended follow-up of the CONFIRM trial (Conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation). J. Am. Coll. Cardiol. 63, 1761–1768 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Miller, J. M. et al. Clinical benefit of ablating localized sources for human atrial fibrillation: the Indiana university FIRM registry. J. Am. Coll. Cardiol. 69, 1247–1256 (2017).

    Article  PubMed  Google Scholar 

  154. Narayan, S. M. et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J. Am. Coll. Cardiol. 60, 628–636 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Balouch, M. et al. Impact of rotor temperospatial stability on acute and one-year atrial fibrillation ablation outcomes. Clin. Cardiol. 40, 383–389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Berntsen, R. F., Haland, T. F., Skardal, R. & Holm, T. Focal impulse and rotor modulation as a stand-alone procedure for the treatment of paroxysmal atrial fibrillation: a within-patient controlled study with implanted cardiac monitoring. Heart Rhythm. 13, 1768–1774 (2016).

    Article  PubMed  Google Scholar 

  157. Gianni, C. et al. Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation. Heart Rhythm. 13, 830–835 (2016).

    Article  PubMed  Google Scholar 

  158. Steinberg, J. S. et al. Focal impulse and rotor modulation: acute procedural observations and extended clinical follow-up. Heart Rhythm. 14, 192–197 (2017).

    Article  PubMed  Google Scholar 

  159. Brachmann, J. et al. Prospective randomized comparison of rotor ablation versus conventional ablation for treatment of persistent atrial fibrillation - the REAFFIRM trial [abstract S-LBCT01-02]. Heart Rhythm. 16, 963–965 (2019).

    Article  Google Scholar 

  160. Cochet, H. et al. Relationship between fibrosis detected on Late Gadolinium-enhanced cardiac magnetic resonance and re-entrant activity assessed with electrocardiographic imaging in human persistent atrial fibrillation. JACC Clin. Electrophysiol. 4, 17–29 (2018).

    Article  PubMed  Google Scholar 

  161. Haissaguerre, M. et al. Driver domains in persistent atrial fibrillation. Circulation 130, 530–538 (2014).

    Article  PubMed  Google Scholar 

  162. Knecht, S. et al. Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. Europace 19, 1302–1309 (2017).

    Article  PubMed  Google Scholar 

  163. Calvo, D., Rubin, J., Perez, D. & Moris, C. Ablation of rotor domains effectively modulates dynamics of human: long-standing persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 10, e005740 (2017).

    PubMed  Google Scholar 

  164. Takahashi, Y. et al. Endocardial contact mapping of the left atrial appendage in persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 31, 112–118 (2020).

    Article  PubMed  Google Scholar 

  165. Wolf, M. et al. Identification of repetitive atrial activation patterns in persistent atrial fibrillation by direct contact high-density electrogram mapping. J. Cardiovasc. Electrophysiol. 30, 2704–2712 (2019).

    Article  PubMed  Google Scholar 

  166. Honarbakhsh, S. et al. A novel mapping system for panoramic mapping of the left atrium: application to detect and characterize localized sources maintaining atrial fibrillation. JACC Clin. Electrophysiol. 4, 124–134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Honarbakhsh, S. et al. Ablation in persistent atrial fibrillation using stochastic trajectory analysis of ranked signals (STAR) mapping method. JACC Clin. Electrophysiol. 5, 817–829 (2019).

    Article  PubMed  Google Scholar 

  168. Nademanee, K. et al. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol. 43, 2044–2053 (2004).

    Article  PubMed  Google Scholar 

  169. Verma, A. et al. Approaches to catheter ablation for persistent atrial fibrillation. N. Engl. J. Med. 372, 1812–1822 (2015).

    Article  PubMed  Google Scholar 

  170. Vogler, J. et al. Pulmonary vein isolation versus defragmentation: the CHASE-AF clinical trial. J. Am. Coll. Cardiol. 66, 2743–2752 (2015).

    Article  PubMed  Google Scholar 

  171. Atienza, F. et al. Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation: a noninferiority randomized multicenter RADAR-AF trial. J. Am. Coll. Cardiol. 64, 2455–2467 (2014).

    Article  PubMed  Google Scholar 

  172. Sanders, P. et al. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 112, 789–797 (2005).

    Article  PubMed  Google Scholar 

  173. Kharbanda, R. K., Garcia-Izquierdo, E., Bogers, A. & De Groot, N. M. S. Focal activation patterns: breaking new grounds in the pathophysiology of atrial fibrillation. Expert. Rev. Cardiovasc. Ther. 16, 479–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Cox, J. L. et al. The surgical treatment of atrial fibrillation. II. Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation. J. Thorac. Cardiovasc. Surg. 101, 406–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  175. Kumagai, K., Khrestian, C. & Waldo, A. L. Simultaneous multisite mapping studies during induced atrial fibrillation in the sterile pericarditis model. Insights into the mechanism of its maintenance. Circulation 95, 511–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  176. Schuessler, R. B., Grayson, T. M., Bromberg, B. I., Cox, J. L. & Boineau, J. P. Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium. Circ. Res. 71, 1254–1267 (1992).

    Article  CAS  PubMed  Google Scholar 

  177. de Groot, N. et al. Direct proof of endo-epicardial asynchrony of the atrial wall during atrial fibrillation in humans. Circ. Arrhythm. Electrophysiol. 9, e003648 (2016).

    Article  PubMed  Google Scholar 

  178. Marrouche, N. F. et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311, 498–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Harrison, J. L. et al. Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. Eur. Heart J. 35, 1486–1495 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02529319 (2020).

  181. Kottkamp, H., Berg, J., Bender, R., Rieger, A. & Schreiber, D. Box isolation of fibrotic areas (BIFA): a patient-tailored substrate modification approach for ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 27, 22–30 (2016).

    Article  PubMed  Google Scholar 

  182. Nalliah, C. J., Sanders, P., Kottkamp, H. & Kalman, J. M. The role of obesity in atrial fibrillation. Eur. Heart J. 37, 1565–1572 (2016).

    Article  PubMed  Google Scholar 

  183. Wang, T. J. et al. Obesity and the risk of new-onset atrial fibrillation. JAMA 292, 2471–2477 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Abed, H. S. et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA 310, 2050–2060 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Pathak, R. K. et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J. Am. Coll. Cardiol. 65, 2159–2169 (2015).

    Article  PubMed  Google Scholar 

  186. Pathak, R. K. et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. J. Am. Coll. Cardiol. 64, 2222–2231 (2014).

    Article  PubMed  Google Scholar 

  187. Winkle, R. A. et al. Impact of obesity on atrial fibrillation ablation: Patient characteristics, long-term outcomes, and complications. Heart Rhythm. 14, 819–827 (2017).

    Article  PubMed  Google Scholar 

  188. Middeldorp, M. E. et al. Prevention and regressive effect of weight-loss and risk factor modification on atrial fibrillation: the REVERSE-AF study. Europace 20, 1929–1935 (2018).

    Article  PubMed  Google Scholar 

  189. Letsas, K. P. et al. The impact of body mass index on the efficacy and safety of catheter ablation of atrial fibrillation. Int. J. Cardiol. 164, 94–98 (2013).

    Article  PubMed  Google Scholar 

  190. De Maat, G. E. et al. Obesity is associated with impaired long-term success of pulmonary vein isolation: a plea for risk factor management before ablation. Open Heart 5, e000771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Glover, B. M. et al. Impact of body mass index on the outcome of catheter ablation of atrial fibrillation. Heart 105, 244–250 (2019).

    Article  PubMed  Google Scholar 

  192. Providencia, R. et al. Impact of body mass index on the outcomes of catheter ablation of atrial fibrillation: a European observational multicenter study. J. Am. Heart Assoc. 8, e012253 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kalman, J. M., Nalliah, C. J. & Sanders, P. Surgical weight loss and atrial fibrillation: a convenient paradigm to evaluate a complex problem. J. Am. Coll. Cardiol. 68, 2505–2507 (2016).

    Article  PubMed  Google Scholar 

  194. Donnellan, E. et al. Outcomes of atrial fibrillation ablation in morbidly obese patients following bariatric surgery compared with a nonobese cohort. Circ. Arrhythm. Electrophysiol. 12, e007598 (2019).

    Article  PubMed  Google Scholar 

  195. Jamaly, S. et al. Bariatric surgery and the risk of new-onset atrial fibrillation in Swedish obese subjects. J. Am. Coll. Cardiol. 68, 2497–2504 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04050969 (2020).

  197. January, C. T. et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS Guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation 140, e125–e151 (2019).

    Article  PubMed  Google Scholar 

  198. Elliott, A. D. et al. Association between physical activity and risk of incident arrhythmias in 402 406 individuals: evidence from the UK Biobank cohort. Eur. Heart J. 41, 1479–1486 (2020).

    Article  PubMed  Google Scholar 

  199. Malmo, V. et al. Aerobic interval training reduces the burden of atrial fibrillation in the short term: a randomized trial. Circulation 133, 466–473 (2016).

    Article  PubMed  Google Scholar 

  200. Pathak, R. K. et al. Impact of cardiorespiratory fitness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J. Am. Coll. Cardiol. 66, 985–996 (2015).

    Article  PubMed  Google Scholar 

  201. Abdulla, J. & Nielsen, J. R. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace 11, 1156–1159 (2009).

    Article  PubMed  Google Scholar 

  202. Andersen, K. et al. Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur. Heart J. 34, 3624–3631 (2013).

    Article  PubMed  Google Scholar 

  203. Mohanty, S. et al. Differential association of exercise intensity with risk of atrial fibrillation in men and women: evidence from a meta-analysis. J. Cardiovasc. Electrophysiol. 27, 1021–1029 (2016).

    Article  PubMed  Google Scholar 

  204. Kwon, Y. et al. Association of sleep characteristics with atrial fibrillation: the multi-ethnic study of atherosclerosis. Thorax 70, 873–879 (2015).

    Article  PubMed  Google Scholar 

  205. Holmqvist, F. et al. Impact of obstructive sleep apnea and continuous positive airway pressure therapy on outcomes in patients with atrial fibrillation-results from the outcomes registry for better informed treatment of atrial fibrillation (ORBIT-AF). Am. Heart J. 169, 647–654.e2 (2015).

    Article  PubMed  Google Scholar 

  206. Stevenson, I. H. et al. Prevalence of sleep disordered breathing in paroxysmal and persistent atrial fibrillation patients with normal left ventricular function. Eur. Heart J. 29, 1662–1669 (2008).

    Article  PubMed  Google Scholar 

  207. Li, L. et al. Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: a meta-analysis of observational studies. Europace 16, 1309–1314 (2014).

    Article  PubMed  Google Scholar 

  208. Shukla, A. et al. Effect of obstructive sleep apnea treatment on atrial fibrillation recurrence: a meta-analysis. JACC Clin. Electrophysiol. 1, 41–51 (2015).

    Article  PubMed  Google Scholar 

  209. Nalliah, C. J., Sanders, P. & Kalman, J. M. Obstructive sleep apnea treatment and atrial fibrillation: a need for definitive evidence. J. Cardiovasc. Electrophysiol. 27, 1001–1010 (2016).

    Article  PubMed  Google Scholar 

  210. Australian New Zealand Clinical Trials Registry. ANZCTR.org.au https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=369157 (2016).

  211. Qiao, Y. et al. Impact of alcohol consumption on substrate remodeling and ablation outcome of paroxysmal atrial fibrillation. J. Am. Heart Assoc. 4, e002349 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Kuck, K. H. et al. Catheter ablation versus best medical therapy in patients with persistent atrial fibrillation and congestive heart failure: the randomized AMICA trial. Circ. Arrhythm. Electrophysiol. 12, e007731 (2019).

    PubMed  Google Scholar 

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01420393 (2020).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03062241 (2017).

  215. Nilsson, B., Chen, X., Pehrson, S. & Svendsen, J. H. The effectiveness of a high output/short duration radiofrequency current application technique in segmental pulmonary vein isolation for atrial fibrillation. Europace 8, 962–965 (2006).

    Article  PubMed  Google Scholar 

  216. Winkle, R. A. et al. Low complication rates using high power (45–50 W) for short duration for atrial fibrillation ablations. Heart Rhythm. 16, 165–169 (2019).

    Article  PubMed  Google Scholar 

  217. Vassallo, F. et al. Comparison of high-power short-duration (HPSD) ablation of atrial fibrillation using a contact force-sensing catheter and conventional technique: initial results. J. Cardiovasc. Electrophysiol. 30, 1877–1883 (2019).

    Article  PubMed  Google Scholar 

  218. Leshem, E. et al. High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization. JACC Clin. Electrophysiol. 4, 467–479 (2018).

    Article  PubMed  Google Scholar 

  219. Barkagan, M. et al. High-power and short-duration ablation for pulmonary vein isolation: safety, efficacy, and long-term durability. J. Cardiovasc. Electrophysiol. 29, 1287–1296 (2018).

    Article  PubMed  Google Scholar 

  220. Kottmaier, M. et al. Safety and outcome of very high-power short-duration ablation using 70 W for pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Europace 22, 388–393 (2020).

    Article  PubMed  Google Scholar 

  221. Reddy, V. Y. et al. Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions: the QDOT-FAST trial. JACC Clin. Electrophysiol. 5, 778–786 (2019).

    Article  PubMed  Google Scholar 

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03775512 (2020).

Download references

Acknowledgements

R.P. is supported by a National Health and Medical Research Council (NHMRC) research scholarship. J.M.K. is supported by a practitioner fellowship from the NHMRC.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, wrote the manuscript and contributed to the discussion of its content. J.M.K. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jonathan M. Kalman.

Ethics declarations

Competing interests

J.M.K. has received research and fellowship support via an institutional fund from Abbott, Biosense Webster and Medtronic. He has also received conference travel support from Biosense Webster. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks E. Gerstenfeld, A. Natale and S. Thomas for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parameswaran, R., Al-Kaisey, A.M. & Kalman, J.M. Catheter ablation for atrial fibrillation: current indications and evolving technologies. Nat Rev Cardiol 18, 210–225 (2021). https://doi.org/10.1038/s41569-020-00451-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00451-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing