Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lifestyle interventions for the prevention and treatment of hypertension


Hypertension affects approximately one third of the world’s adult population and is a major cause of premature death despite considerable advances in pharmacological treatments. Growing evidence supports the use of lifestyle interventions for the prevention and adjuvant treatment of hypertension. In this Review, we provide a summary of the epidemiological research supporting the preventive and antihypertensive effects of major lifestyle interventions (regular physical exercise, body weight management and healthy dietary patterns), as well as other less traditional recommendations such as stress management and the promotion of adequate sleep patterns coupled with circadian entrainment. We also discuss the physiological mechanisms underlying the beneficial effects of these lifestyle interventions on hypertension, which include not only the prevention of traditional risk factors (such as obesity and insulin resistance) and improvements in vascular health through an improved redox and inflammatory status, but also reduced sympathetic overactivation and non-traditional mechanisms such as increased secretion of myokines.

Key points

  • Strong evidence supports the benefits of regular physical activity and exercise for the prevention and management of hypertension.

  • Reducing body weight to normal in individuals with overweight or obesity reduces the risk of hypertension, but further evidence is needed on the long-term efficacy of this strategy.

  • Sodium intake restriction reduces blood pressure, particularly in patients with hypertension, and the Dietary Approaches to Stop Hypertension (DASH) diet is the most effective dietary approach to prevent hypertension and to reduce blood pressure in individuals with pre-hypertension or hypertension.

  • Shift work, short sleep duration or poor sleep and other forms of circadian disruption might increase the risk of hypertension.

  • Some forms of psychological stress, such as post-traumatic stress disorder, seem to be associated with a higher risk of hypertension, but strong evidence on the potential antihypertensive benefits of stress management techniques is lacking.

  • In contrast to common antihypertensive medications, lifestyle interventions, especially exercise, reduce blood pressure through multisystemic and ‘non-traditional’ mechanisms (for example, not only by improving vascular health or reducing sympathetic overactivation).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Physiological mechanisms underlying the benefits of healthy lifestyle patterns on hypertension.
Fig. 2: Blood pressure profile of non-westernized populations.
Fig. 3: Characteristic lifestyle factors in non-westernized and westernized populations.
Fig. 4: Lifestyle factors with blood pressure-reducing effects.


  1. 1.

    Benjamin, E. J. et al. Heart disease and stroke statistics–2018 update: a report from the American Heart Association. Circulation 137, E67–E492 (2018).

    PubMed  Google Scholar 

  2. 2.

    Virani, S. S. et al. Heart disease and stroke statistics–2020 update: a report from the American Heart Association. Circulation 141, E139–E596 (2020).

    PubMed  Google Scholar 

  3. 3.

    Frieden, T. R. & Jaffe, M. G. Saving 100 million lives by improving global treatment of hypertension and reducing cardiovascular disease risk factors. J. Clin. Hypertens. 20, 208–211 (2018).

    Google Scholar 

  4. 4.

    Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71, e13–e115 (2018).

    CAS  Google Scholar 

  5. 5.

    Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).

    PubMed  Google Scholar 

  6. 6.

    Pazoki, R. et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137, 653–661 (2018).

    PubMed  Google Scholar 

  7. 7.

    Raichlen, D. A. et al. Physical activity patterns and biomarkers of cardiovascular disease risk in hunter-gatherers. Am. J. Hum. Biol. 29, e22919 (2017).

    Google Scholar 

  8. 8.

    Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389, 1730–1739 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Lindeberg, S., Nilsson‐Ehle, P., Terént, A., Vessby, B. & Schertén, B. Cardiovascular risk factors in a Melanesian population apparently free from stroke and ischaemic heart disease: the Kitava study. J. Intern. Med. 236, 331–340 (1994).

    CAS  PubMed  Google Scholar 

  10. 10.

    Hollenberg, N. K. et al. Aging, acculturation, salt intake, and hypertension in the Kuna of Panama. Hypertension 29, 171–176 (1997).

    CAS  PubMed  Google Scholar 

  11. 11.

    Mueller, N. T., Noya-Alarcon, O., Contreras, M., Appel, L. J. & Dominguez-Bello, M. G. Association of age with blood pressure across the lifespan in isolated Yanomami and Yekwana villages. JAMA Cardiol. 3, 1247–1249 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Cornelissen, V. A., Buys, R. & Smart, N. A. Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J. Hypertens. 31, 639–648 (2013).

    CAS  PubMed  Google Scholar 

  13. 13.

    Dimeo, F. et al. Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension 60, 653–658 (2012).

    CAS  PubMed  Google Scholar 

  14. 14.

    Filippou, C. D. et al. Dietary Approaches to Stop Hypertension (DASH) diet and blood pressure reduction in adults with and without hypertension: a systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 11, 1150–1160 (2020).

    PubMed  Google Scholar 

  15. 15.

    He, F. J., Tan, M., Ma, Y. & MacGregor, G. A. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75, 632–647 (2020).

    CAS  PubMed  Google Scholar 

  16. 16.

    Appel, L. J. et al. Effects of reduced sodium intake on hypertension control in older individuals: results from the trial of nonpharmacologic interventions in the elderly (TONE). Arch. Intern. Med. 161, 685–693 (2001).

    CAS  PubMed  Google Scholar 

  17. 17.

    Neter, J. E., Stam, B. E., Kok, F. J., Grobbee, D. E. & Geleijnse, J. M. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42, 878–884 (2003).

    CAS  PubMed  Google Scholar 

  18. 18.

    Pescatello, L. S. et al. Assessing the existing professional exercise recommendations for hypertension: a review and recommendations for future research priorities. Mayo Clin. Proc. 90, 801–812 (2015).

    PubMed  Google Scholar 

  19. 19.

    Pescatello, L. S. et al. Physical activity to prevent and treat hypertension: a systematic review. Med. Sci. Sports Exerc. 51, 1314–1323 (2019).

    PubMed  Google Scholar 

  20. 20.

    Liu, X. et al. Dose-response association between physical activity and incident hypertension: a systematic review and meta-analysis of cohort studies. Hypertension 69, 813–820 (2017).

    CAS  PubMed  Google Scholar 

  21. 21.

    Naci, H. et al. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br. J. Sports Med. 53, 859–869 (2019).

    PubMed  Google Scholar 

  22. 22.

    Valenzuela, P., Ruilope, L. & Lucia, A. Muscling in on resistant hypertension. Circulation 141, 240–242 (2020).

    PubMed  Google Scholar 

  23. 23.

    Diaz, K. M. et al. Healthy lifestyle factors and risk of cardiovascular events and mortality in treatment-resistant hypertension: the reasons for geographic and racial differences in stroke study. Hypertension 64, 465–471 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ozemek, C., Tiwari, S. C., Sabbahi, A., Carbone, S. & Lavie, C. J. Impact of therapeutic lifestyle changes in resistant hypertension. Prog. Cardiovasc. Dis. 63, 4–9 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Guimaraes, G. V. et al. Heated water-based exercise training reduces 24-hour ambulatory blood pressure levels in resistant hypertensive patients: a randomized controlled trial (HEx trial). Int. J. Cardiol. 172, 434–441 (2014).

    PubMed  Google Scholar 

  26. 26.

    Davenport, M. H. et al. Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: a systematic review and meta-analysis. Br. J. Sports Med. 52, 1367–1375 (2018).

    PubMed  Google Scholar 

  27. 27.

    Magro-Malosso, E. R., Saccone, G., Di Tommaso, M., Roman, A. & Berghella, V. Exercise during pregnancy and risk of gestational hypertensive disorders: a systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 96, 921–931 (2017).

    PubMed  Google Scholar 

  28. 28.

    MacDonald, H. V. et al. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J. Am. Heart Assoc. 5, e003231 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Corso, L. M. L. et al. Is concurrent training efficacious antihypertensive therapy? A meta-analysis. Med. Sci. Sports Exerc. 48, 2398–2406 (2016).

    CAS  PubMed  Google Scholar 

  30. 30.

    Smart, N. A. et al. Effects of isometric resistance training on resting blood pressure. J. Hypertens. 37, 1927–1938 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Jin, Y. Z., Yan, S. & Yuan, W. X. Effect of isometric handgrip training on resting blood pressure in adults: a meta-analysis of randomized controlled trials. J. Sports Med. Phys. Fit. 57, 154–160 (2017).

    Google Scholar 

  32. 32.

    Boutcher, Y. N. & Boutcher, S. H. Exercise intensity and hypertension: what’s new? J. Hum. Hypertens. 31, 157–164 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Mirzababaei, A., Mozaffari, H., Shab-Bidar, S., Milajerdi, A. & Djafarian, K. Risk of hypertension among different metabolic phenotypes: a systematic review and meta-analysis of prospective cohort studies. J. Hum. Hypertens. 33, 365–377 (2019).

    PubMed  Google Scholar 

  34. 34.

    Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol. 15, 367–385 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kotchen, T. A. Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am. J. Hypertens. 23, 1170–1178 (2010).

    CAS  PubMed  Google Scholar 

  36. 36.

    Greenfield, J. et al. Modulation of blood pressure by central melanocortinegic pathways. N. Engl. J. Med. 360, 44–52 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Vissers, D. et al. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS ONE 8, e56415 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Verheggen, R. J. H. M. et al. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes. Rev. 17, 664–690 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Verboven, K. et al. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 8, 4677 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Schlecht, I., Fischer, B., Behrens, G. & Leitzmann, M. F. Relations of visceral and abdominal subcutaneous adipose tissue, body mass index, and waist circumference to serum concentrations of parameters of chronic inflammation. Obes. Facts 9, 144–157 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Alvehus, M., Burén, J., Sjöström, M., Goedecke, J. & Olsson, T. The human visceral fat depot has a unique inflammatory profile. Obesity 18, 879–883 (2010).

    CAS  PubMed  Google Scholar 

  42. 42.

    da Silva, A. A. et al. Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Can. J. Cardiol. 36, 671–682 (2020).

    PubMed  Google Scholar 

  43. 43.

    Sasaki, N., Ozono, R., Higashi, Y., Maeda, R. & Kihara, Y. Association of insulin resistance, plasma glucose level, and serum insulin level with hypertension in a population with different stages of impaired glucose metabolism. J. Am. Heart Assoc. 9, e015546 (2020).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Arshi, B. et al. Sex-specific relations between fasting insulin, insulin resistance and incident hypertension: 8.9 years follow-up in a Middle-Eastern population. J. Hum. Hypertens. 29, 260–267 (2015).

    CAS  PubMed  Google Scholar 

  45. 45.

    Mbanya, J., Thomas, T., Wilkinson, R., Alberti, K. & Taylor, R. Hypertension and hyperinsulinaemia: a relation in diabetes but not essential hypertension. Lancet 1, 733–734 (1988).

    CAS  PubMed  Google Scholar 

  46. 46.

    Swift, D. L., Houmard, J. A., Slentz, C. A. & Kraus, W. E. Effects of aerobic training with and without weight loss on insulin sensitivity and lipids. PLoS ONE 13, e0196637 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zhang, X. et al. Effect of lifestyle interventions on glucose regulation among adults without impaired glucose tolerance or diabetes: a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 123, 149–164 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Umpierre, D. et al. Physical activity advice only or structured with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 305, 1790–1799 (2011).

    CAS  PubMed  Google Scholar 

  49. 49.

    Azushima, K., Morisawa, N., Tamura, K. & Nishiyama, A. Recent research advances in renin-angiotensin-aldosterone system receptors. Curr. Hypertens. Rep. 22, 22 (2020).

    PubMed  Google Scholar 

  50. 50.

    Povlsen, A. L., Grimm, D., Wehland, M., Infanger, M. & Krüger, M. The vasoactive Mas receptor in essential hypertension. J. Clin. Med. 9, 267 (2020).

    CAS  PubMed Central  Google Scholar 

  51. 51.

    Goessler, K., Polito, M. & Cornelissen, V. A. Effect of exercise training on the renin-angiotensin-aldosterone system in healthy individuals: a systematic review and meta-analysis. Hypertens. Res. 39, 119–126 (2016).

    CAS  PubMed  Google Scholar 

  52. 52.

    Bleakley, C., Hamilton, P. K., Pumb, R., Harbinson, M. & Mcveigh, G. E. Endothelial function in hypertension: victim or culprit? J. Clin. Hypertens. 17, 651–654 (2015).

    Google Scholar 

  53. 53.

    Sabbahi, A., Arena, R., Elokda, A. & Phillips, S. A. Exercise and hypertension: uncovering the mechanisms of vascular control. Prog. Cardiovasc. Dis. 59, 226–234 (2016).

    PubMed  Google Scholar 

  54. 54.

    Renna, N. F., De Las Heras, N. & Miatello, R. M. Pathophysiology of vascular remodeling in hypertension. Int. J. Hypertens. 2013, 808353 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Green, D. J., Hopman, M. T. E., Padilla, J., Laughlin, M. H. & Thijssen, D. H. J. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol. Rev. 97, 495–528 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Palatini, P., Puato, M., Rattazzi, M. & Pauletto, P. Effect of regular physical activity on carotid intima-media thickness. Results from a 6-year prospective study in the early stage of hypertension. Blood Press. 20, 37–44 (2011).

    PubMed  Google Scholar 

  57. 57.

    Watson, T., Goon, P. K. Y. & Lip, G. Y. H. Endothelial progenitor cells, endothelial dysfunction, inflammation, and oxidative stress in hypertension. Antioxid. Redox Signal. 10, 1079–1088 (2008).

    CAS  PubMed  Google Scholar 

  58. 58.

    Brandes, R. P. Recent advances in hypertension: endothelial dysfunction and hypertension. Hypertension 64, 924–928 (2014).

    CAS  PubMed  Google Scholar 

  59. 59.

    Taddei, S. et al. Vasoconstriction to endogenous endothelin-1 is increased in the peripheral circulation of patients with essential hypertension. Circulation 100, 1680–1683 (1999).

    CAS  PubMed  Google Scholar 

  60. 60.

    Guzik, T. J. & Touyz, R. M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension 70, 660–667 (2017).

    CAS  PubMed  Google Scholar 

  61. 61.

    Taddei, S., Virdis, A., Ghiadoni, L., Magagna, A. & Salvetti, A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 97, 2222–2229 (1998).

    CAS  PubMed  Google Scholar 

  62. 62.

    Schulz, E., Anter, E. & Keaney, J. F. Jr. Oxidative stress, antioxidants, and endothelial function. Curr. Med. Chem. 11, 1093–1104 (2004).

    CAS  PubMed  Google Scholar 

  63. 63.

    Ashor, A. W., Lara, J., Siervo, M., Celis-Morales, C. & Mathers, J. C. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 9, e110034 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Ashor, A. W. et al. Exercise modalities and endothelial function: a systematic review and dose–response meta-analysis of randomized controlled trials. Sport. Med. 45, 279–296 (2015).

    Google Scholar 

  65. 65.

    Pedralli, M. L. et al. Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: a randomized clinical trial. Sci. Rep. 10, 7628 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Vamvakis, A. et al. Impact of intensive lifestyle treatment (diet plus exercise) on endothelial and vascular function, arterial stiffness and blood pressure in stage 1 hypertension: results of the HINTreat randomized controlled trial. Nutrients 12, 1326 (2020).

    CAS  PubMed Central  Google Scholar 

  67. 67.

    Pedralli, M. L. et al. Effects of exercise training on endothelial function in individuals with hypertension: a systematic review with meta-analysis. J. Am. Soc. Hypertens. 12, e65–e75 (2018).

    PubMed  Google Scholar 

  68. 68.

    de Mello, V. D. F. et al. Effect of weight loss on cytokine messenger RNA expression in peripheral blood mononuclear cells of obese subjects with the metabolic syndrome. Metabolism 57, 192–199 (2008).

    PubMed  Google Scholar 

  69. 69.

    Hambrecht, R. et al. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107, 3152–3158 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Agarwal, D. et al. Role of proinflammatory cytokines and redox homeostasis in exercise-induced delayed progression of hypertension in spontaneously hypertensive rats. Hypertension 54, 1393–1400 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Francescomarino, S. D. I., Sciartilli, A., Valerio, V. D. I., Baldassarre, A. D. I. & Gallina, S. The effect of physical exercise on endothelial function. Sport. Med. 39, 797–812 (2009).

    Google Scholar 

  72. 72.

    de Sousa, C. V. et al. The antioxidant effect of exercise: a systematic review and meta-analysis. Sport. Med. 47, 277–293 (2017).

    Google Scholar 

  73. 73.

    Dantas, F. F. O. et al. Effect of strength training on oxidative stress and the correlation of the same with forearm vasodilatation and blood pressure of hypertensive elderly women: a randomized clinical trial. PLoS ONE 11, e0161178 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Calvillo, L., Gironacci, M. M., Crotti, L., Meroni, P. L. & Parati, G. Neuroimmune crosstalk in the pathophysiology of hypertension. Nat. Rev. Cardiol. 16, 476–490 (2019).

    PubMed  Google Scholar 

  75. 75.

    Jayedi, A. et al. Inflammation markers and risk of developing hypertension: a meta-analysis of cohort studies. Heart 105, 686–692 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Chamarthi, B. et al. Inflammation and hypertension: the interplay of interleukin-6, dietary sodium, and the renin-angiotensin system in humans. Am. J. Hypertens. 24, 1143–1148 (2011).

    CAS  PubMed  Google Scholar 

  77. 77.

    Bartoloni, E., Alunno, A. & Gerli, R. Hypertension as a cardiovascular risk factor in autoimmune rheumatic diseases. Nat. Rev. Cardiol. 15, 33–44 (2018).

    PubMed  Google Scholar 

  78. 78.

    Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Fedewa, M. V., Hathaway, E. D. & Ward-Ritacco, C. L. Effect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and non-randomised controlled trials. Br. J. Sports Med. 51, 670–676 (2017).

    PubMed  Google Scholar 

  80. 80.

    Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: beyond attenuating traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    CAS  PubMed  Google Scholar 

  81. 81.

    Starkie, R., Ostrowski, S. R., Jauffred, S., Febbraio, M. & Pedersen, B. K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J. 17, 884–886 (2003).

    CAS  PubMed  Google Scholar 

  82. 82.

    Steensberg, A., Fischer, C. P., Keller, C., Møller, K. & Pedersen, B. K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 285, E433–E437 (2003).

    CAS  PubMed  Google Scholar 

  83. 83.

    Fu, J. et al. Irisin lowers blood pressure by improvement of endothelial dysfunction via AMPK-Akt-eNOS-NO pathway in the spontaneously hypertensive rat. J. Am. Heart Assoc. 5, e003433 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Zhang, W. et al. Central and peripheral irisin differentially regulate blood pressure. Cardiovasc. Drugs Ther. 29, 121–127 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Zhang, L. J., Xie, Q., Tang, C. S. & Zhang, A. H. Expressions of irisin and urotensin II and their relationships with blood pressure in patients with preeclampsia. Clin. Exp. Hypertens. 39, 460–467 (2017).

    CAS  PubMed  Google Scholar 

  86. 86.

    Ebert, T. et al. Serum levels of the myokine irisin in relation to metabolic and renal function. Eur. J. Endocrinol. 170, 501–506 (2014).

    CAS  PubMed  Google Scholar 

  87. 87.

    Chen, K., Zhou, M., Wang, X., Li, S. & Yang, D. The role of myokines and adipokines in hypertension and hypertension-related complications. Hypertens. Res. 42, 1544–1551 (2019).

    CAS  PubMed  Google Scholar 

  88. 88.

    Yan, B. et al. Association of serum irisin with metabolic syndrome in obese Chinese adults. PLoS ONE 9, e94235 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Fiuza-Luces, C., Garatachea, N., Berger, N. A. & Lucia, A. Exercise is the real polypill. Physiology 28, 330–358 (2013).

    CAS  PubMed  Google Scholar 

  90. 90.

    Rostás, I. et al. In middle-aged and old obese patients, training intervention reduces leptin level: a meta-analysis. PLoS ONE 12, e0182801 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    He, Z. et al. Myokine/adipokine response to “aerobic” exercise: is it just a matter of exercise load? Front. Physiol. 10, 691 (2019).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Ruiz-Casado, A. et al. Exercise and the hallmarks of cancer. Trends Cancer 3, 423–441 (2017).

    CAS  PubMed  Google Scholar 

  93. 93.

    De Souza Batista, C. M. et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56, 1655–1661 (2007).

    PubMed  Google Scholar 

  94. 94.

    Adeghate, E. An update on the biology and physiology of resistin. Cell. Mol. Life Sci. 61, 2485–2496 (2004).

    CAS  PubMed  Google Scholar 

  95. 95.

    Fisher, J. P. & Paton, J. F. R. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J. Hum. Hypertens. 26, 463–475 (2012).

    CAS  PubMed  Google Scholar 

  96. 96.

    Paton, J. F. R. et al. The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension 61, 5–13 (2013).

    CAS  PubMed  Google Scholar 

  97. 97.

    Besnier, F. et al. Exercise training-induced modification in autonomic nervous system: an update for cardiac patients. Ann. Phys. Rehabil. Med. 60, 27–35 (2017).

    PubMed  Google Scholar 

  98. 98.

    Deley, G., Picard, G. & Taylor, J. Arterial baroreflex control of cardiac vagal outflow in older individuals can be enhanced by aerobic exercise training. Hypertension 53, 826–832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Laterza, M. C. et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension 49, 1298–1306 (2007).

    CAS  PubMed  Google Scholar 

  100. 100.

    Poorolajal, J., Hooshmand, E., Bahrami, M. & Ameri, P. How much excess weight loss can reduce the risk of hypertension? J. Public Heal. 39, e95–e102 (2017).

    Google Scholar 

  101. 101.

    Sabaka, P. et al. The effects of body weight loss and gain on arterial hypertension control: an observational prospective study. Eur. J. Med. Res. 22, 43 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Semlitsch, T. et al. Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst. Rev. 3, CD008274 (2016).

    PubMed  Google Scholar 

  103. 103.

    Chandra, A. et al. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J. Am. Coll. Cardiol. 64, 997–1002 (2014).

    PubMed  Google Scholar 

  104. 104.

    Hall, J. E., Do Carmo, J. M., Da Silva, A. A., Wang, Z. & Hall, M. E. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res. 116, 991–1006 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Zhang, M., Hu, T., Zhang, S. & Zhou, L. Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci. Rep. 5, 18495 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Schneider, R., Golzman, B., Turkot, S., Kogan, J. & Oren, S. Effect of weight loss on blood pressure, arterial compliance, and insulin resistance in normotensive obese subjects. Am. J. Med. Sci. 330, 157–160 (2005).

    PubMed  Google Scholar 

  107. 107.

    Abd El-Kader, S. M. & Al-Jiffri, O. H. Impact of weight reduction on insulin resistance, adhesive molecules and adipokines dysregulation among obese type 2 diabetic patients. Afr. Health Sci. 18, 873–883 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Capel, F. et al. Macrophages and adipocytes in human obesity. Diabetes 58, 1558–1567 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    De Mello, V. D. F. et al. Downregulation of genes involved in NFκB activation in peripheral blood mononuclear cells after weight loss is associated with the improvement of insulin sensitivity in individuals with the metabolic syndrome: The GENOBIN study. Diabetologia 51, 2060–2067 (2008).

    CAS  PubMed  Google Scholar 

  110. 110.

    Ho, J. T. et al. Moderate weight loss reduces renin and aldosterone but does not influence basal or stimulated pituitary-adrenal axis function. Horm. Metab. Res. 39, 694–699 (2007).

    CAS  PubMed  Google Scholar 

  111. 111.

    Engeli, S. et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45, 356–362 (2005).

    CAS  PubMed  Google Scholar 

  112. 112.

    Ghanim, H. et al. Decreases in neprilysin and vasoconstrictors and increases in vasodilators following bariatric surgery. Diabetes Obes. Metab. 20, 2029–2033 (2018).

    CAS  PubMed  Google Scholar 

  113. 113.

    Ne, J. Y. A. et al. Obesity, arterial function and arterial structure – a systematic review and meta-analysis. Obes. Sci. Pract. 3, 171–184 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Joris, P. J., Zeegers, M. P. & Mensink, R. P. Weight loss improves fasting flow-mediated vasodilation in adults: a meta-analysis of intervention studies. Atherosclerosis 239, 21–30 (2015).

    CAS  PubMed  Google Scholar 

  115. 115.

    Himbert, C., Thompson, H. & Ulrich, C. M. Effects of intentional weight loss on markers of oxidative stress, DNA repair and telomere length – a systematic review. Obes. Facts 10, 648–665 (2018).

    Google Scholar 

  116. 116.

    Pérez, L. M. et al. ‘Adipaging’: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J. Physiol. 594, 3187–3207 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Aguirre, L. et al. Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J. Clin. Endocrinol. Metab. 99, 3290–3297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Graßmann, S., Wirsching, J., Eichelmann, F. & Aleksandrova, K. Association between peripheral adipokines and inflammation markers: a systematic review and meta-analysis. Obesity 25, 1776–1785 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Nosalski, R. & Guzik, T. J. Perivascular adipose tissue inflammation in vascular disease. Br. J. Pharmacol. 174, 3496–3513 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Clément, K. et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 18, 1657–1669 (2004).

    PubMed  Google Scholar 

  121. 121.

    Bianchi, V. E. Weight loss is a critical factor to reduce inflammation. Clin. Nutr. ESPEN 28, 21–35 (2018).

    PubMed  Google Scholar 

  122. 122.

    Xydakis, A. M. et al. Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight lose through caloric restriction. J. Clin. Endocrinol. Metab. 89, 2697–2703 (2004).

    CAS  PubMed  Google Scholar 

  123. 123.

    Ellsworth, D. L. et al. Importance of substantial weight loss for altering gene expression during cardiovascular lifestyle modification. Obesity 23, 1312–1319 (2015).

    CAS  PubMed  Google Scholar 

  124. 124.

    Fenske, W. K. et al. Effect of bariatric surgery-induced weight loss on renal and systemic inflammation and blood pressure: a 12-month prospective study. Surg. Obes. Relat. Dis. 9, 559–568 (2013).

    PubMed  Google Scholar 

  125. 125.

    Bussey, C. E., Withers, S. B., Aldous, R. G., Edwards, G. & Heagerty, A. M. Obesity-related perivascular adipose tissue damage is reversed by sustained weight loss in the rat. Arterioscler. Thromb. Vasc. Biol. 36, 1377–1385 (2016).

    CAS  PubMed  Google Scholar 

  126. 126.

    Lambert, E. A. et al. Obesity-associated organ damage and sympathetic nervous activity. Hypertension 73, 1150–1159 (2019).

    CAS  PubMed  Google Scholar 

  127. 127.

    Wofford, M. R. et al. Antihypertensive effect of α- and β-adrenergic blockade in obese and lean hypertensive subjects. Am. J. Hypertens. 14, 694–698 (2001).

    CAS  PubMed  Google Scholar 

  128. 128.

    Shariq, O. A. & Mckenzie, T. J. Obesity-related hypertension: a review of pathophysiology, management, and the role of metabolic surgery. Gland. Surg. 9, 80–93 (2020).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Grassi, G. et al. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J. Hypertens. 22, 2363–2369 (2004).

    CAS  PubMed  Google Scholar 

  130. 130.

    Khan, S. A. et al. Obesity depresses baroreflex control of renal sympathetic nerve activity and heart rate in Sprague Dawley rats: role of the renal innervation. Acta Physiol. 214, 390–401 (2015).

    CAS  Google Scholar 

  131. 131.

    Lohmeier, T. E. et al. Chronic interactions between carotid baroreceptors and chemoreceptors in obesity hypertension. Hypertension 68, 227–235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Pedrosa, R. P. et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 58, 811–817 (2011).

    CAS  PubMed  Google Scholar 

  133. 133.

    Dewan, N. A., Nieto, F. J. & Somers, V. K. Intermittent hypoxemia and OSA: implications for comorbidities. Chest 147, 266–274 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Straznicky, N. E. et al. Comparable attenuation of sympathetic nervous system activity in obese subjects with normal glucose tolerance, impaired glucose tolerance, and treatment naïve type 2 diabetes following equivalent weight loss. Front. Physiol. 7, 516 (2016).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Flores, L. et al. Longitudinal changes of blood pressure after weight loss: factors involved. Surg. Obes. Relat. Dis. 11, 215–221 (2015).

    PubMed  Google Scholar 

  136. 136.

    Straznicky, N. E. et al. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects. Diabetes 59, 71–79 (2010).

    PubMed  Google Scholar 

  137. 137.

    Costa, J., Moreira, A., Moreira, P., Delgado, L. & Silva, D. Effects of weight changes in the autonomic nervous system: a systematic review and meta-analysis. Clin. Nutr. 38, 110–126 (2019).

    PubMed  Google Scholar 

  138. 138.

    Huang, L. et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ 368, m315 (2020).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Graudal, N., Hubeck-Graudal, T., Jürgens, G. & Taylor, R. S. Dose-response relation between dietary sodium and blood pressure: a meta-regression analysis of 133 randomized controlled trials. Am. J. Clin. Nutr. 109, 1273–1278 (2019).

    PubMed  Google Scholar 

  140. 140.

    Graudal, N. A., Hubeck-Graudal, T. & Jurgens, G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst. Rev. 11, CD004022 (2017).

    Google Scholar 

  141. 141.

    Graudal, N., Jürgens, G., Baslund, B. & Alderman, M. H. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis. Am. J. Hypertens. 27, 1129–1137 (2014).

    CAS  PubMed  Google Scholar 

  142. 142.

    Zhu, Y. et al. Association of sodium intake and major cardiovascular outcomes: a dose-response meta-analysis of prospective cohort studies. BMC Cardiovasc. Disord. 18, 192 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Cook, N. R., Appel, L. J. & Whelton, P. K. Sodium intake and all-cause mortality over 20 years in the trials of hypertension prevention. J. Am. Coll. Cardiol. 68, 1609–1617 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    He, F. J. & MacGregor, G. A. Role of salt intake in prevention of cardiovascular disease: controversies and challenges. Nat. Rev. Cardiol. 15, 371–377 (2018).

    PubMed  Google Scholar 

  145. 145.

    Graudal, N. & Jürgens, G. Conflicting evidence on health effects associated with salt reduction calls for a redesign of the salt dietary guidelines. Prog. Cardiovasc. Dis. 61, 20–26 (2018).

    PubMed  Google Scholar 

  146. 146.

    Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005).

    CAS  PubMed  Google Scholar 

  147. 147.

    Turck, D. et al. Dietary reference values for potassium. EFSA J. 14, e04592 (2016).

    Google Scholar 

  148. 148.

    World Health Organization. Potassium intake for adults and children (WHO, 2012).

  149. 149.

    National Academies of Sciences, Engineering, and Medicine. Dietary reference intakes for sodium and potassium (National Academies Press, 2019).

  150. 150.

    Binia, A., Jaeger, J., Hu, Y., Singh, A. & Zimmermann, D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials. J. Hypertens. 33, 1509–1520 (2015).

    CAS  PubMed  Google Scholar 

  151. 151.

    Aburto, N. J. et al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346, f1378 (2013).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Bernabe-Ortiz, A. et al. Effect of salt substitution on community-wide blood pressure and hypertension incidence. Nat. Med. 26, 374–378 (2020).

    CAS  PubMed  Google Scholar 

  153. 153.

    World Health Organization. Guideline: sodium intake for adults and children (WHO, 2012).

  154. 154.

    Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 336, 1117–1124 (1997).

    CAS  PubMed  Google Scholar 

  155. 155.

    Appel, L. J. et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA 289, 2083–2093 (2003).

    PubMed  Google Scholar 

  156. 156.

    Blumenthal, J. A. et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch. Intern. Med. 170, 126–135 (2010).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Ozemek, C., Laddu, D. R., Arena, R. & Lavie, C. J. The role of diet for prevention and management of hypertension. Curr. Opin. Cardiol. 33, 388–393 (2018).

    PubMed  Google Scholar 

  158. 158.

    Hinderliter, A. L. et al. The long-term effects of lifestyle change on blood pressure: one-year follow-up of the ENCORE study. Am. J. Hypertens. 27, 734–741 (2014).

    PubMed  Google Scholar 

  159. 159.

    De Pergola, G. & D’Alessandro, A. Influence of Mediterranean diet on blood pressure. Nutrients 10, 1700 (2018).

    PubMed Central  Google Scholar 

  160. 160.

    Núñez-Córdoba, J. M., Valencia-Serrano, F., Toledo, E., Alonso, A. & Martínez-González, M. A. The Mediterranean diet and incidence of hypertension: the Seguimiento Universidad de Navarra (SUN) study. Am. J. Epidemiol. 169, 339–346 (2009).

    PubMed  Google Scholar 

  161. 161.

    Estruch, R. et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann. Intern. Med. 145, 1–11 (2006).

    PubMed  Google Scholar 

  162. 162.

    Toledo, E. et al. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: results from a randomized controlled trial. BMC Med. 11, 207 (2013).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Davis, C. R. et al. A Mediterranean diet lowers blood pressure and improves endothelial function: results from the MedLey randomized intervention trial. Am. J. Clin. Nutr. 105, 1305–1313 (2017).

    CAS  PubMed  Google Scholar 

  164. 164.

    Jennings, A. et al. Mediterranean-style diet improves systolic blood pressure and arterial stiffness in older adults: results of a 1-year European multi-center trial. Hypertension 73, 578–586 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Lopez, P. D., Cativo, E. H., Atlas, S. A. & Rosendorff, C. The effect of vegan diets on blood pressure in adults: a meta-analysis of randomized controlled trials. Am. J. Med. 132, 875–883.e7 (2019).

    PubMed  Google Scholar 

  166. 166.

    Ge, L. et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ 369, m696 (2020).

    PubMed  PubMed Central  Google Scholar 

  167. 167.

    Gay, H. C., Rao, S. G., Vaccarino, V. & Ali, M. K. Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension 67, 733–739 (2016).

    CAS  PubMed  Google Scholar 

  168. 168.

    Schwingshackl, L. et al. Comparative effects of different dietary approaches on blood pressure in hypertensive and pre-hypertensive patients: a systematic review and network meta-analysis. Crit. Rev. Food Sci. Nutr. 59, 2674–2687 (2019).

    CAS  PubMed  Google Scholar 

  169. 169.

    Schwingshackl, L. et al. Food groups and risk of hypertension: a systematic review and dose-response meta-analysis of prospective studies. Adv. Nutr. An. Int. Rev. J. 8, 793–803 (2017).

    Google Scholar 

  170. 170.

    Zhang, Y. & Zhang, D. Z. Red meat, poultry, and egg consumption with the risk of hypertension: a meta-analysis of prospective cohort studies. J. Hum. Hypertens. 32, 507–517 (2018).

    CAS  PubMed  Google Scholar 

  171. 171.

    Wang, M. X., Wong, C. H. & Kim, J. E. Impact of whole egg intake on blood pressure, lipids and lipoproteins in middle-aged and older population: a systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 29, 653–664 (2019).

    CAS  PubMed  Google Scholar 

  172. 172.

    Jovanovski, E. et al. Effect of high-carbohydrate or high-monounsaturated fatty acid diets on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 77, 19–31 (2019).

    PubMed  Google Scholar 

  173. 173.

    Te Morenga, L. A., Howatson, A. J., Jones, R. M. & Mann, J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 100, 65–79 (2014).

    Google Scholar 

  174. 174.

    Komnenov, D., Levanovich, P. E. & Rossi, N. F. Hypertension associated with fructose and high salt: renal and sympathetic mechanisms. Nutrients 11, 569 (2019).

    CAS  PubMed Central  Google Scholar 

  175. 175.

    Griep, L. M. O. et al. Association of raw fruit and fruit juice consumption with blood pressure: the INTERMAP study. Am. J. Clin. Nutr. 97, 1083–1091 (2013).

    CAS  Google Scholar 

  176. 176.

    Jayalath, V. H. et al. Total fructose intake and risk of hypertension: a systematic review and meta-analysis of prospective cohorts. J. Am. Coll. Nutr. 33, 328–339 (2014).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Ha, V. et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 59, 787–795 (2012).

    CAS  PubMed  Google Scholar 

  178. 178.

    Kim, Y. & Je, Y. Prospective association of sugar-sweetened and artificially sweetened beverage intake with risk of hypertension. Arch. Cardiovasc. Dis. 109, 242–253 (2016).

    PubMed  Google Scholar 

  179. 179.

    Chen, L. et al. Reducing consumption of sugar-sweetened beverages is associated with reduced blood pressure: a prospective study among United States adults. Circulation 121, 2398–2406 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Roerecke, M. et al. Sex-specific associations between alcohol consumption and incidence of hypertension: a systematic review and meta-analysis of cohort studies. J. Am. Heart Assoc. 7, e008202 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Wood, A. M. et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391, 1513–1523 (2018).

    PubMed  PubMed Central  Google Scholar 

  182. 182.

    Roerecke, M. et al. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health 2, e108–e120 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. 183.

    Hall, K. D. et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 30, 67–77.e3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Samocha-Bonet, D. et al. Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans. PLoS ONE 7, e36320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Tam, C. S. et al. Short-term overfeeding may induce peripheral insulin resistance without altering subcutaneous adipose tissue macrophages in humans. Diabetes 59, 2164–2170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Martínez Steele, E., Popkin, B. M., Swinburn, B. & Monteiro, C. A. The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul. Health Metr. 15, 6 (2017).

    PubMed  PubMed Central  Google Scholar 

  187. 187.

    Dibaba, D. T., Xun, P., Fly, A. D., Yokota, K. & He, K. Dietary magnesium intake and risk of metabolic syndrome: a meta-analysis. Diabet. Med. 31, 1301–1309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Veronese, N. et al. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: a systematic review and meta-analysis of double-blind randomized controlled trials. Eur. J. Clin. Nutr. 70, 1354–1359 (2016).

    CAS  PubMed  Google Scholar 

  189. 189.

    Simental-Mendía, L. E., Sahebkar, A., Rodríguez-Morán, M. & Guerrero-Romero, F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol. Res. 111, 272–282 (2016).

    PubMed  Google Scholar 

  190. 190.

    Zhang, X. et al. Effects of magnesium supplementation on blood pressure: a meta-analysis of randomized double-blind placebo-controlled trials. Hypertension 68, 324–333 (2016).

    CAS  PubMed  Google Scholar 

  191. 191.

    Asbaghi, O. et al. The effects of magnesium supplementation on blood pressure and obesity measure among type 2 diabetes patient: a systematic review and meta-analysis of randomized controlled trials. Biol. Trace Elem. Res. (2020).

  192. 192.

    Uribarri, J. et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 110, 911–916.e12 (2010).

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Sergi, D., Boulestin, H., Campbell, F. M. & Williams, L. M. The role of dietary advanced glycation end products in metabolic dysfunction. Mol. Nutr. Food Res. (2020).

    Article  PubMed  Google Scholar 

  194. 194.

    De Courten, B. et al. Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: a double-blind, randomized, crossover trial. Am. J. Clin. Nutr. 103, 1426–1433 (2016).

    PubMed  Google Scholar 

  195. 195.

    Baye, E., Kiriakova, V., Uribarri, J., Moran, L. J. & De Courten, B. Consumption of diets with low advanced glycation end products improves cardiometabolic parameters: meta-analysis of randomised controlled trials. Sci. Rep. 7, 43–51 (2017).

    Google Scholar 

  196. 196.

    Zhang, Y. et al. Eplerenone restores 24-h blood pressure circadian rhythm and reduces advanced glycation end-products in rhesus macaques with spontaneous hypertensive metabolic syndrome. Sci. Rep. 6, 23957 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    He, F. J., Markandu, N. D. & MacGregor, G. A. Importance of the renin system for determining blood pressure fall with acute salt restriction in hypertensive and normotensive whites. Hypertension 38, 321–325 (2001).

    CAS  PubMed  Google Scholar 

  198. 198.

    He, F. J., Li, J. & MacGregor, G. A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 346, f1325 (2013).

    PubMed  Google Scholar 

  199. 199.

    MacGregor, G. A. et al. Moderate sodium restriction with angiotensin converting enzyme inhibitor in essential hypertension: a double blind study. BMJ 294, 531–534 (1987).

    CAS  PubMed  Google Scholar 

  200. 200.

    Maris, S. et al. Interactions of the DASH diet with the renin-angiotensin-aldosterone system. Curr. Dev. Nutr. 3, nzz091 (2019).

    PubMed  PubMed Central  Google Scholar 

  201. 201.

    Ibsen, H. et al. The influence of chronic high alcohol intake on blood pressure, plasma noradrenaline concentration and plasma renin concentration. Clin. Sci. 61, 377–379 (1981).

    Google Scholar 

  202. 202.

    Puddey, I. B., Vandongen, R., Beilin, L. J. & Rouse, I. L. Alcohol stimulation of renin release in man: its relation to the hemodynamic, electrolyte, and sympatho-adrenal responses to drinking. J. Clin. Endocrinol. Metab. 61, 37–42 (1985).

    CAS  PubMed  Google Scholar 

  203. 203.

    Terker, A. S. et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 21, 39–50 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204.

    Nomura, N., Shoda, W. & Uchida, S. Clinical importance of potassium intake and molecular mechanism of potassium regulation. Clin. Exp. Nephrol. 23, 1175–1180 (2019).

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Tzemos, N., Lim, P. O., Wong, S., Struthers, A. D. & MacDonald, T. M. Adverse cardiovascular effects of acute salt loading in young normotensive individuals. Hypertension 51, 1525–1530 (2008).

    CAS  PubMed  Google Scholar 

  206. 206.

    DuPont, J. J. et al. High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans. J. Hypertens. 31, 530–536 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Greaney, J. L. et al. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress. J. Physiol. 590, 5519–5528 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208.

    Clarke, R. E., Dordevic, A. L., Tan, S. M., Ryan, L. & Coughlan, M. T. Dietary advanced glycation end products and risk factors for chronic disease: a systematic review of randomised controlled trials. Nutrients 8, 125 (2016).

    PubMed  PubMed Central  Google Scholar 

  209. 209.

    Mozaffarian, D., Aro, A. & Willett, W. C. Health effects of trans-fatty acids: experimental and observational evidence. Eur. J. Clin. Nutr. 63, S5–S21 (2009).

    CAS  PubMed  Google Scholar 

  210. 210.

    Kellow, N. J. & Savige, G. S. Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. Eur. J. Clin. Nutr. 67, 239–248 (2013).

    CAS  PubMed  Google Scholar 

  211. 211.

    Jackson, J. K., Patterson, A. J., MacDonald-Wicks, L. K., Oldmeadow, C. & McEvoy, M. A. The role of inorganic nitrate and nitrite in cardiovascular disease risk factors: a systematic review and meta-analysis of human evidence. Nutr. Rev. 76, 348–371 (2018).

    PubMed  Google Scholar 

  212. 212.

    Blekkenhorst, L. C. et al. Nitrate, the oral microbiome, and cardiovascular health: a systematic literature review of human and animal studies. Am. J. Clin. Nutr. 107, 504–522 (2018).

    PubMed  Google Scholar 

  213. 213.

    Senkus, K. E. & Crowe-White, K. M. Influence of mouth rinse use on the enterosalivary pathway and blood pressure regulation: a systematic review. Crit. Rev. Food Sci. Nutr. (2019).

  214. 214.

    Marques, B. C. A. A. et al. Effects of oral magnesium supplementation on vascular function: a systematic review and meta-analysis of randomized controlled trials. High. Blood Press. Cardiovasc. Prev. 27, 19–28 (2020).

    CAS  PubMed  Google Scholar 

  215. 215.

    Zehr, K. R. & Walker, M. K. Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: a review. Prostaglandins Other Lipid Mediat. 134, 131–140 (2018).

    CAS  PubMed  Google Scholar 

  216. 216.

    Schwingshackl, L., Christoph, M. & Hoffmann, G. Effects of olive oil on markers of inflammation and endothelial function—a systematic review and meta-analysis. Nutrients 7, 7651–7675 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Yubero-Serrano, E. M., Lopez-Moreno, J., Gomez-Delgado, F. & Lopez-Miranda, J. Extra virgin olive oil: more than a healthy fat. Eur. J. Clin. Nutr. 72 (Suppl. l), 8–17 (2019).

    PubMed  Google Scholar 

  218. 218.

    Moreno-Luna, R. et al. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am. J. Hypertens. 25, 1299–1304 (2012).

    CAS  PubMed  Google Scholar 

  219. 219.

    Sun, Y., Zimmermann, D., De Castro, C. A. & Actis-Goretta, L. Dose-response relationship between cocoa flavanols and human endothelial function: a systematic review and meta-analysis of randomized trials. Food Funct. 10, 6322–6330 (2019).

    CAS  PubMed  Google Scholar 

  220. 220.

    García-Conesa, M. T. et al. Meta-analysis of the effects of foods and derived products containing ellagitannins and anthocyanins on cardiometabolic biomarkers: analysis of factors influencing variability of the individual responses. Int. J. Mol. Sci. 19, 694 (2018).

    PubMed Central  Google Scholar 

  221. 221.

    Raman, G. et al. Dietary intakes of flavan-3-ols and cardiometabolic health: systematic review and meta-analysis of randomized trials and prospective cohort studies. Am. J. Clin. Nutr. 110, 1067–1078 (2019).

    PubMed  PubMed Central  Google Scholar 

  222. 222.

    Huang, Y. et al. Effect of oral nut supplementation on endothelium-dependent vasodilation – a meta-analysis. Vasa 47, 203–208 (2018).

    PubMed  Google Scholar 

  223. 223.

    Tsuji, S. et al. Ethanol stimulates immunoreactive endothelin-1 and -2 release from cultured human umbilical vein endothelial cells. Alcohol. Clin. Exp. Res. 16, 347–349 (1992).

    CAS  PubMed  Google Scholar 

  224. 224.

    Husain, K., Vazquez, M., Ansari, R. A., Malafa, M. P. & Lalla, J. Chronic alcohol-induced oxidative endothelial injury relates to angiotensin II levels in the rat. Mol. Cell. Biochem. 307, 51–58 (2008).

    CAS  PubMed  Google Scholar 

  225. 225.

    Husain, K., Ferder, L., Ansari, R. A. & Lalla, J. Chronic ethanol ingestion induces aortic inflammation/oxidative endothelial injury and hypertension in rats. Hum. Exp. Toxicol. 30, 930–939 (2011).

    CAS  PubMed  Google Scholar 

  226. 226.

    Dickinson, S., Hancock, D., Petocz, P., Ceriello, A. & Brand-Miller, J. High-glycemic index carbohydrate increases nuclear factor-κB activation in mononuclear cells of young, lean healthy subjects. Am. J. Clin. Nutr. 87, 1188–1193 (2008).

    CAS  PubMed  Google Scholar 

  227. 227.

    Quintanilha, B. J. et al. Circulating plasma microRNAs dysregulation and metabolic endotoxemia induced by a high-fat high-saturated diet. Clin. Nutr. 39, 554–562 (2020).

    CAS  PubMed  Google Scholar 

  228. 228.

    Baer, D. J., Judd, J. T., Clevidence, B. A. & Tracy, R. P. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am. J. Clin. Nutr. 79, 969–973 (2004).

    CAS  PubMed  Google Scholar 

  229. 229.

    Van Der Lugt, T. et al. Dietary advanced glycation endproducts induce an inflammatory response in human macrophages in vitro. Nutrients 10, 1868 (2018).

    PubMed Central  Google Scholar 

  230. 230.

    Müller, D. N., Wilck, N., Haase, S., Kleinewietfeld, M. & Linker, R. A. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat. Rev. Immunol. 19, 243–254 (2019).

    PubMed  Google Scholar 

  231. 231.

    Targoński, R., Sadowski, J., Price, S. & Targoński, R. Sodium-induced inflammation–an invisible player in resistant hypertension. Hypertens. Res. 43, 629–633 (2020).

    PubMed  Google Scholar 

  232. 232.

    Mousavi, S. M., Djafarian, K., Mojtahed, A., Varkaneh, H. K. & Shab-Bidar, S. The effect of zinc supplementation on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Pharmacol. 834, 10–16 (2018).

    CAS  PubMed  Google Scholar 

  233. 233.

    Simental-Mendia, L., Sahebkar, A., Rodriguez-Moran, M., Zambrano-Galvan, G. & Guerrero-Romero, F. Effect of magnesium supplementation on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Curr. Pharm. Des. 23, 4678–4686 (2017).

    CAS  PubMed  Google Scholar 

  234. 234.

    Dibaba, D. T., Xun, P. & He, K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review. Eur. J. Clin. Nutr. 68, 510–516 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235.

    Wen, W. et al. Potassium supplementation inhibits IL-17A production induced by salt loading in human T lymphocytes via p38/MAPK-SGK1 pathway. Exp. Mol. Pathol. 100, 370–377 (2016).

    CAS  PubMed  Google Scholar 

  236. 236.

    Rangel-Huerta, O. D., Aguilera, C. M., Mesa, M. D. & Gil, A. Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: a systematic review of randomised clinical trials. Br. J. Nutr. 107, S159–S170 (2012).

    CAS  PubMed  Google Scholar 

  237. 237.

    Hosseini, B. et al. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: a systematic literature review and meta-analysis. Am. J. Clin. Nutr. 108, 136–155 (2018).

    PubMed  Google Scholar 

  238. 238.

    Schwingshackl, L. & Hoffmann, G. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: a systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 23, 699–706 (2013).

    CAS  PubMed  Google Scholar 

  239. 239.

    Abdel-Rahman, A. A. & Wooles, W. R. Ethanol-induced hypertension involves impairment of baroreceptors. Hypertension 10, 67–73 (1987).

    CAS  Google Scholar 

  240. 240.

    Zhang, X., Abdel-Rahman, A. A. & Wooles, W. R. Impairment of baroreceptor reflex control of heart rate but not sympathetic efferent discharge by central neuroadministration of ethanol. Hypertension 14, 282–292 (1989).

    CAS  PubMed  Google Scholar 

  241. 241.

    Grassi, G. M., Somers, V. K., Renk, W. S., Abboud, F. M. & Mark, A. L. Effects of alcohol intake on blood pressure and sympathetic nerve activity in normotensive humans: a preliminary report. J. Hypertens. Suppl. 7, S20–S21 (1989).

    CAS  PubMed  Google Scholar 

  242. 242.

    Schroeder, B. O. & Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016).

    CAS  PubMed  Google Scholar 

  243. 243.

    Ge, X. et al. The gut microbial metabolite trimethylamine N-oxide and hypertension risk: a systematic review and dose–response meta-analysis. Adv. Nutr. 11, 66–76 (2019).

    PubMed Central  Google Scholar 

  244. 244.

    Li, Y. et al. High-salt diet-induced gastritis in C57BL/6 mice is associated with microbial dysbiosis and alleviated by a buckwheat diet. Mol. Nutr. Food Res. 64, e1900965 (2020).

    PubMed  Google Scholar 

  245. 245.

    Dong, Z. et al. The effects of high-salt gastric intake on the composition of the intestinal microbiota in Wistar rats. Med. Sci. Monit. 26, e922160 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. 246.

    He, J., Zhang, F. & Han, Y. Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: a meta-analysis of RCTs. Medicine 96, e9166 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. 247.

    Khalesi, S., Sun, J., Buys, N. & Jayasinghe, R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64, 897–903 (2014).

    CAS  PubMed  Google Scholar 

  248. 248.

    Zota, A. R., Phillips, C. A. & Mitro, S. D. Recent fast food consumption and bisphenol A and phthalates exposures among the U.S. population in NHANES, 2003–2010. Environ. Health Perspect. 124, 1521–1528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Wang, T. et al. Association of bisphenol A exposure with hypertension and early macrovascular diseases in Chinese adults: a cross-sectional study. Medicine 94, e1814 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. 250.

    Bae, S., Kim, J. H., Lim, Y. H., Park, H. Y. & Hong, Y. C. Associations of bisphenol a exposure with heart rate variability and blood pressure. Hypertension 60, 786–793 (2012).

    CAS  PubMed  Google Scholar 

  251. 251.

    Jiang, S. et al. Association of bisphenol A and its alternatives bisphenol S and F exposure with hypertension and blood pressure: a cross-sectional study in China. Environ. Pollut. 257, 113639 (2020).

    CAS  PubMed  Google Scholar 

  252. 252.

    Shankar, A. & Teppala, S. Urinary bisphenol A and hypertension in a multiethnic sample of US adults. J. Environ. Public Health 2012, 481641 (2012).

    PubMed  PubMed Central  Google Scholar 

  253. 253.

    Bae, S. & Hong, Y. C. Exposure to bisphenol A from drinking canned beverages increases blood pressure: randomized crossover trial. Hypertension 65, 313–319 (2015).

    CAS  PubMed  Google Scholar 

  254. 254.

    Hsu, C. N., Lin, Y. J. & Tain, Y. L. Maternal exposure to bisphenol A combined with high-fat diet-induced programmed hypertension in adult male rat offspring: effects of resveratrol. Int. J. Mol. Sci. 20, 4382 (2019).

    CAS  PubMed Central  Google Scholar 

  255. 255.

    Han, C. & Hong, Y. C. Bisphenol A, hypertension, and cardiovascular diseases: epidemiological, laboratory, and clinical trial evidence. Curr. Hypertens. Rep. 18, 11 (2016).

    PubMed  Google Scholar 

  256. 256.

    Saura, M. et al. Oral administration of bisphenol A induces high blood pressure through angiotensin II/CaMKII-dependent uncoupling of eNOS. FASEB J. 28, 4719–4728 (2014).

    CAS  PubMed  Google Scholar 

  257. 257.

    Douma, L. G. & Gumz, M. L. Circadian clock-mediated regulation of blood pressure. Free Radic. Biol. Med. 119, 108–114 (2018).

    CAS  PubMed  Google Scholar 

  258. 258.

    Dolan, E. et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension 46, 156–161 (2005).

    CAS  PubMed  Google Scholar 

  259. 259.

    Sega, R. et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation 111, 1777–1783 (2005).

    PubMed  Google Scholar 

  260. 260.

    Kikuya, M. et al. Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality: the Ohasama study. Hypertension 45, 240–245 (2005).

    CAS  PubMed  Google Scholar 

  261. 261.

    Hansen, T. W., Jeppesen, J., Rasmussen, S., Ibsen, H. & Torp-Pedersen, C. Ambulatory blood pressure and mortality: a population-based study. Hypertension 45, 499–504 (2005).

    CAS  PubMed  Google Scholar 

  262. 262.

    Fagard, R. H. et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension 51, 55–61 (2008).

    CAS  PubMed  Google Scholar 

  263. 263.

    Gorostidi, M. et al. Ambulatory blood pressure monitoring in daily clinical practice – the Spanish ABPM Registry experience. Eur. J. Clin. Invest. 46, 92–98 (2016).

    PubMed  Google Scholar 

  264. 264.

    De La Sierra, A. et al. Nocturnal hypertension or nondipping: which is better associated with the cardiovascular risk profile? Am. J. Hypertens. 27, 680–687 (2014).

    PubMed  Google Scholar 

  265. 265.

    Cuspidi, C. et al. Clinical correlates and subclinical cardiac organ damage in different extreme dipping patterns. J. Hypertens. 38, 858–863 (2020).

    CAS  PubMed  Google Scholar 

  266. 266.

    Yang, W. Y. et al. Association of office and ambulatory blood pressure with mortality and cardiovascular outcomes. JAMA 322, 409–420 (2019).

    PubMed  PubMed Central  Google Scholar 

  267. 267.

    Manohar, S., Thongprayoon, C., Cheungpasitporn, W., Mao, M. A. & Herrmann, S. M. Associations of rotational shift work and night shift status with hypertension: a systematic review and meta-analysis. J. Hypertens. 35, 1929–1937 (2017).

    CAS  PubMed  Google Scholar 

  268. 268.

    Kitamura, T. et al. Circadian rhythm of blood pressure is transformed from a dipper to a non-dipper pattern in shift workers with hypertension. J. Hum. Hypertens. 16, 193–197 (2002).

    CAS  PubMed  Google Scholar 

  269. 269.

    Morris, C. J., Purvis, T. E., Hu, K. & Scheer, F. A. J. L. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc. Natl Acad. Sci. USA 113, E1402–E1411 (2016).

    CAS  PubMed  Google Scholar 

  270. 270.

    Sutton, E. F. et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27, 1212–1221.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. 271.

    Wilkinson, M. J. et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 31, 92–104.e5 (2019).

    PubMed  PubMed Central  Google Scholar 

  272. 272.

    De Cabo, R. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).

    PubMed  Google Scholar 

  273. 273.

    De La Iglesia, H. O. et al. Ancestral sleep. Curr. Biol. 26, R271–R272 (2016).

    PubMed  Google Scholar 

  274. 274.

    Gangwisch, J. E. A review of evidence for the link between sleep duration and hypertension. Am. J. Hypertens. 27, 1235–1242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. 275.

    Staessen, J., Bulpitt, C. J., Brien, E. O., Cox, J. & Fagard, R. The diurnal blood pressure profile. Am. J. Hypertens. 5, 386–392 (1992).

    CAS  PubMed  Google Scholar 

  276. 276.

    National Sleep Foundation. 2013 international bedroom poll. (2013).

  277. 277.

    Lunn, R. M. et al. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci. Total. Environ. 607–608, 1073–1084 (2017).

    PubMed  PubMed Central  Google Scholar 

  278. 278.

    Lanfranchi, P. A. et al. Nighttime blood pressure in normotensive subjects with chronic insomnia: implications for cardiovascular risk. Sleep 32, 760–766 (2009).

    PubMed  PubMed Central  Google Scholar 

  279. 279.

    Han, B., Chen, W. Z., Li, Y. C., Chen, J. & Zeng, Z. Q. Sleep and hypertension. Sleep Breath. 24, 351–356 (2020).

    CAS  PubMed  Google Scholar 

  280. 280.

    Itani, O., Jike, M., Watanabe, N. & Kaneita, Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep Med. 32, 246–256 (2017).

    PubMed  Google Scholar 

  281. 281.

    Jiang, W., Hu, C., Li, F., Hua, X. & Zhang, X. Association between sleep duration and high blood pressure in adolescents: a systematic review and meta-analysis. Ann. Hum. Biol. 45, 457–462 (2018).

    PubMed  Google Scholar 

  282. 282.

    Lo, K., Woo, B., Wong, M. & Tam, W. Subjective sleep quality, blood pressure, and hypertension: a meta-analysis. J. Clin. Hypertens. 20, 592–605 (2018).

    Google Scholar 

  283. 283.

    Fung, M. M. et al. Decreased slow wave sleep increases risk of developing hypertension in elderly men. Hypertension 58, 596–603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. 284.

    Matthews, K. A. et al. Sleep and risk for high blood pressure and hypertension in midlife women: the SWAN (Study of Women’s Health Across the Nation) sleep study. Sleep Med. 15, 203–208 (2014).

    PubMed  Google Scholar 

  285. 285.

    Thomas, S. J. & Calhoun, D. Sleep, insomnia, and hypertension: current findings and future directions. J. Am. Soc. Hypertens. 11, 122–129 (2017).

    PubMed  Google Scholar 

  286. 286.

    Sánchez-de-la-Torre, M., Campos-Rodríguez, F. & Barbé, F. Obstructive sleep apnoea and cardiovascular disease. Lancet Respir. Med. 1, 61–72 (2013).

    PubMed  Google Scholar 

  287. 287.

    Fernandez-Mendoza, J. et al. Objective short sleep duration increases the risk of all-cause mortality associated with possible vascular cognitive impairment. Sleep Heal. 6, 71–78 (2020).

    Google Scholar 

  288. 288.

    Pengo, M. F. et al. Obstructive sleep apnoea treatment and blood pressure: which phenotypes predict a response? A systematic review and meta-analysis. Eur. Respir. J. 55, 1901945 (2020).

    PubMed  Google Scholar 

  289. 289.

    Haack, M. et al. Increasing sleep duration to lower beat-to-beat blood pressure: a pilot study. J. Sleep Res. 22, 295–304 (2013).

    PubMed  Google Scholar 

  290. 290.

    McGrath, E. R. et al. Sleep to lower elevated blood pressure: a randomized controlled trial (SLEPT). Am. J. Hypertens. 30, 319–327 (2017).

    PubMed  Google Scholar 

  291. 291.

    Wu, Y., Zhai, L. & Zhang, D. Sleep duration and obesity among adults: a meta-analysis of prospective studies. Sleep Med. 15, 1456–1462 (2014).

    PubMed  Google Scholar 

  292. 292.

    Hart, C. N. et al. Changes in children’s sleep duration on food intake, weight, and leptin. Pediatrics 132, e1473–e1480 (2013).

    PubMed  Google Scholar 

  293. 293.

    Riegel, B. et al. Shift workers have higher blood pressure medicine use, but only when they are short sleepers: a longitudinal UK biobank study. J. Am. Heart Assoc. 8, e013269 (2019).

    PubMed  PubMed Central  Google Scholar 

  294. 294.

    Waterhouse, J., Buckley, P., Edwards, B. & Reilly, T. Measurement of, and some reasons for, differences in eating habits between night and day workers. Chronobiol. Int. 20, 1075–1092 (2003).

    CAS  PubMed  Google Scholar 

  295. 295.

    Souza, R. V., Sarmento, R. A., de Almeida, J. C. & Canuto, R. The effect of shift work on eating habits: a systematic review. Scand. J. Work. Environ. Heal. 45, 7–21 (2019).

    Google Scholar 

  296. 296.

    Holmbäck, U. et al. Metabolic responses to nocturnal eating in men are affected by sources of dietary energy. J. Nutr. 132, 1892–1899 (2002).

    PubMed  Google Scholar 

  297. 297.

    Spiegel, K., Tasali, E., Penev, P. & Van Cauter, E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 141, 846–850 (2004).

    PubMed  Google Scholar 

  298. 298.

    Zhu, B., Shi, C., Park, C. G., Zhao, X. & Reutrakul, S. Effects of sleep restriction on metabolism-related parameters in healthy adults: a comprehensive review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 45, 18–30 (2019).

    PubMed  Google Scholar 

  299. 299.

    Liu, W. et al. Long sleep duration predicts a higher risk of obesity in adults: a meta-analysis of prospective cohort studies. J. Public Health 41, e158–e168 (2019).

    Google Scholar 

  300. 300.

    Jike, M., Itani, O., Watanabe, N., Buysse, D. J. & Kaneita, Y. Long sleep duration and health outcomes: a systematic review, meta-analysis and meta-regression. Sleep Med. Rev. 39, 25–36 (2018).

    PubMed  Google Scholar 

  301. 301.

    Broussard, J., Ehrmann, D., Van Cauter, E., Tasali, E. & Brady, M. Impaired insulin signaling in human adipocytes after experimental sleep restriction. Ann. Intern. Med. 157, 549–558 (2012).

    PubMed  PubMed Central  Google Scholar 

  302. 302.

    Wilms, B. et al. Sleep loss disrupts morning-to-evening differences in human white adipose tissue transcriptome. J. Clin. Endocrinol. Metab. 104, 1687–1696 (2019).

    PubMed  Google Scholar 

  303. 303.

    Broussard, J. L., Wroblewski, K., Kilkus, J. M. & Tasali, E. Two nights of recovery sleep reverses the effects of short-term sleep restriction on diabetes risk. Diabetes Care 39, e40–e41 (2016).

    PubMed  PubMed Central  Google Scholar 

  304. 304.

    Leproult, R., Holmbäck, U. & Van Cauter, E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 63, 1860–1869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. 305.

    Murck, H., Schüssler, P. & Steiger, A. Renin-angiotensin-aldosterone system: the forgotten stress hormone system: relationship to depression and sleep. Pharmacopsychiatry 45, 83–95 (2012).

    CAS  PubMed  Google Scholar 

  306. 306.

    Jin, Z. N. & Wei, Y. X. Meta-analysis of effects of obstructive sleep apnea on the renin-angiotensin-aldosterone system. J. Geriatr. Cardiol. 13, 333–343 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. 307.

    Fletcher, E. C., Orolinova, N. & Bader, M. Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J. Appl. Physiol. 92, 627–633 (2002).

    CAS  PubMed  Google Scholar 

  308. 308.

    Fletcher, E. C., Bao, G. & Li, R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension 34, 309–314 (1999).

    CAS  PubMed  Google Scholar 

  309. 309.

    Lam, S. Y. et al. Upregulation of a local renin-angiotensin system in the rat carotid body during chronic intermittent hypoxia. Exp. Physiol. 99, 220–231 (2014).

    CAS  PubMed  Google Scholar 

  310. 310.

    Nicholl, D. D. M. et al. Evaluation of continuous positive airway pressure therapy on renin-angiotensin system activity in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 190, 572–580 (2014).

    CAS  PubMed  Google Scholar 

  311. 311.

    Dettoni, J. L. et al. Cardiovascular effects of partial sleep deprivation in healthy volunteers. J. Appl. Physiol. 113, 232–236 (2012).

    CAS  PubMed  Google Scholar 

  312. 312.

    Bironneau, V. et al. Sleep apnoea and endothelial dysfunction: an individual patient data meta-analysis. Sleep Med. Rev. 52, 101309 (2020).

    PubMed  Google Scholar 

  313. 313.

    Wang, J. et al. Impact of obstructive sleep apnea syndrome on endothelial function, arterial stiffening, and serum inflammatory markers: an updated meta-analysis and metaregression of 18 studies. J. Am. Heart Assoc. 4, e002454 (2015).

    PubMed  PubMed Central  Google Scholar 

  314. 314.

    Jelic, S. et al. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation 117, 2270–2278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. 315.

    Stiefel, P. et al. Obstructive sleep apnea syndrome, vascular pathology, endothelial function and endothelial cells and circulating microparticles. Arch. Med. Res. 44, 409–414 (2013).

    CAS  PubMed  Google Scholar 

  316. 316.

    Trzepizur, W., Martinez, M. C. & Priou, P. Microparticles and vascular dysfunction in obstructive sleep apnoea. Eur. Respir. J. 44, 207–216 (2014).

    CAS  PubMed  Google Scholar 

  317. 317.

    Morris, C. J., Purvis, T. E., Mistretta, J., Hu, K. & Scheer, F. A. J. L. Circadian misalignment increases C-reactive protein and blood pressure in chronic shift workers. J. Biol. Rhythm. 32, 154–164 (2017).

    CAS  Google Scholar 

  318. 318.

    Irwin, M. R., Olmstead, R. & Carroll, J. E. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry 80, 40–52 (2016).

    PubMed  Google Scholar 

  319. 319.

    Ogawa, Y. et al. Total sleep deprivation elevates blood pressure through arterial baroreflex resetting: a study with microneurographic technique. Sleep 26, 986–989 (2003).

    PubMed  Google Scholar 

  320. 320.

    Sauvet, F. et al. Effect of acute sleep deprivation on vascular function in healthy subjects. J. Appl. Physiol. 108, 68–75 (2010).

    PubMed  Google Scholar 

  321. 321.

    Liu, M. Y., Li, N., Li, W. A. & Khan, H. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. Neurol. Res. 39, 573–580 (2017).

    PubMed  Google Scholar 

  322. 322.

    Kivimäki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).

    PubMed  Google Scholar 

  323. 323.

    Ogedegbe, G. et al. The misdiagnosis of hypertension: the role of patient anxiety. Arch. Intern. Med. 168, 2459–2465 (2008).

    PubMed  PubMed Central  Google Scholar 

  324. 324.

    Cohen, B., Marmar, C., Ren, L., Berthental, D. & Seal, K. Association of cardiovascular risk factors with mental health diagnoses in Iraq and Afghanistan War veterans using VA health care. J. Am. Med. Assoc. 302, 489–492 (2009).

    CAS  Google Scholar 

  325. 325.

    Sumner, J. A. et al. Post-traumatic stress disorder symptoms and risk of hypertension over 22 years in a large cohort of younger and middle-aged women. Psychol. Med. 46, 3105–3116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  326. 326.

    Burg, M. M. et al. Risk for incident hypertension associated with posttraumatic stress disorder in military veterans and the effect of posttraumatic stress disorder treatment. Psychosom. Med. 79, 181–188 (2017).

    PubMed  PubMed Central  Google Scholar 

  327. 327.

    Mann, S. J. Psychosomatic research in hypertension: the lack of impact of decades of research and new directions to consider. J. Clin. Hypertens. 14, 657–664 (2012).

    Google Scholar 

  328. 328.

    Nagele, E. et al. Clinical effectiveness of stress-reduction techniques in patients with hypertension: systematic review and meta-analysis. J. Hypertens. 32, 1936–1944 (2014).

    CAS  PubMed  Google Scholar 

  329. 329.

    Dickinson, H. O. et al. Relaxation therapies for the management of primary hypertension in adults: a Cochrane review. J. Hum. Hypertens. 22, 809–820 (2008).

    PubMed  Google Scholar 

  330. 330.

    Schneider, R. H., Fields, J. Z. & Brook, R. D. The 2017 ACC/AHA hypertension guidelines: should they have included proven nonpharmacological blood pressure-lowering strategies such as transcendental meditation? J. Clin. Hypertens. 21, 434 (2019).

    Google Scholar 

  331. 331.

    Gathright, E. C. et al. The impact of transcendental meditation on depressive symptoms and blood pressure in adults with cardiovascular disease: a systematic review and meta-analysis. Complement. Ther. Med. 46, 172–179 (2019).

    PubMed  PubMed Central  Google Scholar 

  332. 332.

    Ponte Márquez, P. H. et al. Benefits of mindfulness meditation in reducing blood pressure and stress in patients with arterial hypertension. J. Hum. Hypertens. 33, 237–247 (2019).

    PubMed  Google Scholar 

  333. 333.

    Wu, Y. et al. Yoga as antihypertensive lifestyle therapy: a systematic review and meta-analysis. Mayo Clin. Proc. 94, 432–446 (2019).

    PubMed  Google Scholar 

  334. 334.

    Geiker, N. R. W. et al. Does stress influence sleep patterns, food intake, weight gain, abdominal obesity and weight loss interventions and vice versa? Obes. Rev. 19, 81–97 (2018).

    CAS  PubMed  Google Scholar 

  335. 335.

    Wardle, J., Chida, Y., Gibson, E. L., Whitaker, K. L. & Steptoe, A. Stress and adiposity: a meta-analysis of longitudinal studies. Obesity 19, 771–778 (2011).

    PubMed  Google Scholar 

  336. 336.

    Tomiyama, A. Stress and obesity. Annu. Rev. Psychol. 70, 703–718 (2019).

    PubMed  Google Scholar 

  337. 337.

    Pechtel, P. & Pizzagalli, D. A. Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology 214, 55–70 (2011).

    CAS  PubMed  Google Scholar 

  338. 338.

    Lowe, C. J., Reichelt, A. C. & Hall, P. A. The prefrontal cortex and obesity: a health neuroscience perspective. Trends Cogn. Sci. 23, 349–361 (2019).

    PubMed  Google Scholar 

  339. 339.

    Torres, S. J. & Nowson, C. A. Relationship between stress, eating behavior, and obesity. Nutrition 23, 887–894 (2007).

    PubMed  Google Scholar 

  340. 340.

    O’Connor, D. B., Jones, F., Conner, M., McMillan, B. & Ferguson, E. Effects of daily hassles and eating style on eating behavior. Heal. Psychol. 27, S20–S31 (2008).

    Google Scholar 

  341. 341.

    Pecoraro, N., Reyes, F., Gomez, F., Bhargava, A. & Dallman, M. F. Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145, 3754–3762 (2004).

    CAS  PubMed  Google Scholar 

  342. 342.

    Stults-Kolehmainen, M. A. & Sinha, R. The effects of stress on physical activity and exercise. Sport. Med. 44, 81–121 (2014).

    Google Scholar 

  343. 343.

    Åkerstedt, T., Kecklund, G. & Axelsson, J. Impaired sleep after bedtime stress and worries. Biol. Psychol. 76, 170–173 (2007).

    PubMed  Google Scholar 

  344. 344.

    Fatima, Y., Doi, S. A. R. & Mamun, A. A. Sleep quality and obesity in young subjects: a meta-analysis. Obes. Rev. 17, 1154–1166 (2016).

    CAS  PubMed  Google Scholar 

  345. 345.

    Christaki, E. et al. Stress management can facilitate weight loss in Greek overweight and obese women: a pilot study. J. Hum. Nutr. Diet. 26, 132–139 (2013).

    PubMed  Google Scholar 

  346. 346.

    Cox, T. L. et al. Stress management-augmented behavioral weight loss intervention for African American women: a pilot, randomized controlled trial. Heal. Educ. Behav. 40, 78–87 (2013).

    Google Scholar 

  347. 347.

    Yi, C. X. et al. Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 61, 339–345 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  348. 348.

    Kuo, L. E. et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 13, 803–811 (2007).

    CAS  PubMed  Google Scholar 

  349. 349.

    Morgan, S. A. et al. 11Β-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle. Diabetes 58, 2506–2515 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  350. 350.

    Gathercole, L. L., Bujalska, I. J., Stewart, P. M. & Tomlinson, J. W. Glucocorticoid modulation of insulin signaling in human subcutaneous adipose tissue. J. Clin. Endocrinol. Metab. 92, 4332–4339 (2007).

    CAS  PubMed  Google Scholar 

  351. 351.

    Paul-Labrador, M. et al. Effects of a randomized controlled trial of transcendental meditation on components of the metabolic syndrome in subjects with coronary heart disease. Arch. Intern. Med. 166, 1218–1224 (2006).

    PubMed  Google Scholar 

  352. 352.

    Terock, J. et al. Living alone and activation of the renin-angiotensin-aldosterone-system: differential effects depending on alexithymic personality features. J. Psychosom. Res. 96, 42–48 (2017).

    PubMed  Google Scholar 

  353. 353.

    Aguilera, G., Kiss, A. & Sunar-Akbasak, B. Hyperreninemic hypoaldosteronism after chronic stress in the rat. J. Clin. Invest. 96, 1512–1519 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  354. 354.

    Custodis, F. et al. Heart rate contributes to the vascular effects of chronic mental stress: effects on endothelial function and ischemic brain injury in mice. Stroke 42, 1742–1749 (2011).

    CAS  PubMed  Google Scholar 

  355. 355.

    Greaney, J. L., Koffer, R. E., Saunders, E. F. H., Almeida, D. M. & Alexander, L. M. Self-reported everyday psychosocial stressors are associated with greater impairments in endothelial function in young adults with major depressive disorder. J. Am. Heart Assoc. 8, e010825 (2019).

    PubMed  PubMed Central  Google Scholar 

  356. 356.

    Marsland, A. L., Walsh, C., Lockwood, K. & John-Henderson, N. A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav. Immun. 64, 208–219 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  357. 357.

    Xu, W. et al. High-sensitivity CRP: possible link between job stress and atherosclerosis. Am. J. Ind. Med. 58, 773–779 (2015).

    CAS  PubMed  Google Scholar 

  358. 358.

    Nazmi, A. & Victora, C. G. Socioeconomic and racial/ethnic differentials of C-reactive protein levels: a systematic review of population-based studies. BMC Public Health 7, 212 (2007).

    PubMed  PubMed Central  Google Scholar 

  359. 359.

    Sanada, K. et al. Effects of mindfulness-based interventions on biomarkers and low-grade inflammation in patients with psychiatric disorders: a meta-analytic review. Int. J. Mol. Sci. 21, 2484 (2020).

    CAS  PubMed Central  Google Scholar 

  360. 360.

    Park, J., Lyles, R. H. & Bauer-Wu, S. Mindfulness meditation lowers muscle sympathetic nerve activity and blood pressure in African-American males with chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, 93–101 (2014).

    Google Scholar 

  361. 361.

    Barnes, V. A., Pendergrast, R. A., Harshfield, G. A. & Treiber, F. A. Impact of breathing awareness meditation on ambulatory blood pressure and sodium handling in prehypertensive African American adolescents. Ethn. Dis. 18, 1–5 (2008).

    PubMed  PubMed Central  Google Scholar 

  362. 362.

    Manikonda, J. P. et al. Contemplative meditation reduces ambulatory blood pressure and stress-induced hypertension: a randomized pilot trial. J. Hum. Hypertens. 22, 138–140 (2008).

    CAS  PubMed  Google Scholar 

  363. 363.

    Schneider, R. H. et al. Long-term effects of stress reduction on mortality in persons ≥55 years of age with systemic hypertension. Am. J. Cardiol. 95, 1060–1064 (2005).

    PubMed  PubMed Central  Google Scholar 

  364. 364.

    Parohan, M. et al. Dietary acid load and risk of hypertension: a systematic review and dose-response meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 29, 665–675 (2019).

    CAS  PubMed  Google Scholar 

  365. 365.

    Dehghan, P. & Abbasalizad-Farhangi, M. Dietary acid load, blood pressure, fasting blood sugar and biomarkers of insulin resistance among adults: findings from an updated systematic review and meta-analysis. Int. J. Clin. Pract. 74, e13471 (2019).

    Google Scholar 

  366. 366.

    Khan, K. et al. The effect of viscous soluble fiber on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 28, 3–13 (2018).

    CAS  PubMed  Google Scholar 

  367. 367.

    Godos, J. et al. Dietary polyphenol intake, blood pressure, and hypertension: a systematic review and meta-analysis of observational studies. Antioxidants 8, 152 (2019).

    CAS  PubMed Central  Google Scholar 

  368. 368.

    Serban, M. C. et al. Effects of quercetin on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 5, e002713 (2016).

    PubMed  PubMed Central  Google Scholar 

  369. 369.

    Driscoll, K. S., Appathurai, A., Jois, M. & Radcliffe, J. E. Effects of herbs and spices on blood pressure. J. Hypertens. 37, 671–679 (2019).

    CAS  PubMed  Google Scholar 

  370. 370.

    Hasani, H. et al. Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials. Phyther. Res. 33, 1639–1647 (2019).

    CAS  Google Scholar 

  371. 371.

    Bahadoran, Z., Mirmiran, P., Kabir, A., Azizi, F. & Ghasemi, A. The nitrate-independent blood pressure-lowering effect of beetroot juice: a systematic review and meta-analysis. Adv. Nutr. 8, 830–838 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  372. 372.

    Schroeter, H. et al. (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl Acad. Sci. USA 103, 1024–1029 (2006).

    CAS  PubMed  Google Scholar 

  373. 373.

    Hollenberg, N. K., Fisher, N. D. L. & McCullough, M. L. Flavanols, the Kuna, cocoa consumption, and nitric oxide. J. Am. Soc. Hypertens. 3, 105–112 (2009).

    PubMed  Google Scholar 

  374. 374.

    Ried, K., Fakler, P. & Stocks, N. P. Effect of cocoa on blood pressure. Cochrane. Database Syst. Rev. 4, CD008893 (2017).

    PubMed  Google Scholar 

  375. 375.

    Ursoniu, S., Sahebkar, A., Andrica, F., Serban, C. & Banach, M. Effects of flaxseed supplements on blood pressure: a systematic review and meta-analysis of controlled clinical trial. Clin. Nutr. 35, 615–625 (2016).

    CAS  PubMed  Google Scholar 

  376. 376.

    D’Elia, L., La Fata, E., Galletti, F., Scalfi, L. & Strazzullo, P. Coffee consumption and risk of hypertension: a dose–response meta-analysis of prospective studies. Eur. J. Nutr. 58, 271–280 (2019).

    PubMed  Google Scholar 

  377. 377.

    Yarmolinsky, J., Gon, G. & Edwards, P. Effect of tea on blood pressure for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 73, 236–246 (2015).

    PubMed  Google Scholar 

  378. 378.

    Li, G. et al. Effect of green tea supplementation on blood pressure among overweight and obese adults: a systematic review and meta-analysis. J. Hypertens. 33, 243–254 (2015).

    CAS  PubMed  Google Scholar 

  379. 379.

    Myint, P. K., Luben, R. N., Wareham, N. J. & Khaw, K. T. Association between plasma vitamin C concentrations and blood pressure in the European prospective investigation into cancer–Norfolk population-based study. Hypertension 58, 372–379 (2011).

    CAS  PubMed  Google Scholar 

  380. 380.

    d’Uscio, L. V., Milstien, S., Richardson, D., Smith, L. & Katusic, Z. S. Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ. Res. 92, 88–95 (2003).

    PubMed  Google Scholar 

  381. 381.

    Vimaleswaran, K. S. et al. Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2, 719–729 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  382. 382.

    Li, K. et al. Effects of multivitamin and multimineral supplementation on blood pressure: a meta-analysis of 12 randomized controlled trials. Nutrients 10, 1018 (2018).

    PubMed Central  Google Scholar 

  383. 383.

    Rautiainen, S. et al. Multivitamin use and the risk of hypertension in a prospective cohort study of women. J. Hypertens. 34, 1513–1519 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  384. 384.

    Juraschek, S. P., Guallar, E., Appel, L. J. & Miller, E. III Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 95, 1079–1088 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  385. 385.

    Zhang, D. et al. Effect of vitamin D on blood pressure and hypertension in the general population: an update meta-analysis of cohort studies and randomized controlled trials. Prev. Chronic Dis. 17, 190307 (2020).

    Google Scholar 

  386. 386.

    Shu, L. & Huang, K. Effect of vitamin D supplementation on blood pressure parameters in patients with vitamin D deficiency: a systematic review and meta-analysis. J. Am. Soc. Hypertens. 12, 488–496 (2018).

    CAS  PubMed  Google Scholar 

  387. 387.

    Conklin, D. J. et al. Cardiovascular injury induced by tobacco products: assessment of risk factors and biomarkers of harm. a Tobacco Centers of Regulatory Science compilation. Am. J. Physiol. Hear. Circ. Physiol. 316, H801–H827 (2019).

    CAS  Google Scholar 

  388. 388.

    Virdis, A., Giannarelli, C., Fritsch Neves, M., Taddei, S. & Ghiadoni, L. Cigarette smoking and hypertension. Curr. Pharm. Des. 16, 2518–2525 (2010).

    CAS  PubMed  Google Scholar 

  389. 389.

    Linneberg, A. et al. Effect of smoking on blood pressure and resting heart rate: a mendelian randomization meta-analysis in the CARTA consortium. Circ. Cardiovasc. Genet. 8, 832–841 (2015).

    PubMed  PubMed Central  Google Scholar 

  390. 390.

    Hackshaw, A., Morris, J. K., Boniface, S., Tang, J. L. & Milenkovi, D. Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports. BMJ 360, j5855 (2018).

    PubMed  PubMed Central  Google Scholar 

  391. 391.

    Lindeberg, S., Nilsson-Ehle, P. & Vessby, B. Lipoprotein composition and serum cholesterol ester fatty acids in nonwesternized Melanesians. Lipids 31, 153–158 (1996).

    CAS  PubMed  Google Scholar 

  392. 392.

    Lindeberg, S., Eliasson, M. & Lindahl Ahrén, B. Low serum insulin in traditional Pacific islanders – the Kitava study. Metabolism 48, 1216–1219 (1999).

    CAS  PubMed  Google Scholar 

  393. 393.

    Mancilha-Carvalho, Jairo de Jesus & Silva, Nelson Albuquerque de Souzae The Yanomami indians in the INTERSALT study. Arq. Bras. Cardiol. 80, 295–300 (2003).

    Google Scholar 

  394. 394.

    Pontzer, H. et al. Hunter-gatherer energetics and human obesity. PLoS ONE 7, e40503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  395. 395.

    Pontzer, H., Wood, B. M. & Raichlen, D. A. Hunter-gatherers as models in public health. Obes. Rev. 19, 24–35 (2018).

    PubMed  Google Scholar 

  396. 396.

    Gurven, M., Jaeggi, A. V., Kaplan, H. & Cummings, D. Physical activity and modernization among Bolivian Amerindians. PLoS ONE 8, e55679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  397. 397.

    Liebert, M. A. et al. Implications of market integration for cardiovascular and metabolic health among an indigenous Amazonian Ecuadorian population. Ann. Hum. Biol. 40, 228–242 (2013).

    PubMed  Google Scholar 

  398. 398.

    Mcdade, T. W. et al. Analysis of variability of high sensitivity C-reactive protein in lowland Ecuador reveals no evidence of chronic low-grade inflammation. Am. J. Hum. Biol. 24, 675–681 (2012).

    PubMed  Google Scholar 

  399. 399.

    Madimenos, F. C., Snodgrass, J. J., Blackwell, A. D., Liebert, M. A. & Sugiyama, L. S. Physical activity in an indigenous Ecuadorian forager-horticulturalist population as measured using accelerometry. Am. J. Hum. Biol. 23, 488–497 (2011).

    PubMed  PubMed Central  Google Scholar 

  400. 400.

    Zhou, B. et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 389, 37–55 (2017).

    Google Scholar 

  401. 401.

    Seals, D. R. & Reiling, M. J. Effect of regular exercise on 24-hour arterial pressure in older hypertensive humans. Hypertension 18, 583–592 (1991).

    CAS  PubMed  Google Scholar 

  402. 402.

    Mobasseri, M., Yavari, A., Najafipoor, A., Aliasgarzadeh, A. & Niafar, M. Effect of a long-term regular physical activity on hypertension and body mass index in type 2 diabetes patients. J. Sports Med. Phys. Fit. 55, 84–90 (2015).

    CAS  Google Scholar 

  403. 403.

    Cox, K. L. et al. Long-term effects of exercise on blood pressure and lipids in healthy women aged 40–65 years: the Sedentary Women Exercise Adherence Trial (SWEAT). J. Hypertens. 19, 1733–1743 (2001).

    CAS  PubMed  Google Scholar 

  404. 404.

    Williamson, W. et al. Will exercise advice be sufficient for treatment of young adults with prehypertension and hypertension? A systematic review and meta-analysis. Hypertension 68, 78–87 (2016).

    CAS  PubMed  Google Scholar 

  405. 405.

    Dengel, D. R., Galecki, A. T., Hagberg, J. M. & Pratley, R. E. The independent and combined effects of weight loss and aerobic exercise on blood pressure and oral glucose tolerance in older men. Am. J. Hypertens. 11, 1405–1412 (1998).

    CAS  PubMed  Google Scholar 

  406. 406.

    Blumenthal, J. A. et al. Exercise and weight loss reduce blood pressure in men and women with mild hypertension: effects on cardiovascular, metabolic, and hemodynamic functioning. Arch. Intern. Med. 160, 1947–1958 (2000).

    CAS  PubMed  Google Scholar 

  407. 407.

    Whelton, S. P., Chin, A., Xin, X. & He, J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Arch. Intern. Med. 136, 493–503 (2002).

    Google Scholar 

  408. 408.

    Kim, D. & Ha, J.-W. Hypertensive response to exercise: mechanisms and clinical implication. Clin. Hypertens. 22, 16–19 (2016).

    Google Scholar 

  409. 409.

    Schultz, M. G. et al. Lifestyle change diminishes a hypertensive response to exercise in type 2 diabetes. Med. Sci. Sports Exerc. 43, 764–769 (2011).

    PubMed  Google Scholar 

  410. 410.

    Kraschnewski, J. L. et al. Long-term weight loss maintenance in the United States. Int. J. Obes. 34, 1644–1654 (2010).

    CAS  Google Scholar 

  411. 411.

    Johns, D. J., Hartmann-Boyce, J., Jebb, S. A. & Aveyard, P. Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J. Acad. Nutr. Diet. 114, 1557–1568 (2014).

    PubMed  PubMed Central  Google Scholar 

  412. 412.

    Dombrowski, S. U., Knittle, K., Avenell, A., Araújo-Soares, V. & Sniehotta, F. F. Long term maintenance of weight loss with non-surgical interventions in obese adults: systematic review and meta-analyses of randomised controlled trials. BMJ 348, g2646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  413. 413.

    Kanbay, M. et al. Acute effects of salt on blood pressure are mediated by serum osmolality. J. Clin. Hypertens. 20, 1447–1454 (2018).

    CAS  Google Scholar 

  414. 414.

    Toney, G. M. & Stocker, S. D. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease. J. Physiol. 588, 3375–3384 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  415. 415.

    Rodriguez-Iturbe, B., Pons, H. & Johnson, R. J. Role of the immune system in hypertension. Physiol. Rev. 97, 1127–1164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  416. 416.

    Bankir, L., Bichet, D. G. & Bouby, N. Vasopressin V2 receptors, ENaC, and sodium reabsorption: a risk factor for hypertension? Am. J. Physiol. Ren. Physiol. 299, F917–F928 (2010).

    CAS  Google Scholar 

  417. 417.

    Fedorova, O. V., Shapiro, J. I. & Bagrov, A. Y. Endogenous cardiotonic steroids and salt-sensitive hypertension. Biochim. Biophys. Acta 1802, 1230–1236 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  418. 418.

    Song, Z. et al. Role of fructose and fructokinase in acute dehydration-induced vasopressin gene expression and secretion in mice. J. Neurophysiol. 117, 646–654 (2017).

    CAS  PubMed  Google Scholar 

Download references


Work by P.L.V. is supported by University of Alcalá (FPI2016). Research by G.R.-H., L.M.R. and A.L. is funded by the Spanish Ministry of Economy and Competitiveness and Fondos FEDER (PI18/00139, PI17/01093 and PI17/01193). G.R.-H. holds a Miguel Servet research contract (CP15/00129). The authors thank K. McCreath (Madrid, Spain) for editorial assistance and A. Castillo-García (Fissac-Physiology, Health and Physical Activity, Madrid, Spain) for assistance with generating the figures for submission.

Author information




P.L.V., P.C.-B and A.L. wrote the article. All the authors researched data for the article, contributed to discussion of content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Alejandro Lucia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Clinic (or office) blood pressure

Blood pressure (BP) measured in the clinical setting (for example, an outpatient clinic). In this Review, ‘BP’ refers to ‘clinic BP’ unless otherwise stated.

Resistant hypertension

Clinic (or office) systolic blood pressure/diastolic blood pressure ≥140/90 mmHg (or ≥130/80 mmHg according to the 2017 ACC/AHA guidelines) in patients receiving at least three antihypertensive drugs (including one diuretic) at maximally tolerated doses.

Physical exercise

Also termed ‘exercise training’ or simply ‘exercise’. A subset of physical activity that is planned, structured and repetitive and has a final or an intermediate objective of improving or maintaining physical fitness. In this Review, physical activity and exercise are sometimes used interchangeably to ease readability.

Non-westernized populations

Hunter–gatherers, traditional horticulturalists, pastoralists and farmers, and other populations minimally affected by western habits.

Non-westernized dietary patterns

Composed mainly of universal fresh food sources very low in refined oils, margarine, refined cereal grains, added sugars and ultra-processed foods.

Physical activity

Any bodily movement produced by skeletal muscles that requires energy expenditure.

Dietary Approaches to Stop Hypertension

(DASH). A lifelong approach to healthy eating that is designed to help treat or prevent hypertension without medication, sponsored by the NIH. This diet is rich in fruits, vegetables, whole grains and low-fat dairy products, includes poultry, fish and nuts, contains small amounts of red meat, sweets and sugar-containing beverages, and results in a sodium intake within normal limits.

Minimum physical activity levels

WHO recommends that adults engage in ≥150 min per week of moderate-intensity physical activity (such as brisk walking) or ≥75 min per week of vigorous physical activity (such as very brisk walking or jogging), or a combination thereof, as well as in muscle-strengthening activities involving major muscle groups on ≥2 days per week.

24-h ambulatory BP

Also termed ‘24-h BP’. The mean result of blood pressure (BP) levels measured with a portable automated device at regular intervals during normal daily life over 24 h.

Endurance exercise

Also termed ‘aerobic exercise’. A type of exercise that is performed for more than a few minutes and preferentially involves aerobic metabolism for energy production (for example, brisk walking, jogging, bicycling and swimming).

Resistance exercise

Also termed ‘strength exercise’. A type of exercise that is performed against a load or resistance (for example, weight lifting and leg press).

Isometric exercise

A type of exercise that usually involves small muscle groups and results in no displacement or joint movement (such as handgrip).

Renal sympathetic nerve activity

An important nerve regulator of the function of the renal vasculature, tubules and juxtaglomerular granular cells and, therefore, of renal haemodynamics, tubular reabsorption and renin secretion rate.

Renin–angiotensin–aldosterone system

(RAAS). A hormonal system that is a critical regulator of blood volume and systemic vascular resistance.


From the Greek adipo (fat), cytos (cell) and kinos (movement); also termed adipokines. Cytokines secreted by adipose tissue.

Sympathetic nervous system

(SNS). One of the two main divisions of the autonomic nervous system, the other being the parasympathetic nervous system. Although its primary function is to stimulate the ‘fight, flight or freeze’ response, the SNS is constantly active at a basal level to maintain homeostasis in haemodynamics by inducing a vasoconstrictor effect in most vessels.

Conduit arteries

Also known as conducting arteries or elastic arteries. Arteries with many collagen and elastin filaments in the tunica media, which provides the capacity to stretch in response to each pulse. Conduit arteries include the largest arteries in the body (pulmonary arteries, the aorta and its branches).

Resistance arteries

Small-diameter blood vessels in the microcirculation with thick muscular walls and narrow lumen (usually arterioles and end point arteries) that contribute the most to the resistance to blood flow.

Nitric oxide

(NO). A volatile gas produced by endothelial cells that acts to relax vascular tone.

Oxidative stress

A process of cellular damage related to uncontrolled action of reactive oxygen species, a group of molecules, including oxygen and its derivatives, produced by the normal process of aerobic metabolism.

Chronic systemic inflammation

Usually referred to as simply ‘inflammation’. A state of low-grade, non-infective (‘sterile’) inflammation at the systemic level that is characterized by activation of immune components that are often distinct from those engaged during an acute immune response and that can lead to major alterations in all cells, tissues and organs. This state is reflected by high baseline levels of specific biomarkers such as high-sensitive C-reactive protein.


From the Greek myo (muscle) and kinos (movement). Molecules (mostly, but not only, small peptides such as cytokines) released from muscles, usually during exercise.


Mechanical receptors that sense blood pressure changes in both carotid sinuses and the aortic arch.

Arterial baroreflex

Also known as the baroreceptor reflex. A rapid negative feedback loop in which elevated blood pressure is sensed by baroreceptors, with their subsequent activation leading to rapid increases in parasympathetic outflow and decreases in sympathetic outflow and therefore to restoration of blood pressure levels.

Peripheral chemoreceptors

Located in the carotid and aortic bodies. Sensory extensions of the peripheral nervous system into blood vessels that detect changes in chemical homeostasis (hypoxaemia, hypercapnia and acidosis), which increases their firing with a subsequent increase in ventilation and sympathetic nervous system outflow.

Obstructive sleep apnoea

(OSA). A sleep-related breathing disorder characterized by repeated episodes of complete or partial upper-airway occlusion (and subsequent arterial hypoxaemia) during sleep.

Mediterranean diet

A diet abundant in fruits, vegetables, legumes, whole grains, olives, nuts and seeds, and containing extra-virgin olive oil associated with frequent consumption of fish, moderate consumption of dairy products and red wine, and low consumption of red meat and isolated sugars.

Advanced glycation end-products

(AGEs). Proteins or lipids that become non-enzymatically glycated as a result of exposure to sugars.


A main class of plant secondary metabolite, existing in a wide variety of foods, typically divided into flavonoids and non-flavonoid polyphenols.


A type of flavonoid with antioxidant and colouring effects that give certain plants that are rich in these compounds (blueberry, raspberry, red and black grapes and black soybean, among many others) a red, blue, purple or black colour.


Sometimes referred to as ‘flavanols’, not to be confused with flavonols. Derivatives of flavans that include catechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, proanthocyanidins, theaflavins and thearubigins.

Gut microbiota

The collective microorganisms (bacteria, archaea, fungi and viruses) that reside in the gastrointestinal tract.


Live microorganisms with purported health benefits when consumed, mainly as a result of improving or restoring the gut microbiota.


Chemical substances found within an organism that are not naturally produced or expected to be present within the organism.

Bisphenol A

A ubiquitous plasticizing agent used in the manufacture of polycarbonate plastics and epoxy resins, found in food and beverage cans as well as in thermal receipt paper. Owing to a structural similarity to oestrogen, bisphenol affects various phenotypes that are regulated by the natural hormone oestrogen.

Suprachiasmatic nucleus

(SCN). A small region of the brain in the hypothalamus, situated directly above the optic chiasm, that is responsible for controlling circadian rhythms.

Sleep quality

The self-reported, retrospective appraisal of the sleep experience. A good sleep quality typically means falling asleep in ≤30 min and sleeping soundly through the night (one or no awakenings and drifting back to sleep within 20 min of waking up).

Sleep-maintenance insomnia

A condition characterized by difficulty staying asleep, nocturnal awakenings and, in particular, waking too early and struggling to get back to sleep.

Slow-wave sleep

The phase of sleep that is considered to be restorative and is associated with the highest arousal threshold.

Low non-rapid eye movement sleep

The phase of sleep associated with better performance and learning as well as with decreased sympathetic nervous system activity and increased parasympathetic nervous system activity during the night.

Psychosocial stress

Also frequently referred to as ‘mental stress’. The feeling of being overwhelmed or unable to cope as a result of pressures that are unmanageable.

White-coat syndrome

Also known as ‘white-coat hypertension’. A phenomenon in which people exhibit a blood pressure above the normal range in a clinical setting but not in other settings (at home or with 24-h ambulatory assessments).

Post-traumatic stress disorder

(PTSD). A mental health condition triggered by a terrifying event, either experiencing it or witnessing it, with symptoms including flashbacks, nightmares, severe anxiety or uncontrollable thoughts about the event.

Dietary acid load

The balance of net acid-yielding food items (meats, fish, shellfish, eggs, cheese, cereal grains and salt) and net base-producing food items (fruits, tubers, roots and vegetables).


A type of polyphenol whose subclasses (for example, flavanols, flavonones and isoflavones) are present mostly in fruits, certain vegetables, seeds (such as flax), soy, whole grains, honey, tea, coffee, cocoa, some alcoholic beverages (such as wine) and a few spices.


The most abundant dietary flavonol, mainly found in onions, apples and berries.


A flowering plant whose rhizome is frequently used as a spice, containing several bioactive compounds (such as gingerols) with the potential to affect human health.


A seed from the flax plant with moderate-to-high contents of α-linolenic acid (an omega-3 fatty acid), lignans (a group of polyphenols), and soluble and insoluble fibre.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, P.L., Carrera-Bastos, P., Gálvez, B.G. et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 18, 251–275 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing