Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine

Abstract

Our knowledge of pluripotent stem cell (PSC) biology has advanced to the point where we now can generate most cells of the human body in the laboratory. PSC-derived cardiomyocytes can be generated routinely with high yield and purity for disease research and drug development, and these cells are now gradually entering the clinical research phase for the testing of heart regeneration therapies. However, a major hurdle for their applications is the immature state of these cardiomyocytes. In this Review, we describe the structural and functional properties of cardiomyocytes and present the current approaches to mature PSC-derived cardiomyocytes. To date, the greatest success in maturation of PSC-derived cardiomyocytes has been with transplantation into the heart in animal models and the engineering of 3D heart tissues with electromechanical conditioning. In conventional 2D cell culture, biophysical stimuli such as mechanical loading, electrical stimulation and nanotopology cues all induce substantial maturation, particularly of the contractile cytoskeleton. Metabolism has emerged as a potent means to control maturation with unexpected effects on electrical and mechanical function. Different interventions induce distinct facets of maturation, suggesting that activating multiple signalling networks might lead to increased maturation. Despite considerable progress, we are still far from being able to generate PSC-derived cardiomyocytes with adult-like phenotypes in vitro. Future progress will come from identifying the developmental drivers of maturation and leveraging them to create more mature cardiomyocytes for research and regenerative medicine.

Key points

  • Cardiomyocytes can be generated in vitro from stem cells with high throughput and purity at a clinically relevant scale, although their differentiation status resembles an embryonic state.

  • Cardiomyocyte maturation entails adoption of multiple complex phenotypes, and a number of methods to mature stem cell-derived cardiomyocytes have been successful in driving the cells towards a postnatal state.

  • Stem cell-derived cardiomyocyte phenotypes have been characterized with the use of global systems approaches, which has uncovered novel regulators and insights for maturation.

  • Moving forward, strategies for cardiomyocyte maturation will require indication-specific optimization for intended applications of stem cell-derived cardiomyocytes, leveraging an optimal maturation state while utilizing combinatorial approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cardiomyocyte maturation features.
Fig. 2: Cardiomyocyte electrophysiology.
Fig. 3: Cell cycle activity in cardiomyocytes.

Similar content being viewed by others

References

  1. Liu, Y. W. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36, 597–605 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sizarov, A. et al. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation 123, 1125–1135 (2011).

    PubMed  Google Scholar 

  3. Marchiano, S., Bertero, A. & Murry, C. E. Learn from your elders: developmental biology lessons to guide maturation of stem cell-derived cardiomyocytes. Pediatr. Cardiol. 40, 1367–1387 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. Hudlicka, O. & Brown, M. D. Postnatal growth of the heart and its blood vessels. J. Vasc. Res. 33, 266–287 (1996).

    CAS  PubMed  Google Scholar 

  5. Hew, K. W. & Keller, K. A. Postnatal anatomical and functional development of the heart: a species comparison. Birth Defects Res. B Dev. Reprod. Toxicol. 68, 309–320 (2003).

    CAS  PubMed  Google Scholar 

  6. Mollova, M. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl Acad. Sci. USA 110, 1446–1451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilsbach, R. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat. Commun. 9, 391 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Porter, G. A. Jr. et al. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 31, 75–81 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Siedner, S. et al. Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J. Physiol. 548, 493–505 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Christoffels, V. M., Smits, G. J., Kispert, A. & Moorman, A. F. Development of the pacemaker tissues of the heart. Circ. Res. 106, 240–254 (2010).

    CAS  PubMed  Google Scholar 

  11. Spater, D., Hansson, E. M., Zangi, L. & Chien, K. R. How to make a cardiomyocyte. Development 141, 4418–4431 (2014).

    CAS  PubMed  Google Scholar 

  12. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    CAS  PubMed  Google Scholar 

  13. Vreeker, A. et al. Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart. PLoS One 9, e94722 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Li, F., Wang, X., Capasso, J. M. & Gerdes, A. M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell Cardiol. 28, 1737–1746 (1996).

    CAS  PubMed  Google Scholar 

  15. Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature 473, 326–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lundy, S. D., Zhu, W. Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Dev. 22, 1991–2002 (2013).

    CAS  Google Scholar 

  17. McCain, M. L., Agarwal, A., Nesmith, H. W., Nesmith, A. P. & Parker, K. K. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35, 5462–5471 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dai, D. F., Danoviz, M. E., Wiczer, B., Laflamme, M. A. & Tian, R. Mitochondrial maturation in human pluripotent stem cell derived cardiomyocytes. Stem Cell Int. 2017, 5153625 (2017).

    Google Scholar 

  19. Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerdes, A. M. et al. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86, 426–430 (1992).

    CAS  PubMed  Google Scholar 

  21. Snir, M. et al. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355–H2363 (2003).

    CAS  PubMed  Google Scholar 

  22. Spach, M. S., Heidlage, J. F., Dolber, P. C. & Barr, R. C. Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth. Circ. Res. 86, 302–311 (2000).

    CAS  PubMed  Google Scholar 

  23. Spach, M. S., Heidlage, J. F., Barr, R. C. & Dolber, P. C. Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm. 1, 500–515 (2004).

    PubMed  Google Scholar 

  24. McCain, M. L. & Parker, K. K. Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch. 462, 89–104 (2011).

    CAS  PubMed  Google Scholar 

  25. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    CAS  PubMed  Google Scholar 

  26. Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, J., Laksman, Z. & Backx, P. H. The electrophysiological development of cardiomyocytes. Adv. Drug. Deliv. Rev. 96, 253–273 (2016).

    CAS  PubMed  Google Scholar 

  28. Carmeliet, E. Pacemaking in cardiac tissue. From IK2 to a coupled-clock system. Physiol. Rep. 7, e13862 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Peinkofer, G. et al. From early embryonic to adult stage: comparative study of action potentials of native and pluripotent stem cell-derived cardiomyocytes. Stem Cell Dev. 25, 1397–1406 (2016).

    CAS  Google Scholar 

  30. Koivumaki, J. T. et al. Structural immaturity of human iPSC-derived cardiomyocytes: in silico investigation of effects on function and disease modeling. Front. Physiol. 9, 80 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Veerman, C. C. et al. Switch from fetal to adult SCN5A isoform in human induced pluripotent stem cell-derived cardiomyocytes unmasks the cellular phenotype of a conduction disease-causing mutation. J. Am. Heart Assoc. 6, e005135 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Buchanan, J. W. Jr., Saito, T. & Gettes, L. S. The effects of antiarrhythmic drugs, stimulation frequency, and potassium-induced resting membrane potential changes on conduction velocity and dV/dtmax in guinea pig myocardium. Circ. Res. 56, 696–703 (1985).

    CAS  PubMed  Google Scholar 

  33. Hoekstra, M., Mummery, C. L., Wilde, A. A., Bezzina, C. R. & Verkerk, A. O. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front. Physiol. 3, 346 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Zhao, Z. et al. Ion channel expression and characterization in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Int. 2018, 6067096 (2018).

    Google Scholar 

  35. Doss, M. X. et al. Maximum diastolic potential of human induced pluripotent stem cell-derived cardiomyocytes depends critically on I(Kr). PLoS One 7, e40288 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409 (2010).

    CAS  PubMed  Google Scholar 

  37. Ma, J. et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 301, H2006–H2017 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, M. et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proc. Natl Acad. Sci. USA 111, E5383–E5392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sogo, T. et al. Electrophysiological properties of iPS cell-derived cardiomyocytes from a patient with long QT syndrome type 1 harboring the novel mutation M437V of KCNQ1. Regen. Ther. 4, 9–17 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Zeng, H., Wang, J., Clouse, H., Lagrutta, A. & Sannajust, F. Human-induced pluripotent stem cell-derived cardiomyocytes have limited IKs for repolarization reserve as revealed by specific KCNQ1/KCNE1 blocker. JRSM Cardiovasc. Dis. 8, 2048004019854919 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Cordeiro, J. M. et al. Identification and characterization of a transient outward K+ current in human induced pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell Cardiol. 60, 36–46 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Scuderi, G. J. & Butcher, J. Naturally engineered maturation of cardiomyocytes. Front. Cell Dev. Biol. 5, 50 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. McDevitt, T. C. et al. In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J. Biomed. Mater. Res. 60, 472–479 (2002).

    CAS  PubMed  Google Scholar 

  44. Salameh, A. et al. Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ. Res. 106, 1592–1602 (2010).

    CAS  PubMed  Google Scholar 

  45. Zhang, W. et al. Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: effects of niche cell supplementation and mechanical stimulation. Acta Biomater. 49, 204–217 (2017).

    CAS  PubMed  Google Scholar 

  46. Satin, J. et al. Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cell 26, 1961–1972 (2008).

    CAS  Google Scholar 

  47. Lieu, D. K. et al. Absence of transverse tubules contributes to non-uniform Ca2+ wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cell Dev. 18, 1493–1500 (2009).

    CAS  Google Scholar 

  48. Hwang, H. S. et al. Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. J. Mol. Cell Cardiol. 85, 79–88 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Louch, W. E., Koivumaki, J. T. & Tavi, P. Calcium signalling in developing cardiomyocytes: implications for model systems and disease. J. Physiol. 593, 1047–1063 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, J. et al. Facilitated maturation of Ca2+ handling properties of human embryonic stem cell-derived cardiomyocytes by calsequestrin expression. Am. J. Physiol. Cell Physiol. 297, C152–C159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, J., Fu, J. D., Siu, C. W. & Li, R. A. Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cell 25, 3038–3044 (2007).

    CAS  Google Scholar 

  52. Davis, J. P. & Tikunova, S. B. Ca2+ exchange with troponin C and cardiac muscle dynamics. Cardiovasc. Res. 77, 619–626 (2008).

    CAS  PubMed  Google Scholar 

  53. Kane, C., Couch, L. & Terracciano, C. M. Excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes. Front. Cell Dev. Biol. 3, 59 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Bird, S. D. et al. The human adult cardiomyocyte phenotype. Cardiovasc. Res. 58, 423–434 (2003).

    CAS  PubMed  Google Scholar 

  55. Bedada, F. B. et al. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cell Rep. 3, 594–605 (2014).

    CAS  Google Scholar 

  56. Zuppinger, C. et al. Characterization of cytoskeleton features and maturation status of cultured human iPSC-derived cardiomyocytes. Eur. J. Histochem. 61, 2763 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Iorga, B. et al. Differences in contractile function of myofibrils within human embryonic stem cell-derived cardiomyocytes vs. adult ventricular myofibrils are related to distinct sarcomeric protein isoforms. Front. Physiol. 8, 1111 (2017).

    PubMed  Google Scholar 

  58. Hinson, J. T. et al. Heart disease. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mahdavi, V., Lompre, A. M., Chambers, A. P. & Nadal-Ginard, B. Cardiac myosin heavy chain isozymic transitions during development and under pathological conditions are regulated at the level of mRNA availability. Eur. Heart J. 5, 181–191 (1984).

    CAS  PubMed  Google Scholar 

  60. Weber, N. et al. Stiff matrix induces switch to pure beta-cardiac myosin heavy chain expression in human ESC-derived cardiomyocytes. Basic. Res. Cardiol. 111, 68 (2016).

    PubMed  Google Scholar 

  61. Sabry, M. A. & Dhoot, G. K. Identification and pattern of expression of a developmental isoform of troponin I in chicken and rat cardiac muscle. J. Muscle Res. Cell Motil. 10, 85–91 (1989).

    CAS  PubMed  Google Scholar 

  62. Gorza, L., Ausoni, S., Merciai, N., Hastings, K. E. & Schiaffino, S. Regional differences in troponin I isoform switching during rat heart development. Dev. Biol. 156, 253–264 (1993).

    CAS  PubMed  Google Scholar 

  63. Hunkeler, N. M., Kullman, J. & Murphy, A. M. Troponin I isoform expression in human heart. Circ. Res. 69, 1409–1414 (1991).

    CAS  PubMed  Google Scholar 

  64. Sasse, S. et al. Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ. Res. 72, 932–938 (1993).

    CAS  PubMed  Google Scholar 

  65. Metzger, J. M., Michele, D. E., Rust, E. M., Borton, A. R. & Westfall, M. V. Sarcomere thin filament regulatory isoforms. Evidence of a dominant effect of slow skeletal troponin I on cardiac contraction. J. Biol. Chem. 278, 13118–13123 (2003).

    CAS  PubMed  Google Scholar 

  66. Westfall, M. V., Rust, E. M. & Metzger, J. M. Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function. Proc. Natl Acad. Sci. USA 94, 5444–5449 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Davis, J. P. et al. Effects of thin and thick filament proteins on calcium binding and exchange with cardiac troponin C. Biophys. J. 92, 3195–3206 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chuva de Sousa Lopes, S. M. et al. Patterning the heart, a template for human cardiomyocyte development. Dev. Dyn. 235, 1994–2002 (2006).

    PubMed  Google Scholar 

  69. Piccini, I., Rao, J., Seebohm, G. & Greber, B. Human pluripotent stem cell-derived cardiomyocytes: genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue. Genom. Data 4, 69–72 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. Clement, S. et al. Expression and function of alpha-smooth muscle actin during embryonic-stem-cell-derived cardiomyocyte differentiation. J. Cell Sci. 120, 229–238 (2007).

    CAS  PubMed  Google Scholar 

  71. Black, F. M. et al. The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load. J. Clin. Invest. 88, 1581–1588 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Suurmeijer, A. J. et al. Alpha-actin isoform distribution in normal and failing human heart: a morphological, morphometric, and biochemical study. J. Pathol. 199, 387–397 (2003).

    CAS  PubMed  Google Scholar 

  73. van Laake, L. W. et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 1, 9–24 (2007).

    PubMed  Google Scholar 

  74. Kim, H. D. Expression of intermediate filament desmin and vimentin in the human fetal heart. Anat. Rec. 246, 271–278 (1996).

    CAS  PubMed  Google Scholar 

  75. Werner, J. C., Sicard, R. E. & Schuler, H. G. Palmitate oxidation by isolated working fetal and newborn pig hearts. Am. J. Physiol. 256, E315–E321 (1989).

    CAS  PubMed  Google Scholar 

  76. Lopaschuk, G. D., Spafford, M. A. & Marsh, D. R. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am. J. Physiol. 261, H1698–H1705 (1991).

    CAS  PubMed  Google Scholar 

  77. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    CAS  PubMed  Google Scholar 

  78. Galdos, F. X. et al. Cardiac regeneration: lessons from development. Circ. Res. 120, 941–959 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Palmer, J. W., Tandler, B. & Hoppel, C. L. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J. Biol. Chem. 252, 8731–8739 (1977).

    CAS  PubMed  Google Scholar 

  80. Saks, V. et al. Intracellular energetic units regulate metabolism in cardiac cells. J. Mol. Cell Cardiol. 52, 419–436 (2012).

    CAS  PubMed  Google Scholar 

  81. Hom, J. R. et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 21, 469–478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Feric, N. T. & Radisic, M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv. Drug. Deliv. Rev. 96, 110–134 (2016).

    CAS  PubMed  Google Scholar 

  83. Adler, C. P. & Friedburg, H. Myocardial DNA content, ploidy level and cell number in geriatric hearts: post-mortem examinations of human myocardium in old age. J. Mol. Cell Cardiol. 18, 39–53 (1986).

    CAS  PubMed  Google Scholar 

  84. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Brodsky, W. Y., Arefyeva, A. M. & Uryvaeva, I. V. Mitotic polyploidization of mouse heart myocytes during the first postnatal week. Cell Tissue Res. 210, 133–144 (1980).

    CAS  PubMed  Google Scholar 

  86. Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M. & Field, L. J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 271, H2183–H2189 (1996).

    CAS  PubMed  Google Scholar 

  87. Puente, B. N. et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157, 565–579 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hirose, K. et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364, 184–188 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Herget, G. W., Neuburger, M., Plagwitz, R. & Adler, C. P. DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc. Res. 36, 45–51 (1997).

    CAS  PubMed  Google Scholar 

  90. Adler, C. P. Relationship between deoxyribonucleic acid content and nucleoli in human heart muscle cells and estimation of cell number during cardiac growth and hyperfunction. Recent. Adv. Stud. Card. Struct. Metab. 8, 373–386 (1975).

    CAS  Google Scholar 

  91. Patterson, M. et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat. Genet. 49, 1346–1353 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gonzalez-Rosa, J. M. et al. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev. Cell 44, 433–446.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Brooks, G., Poolman, R. A., McGill, C. J. & Li, J. M. Expression and activities of cyclins and cyclin-dependent kinases in developing rat ventricular myocytes. J. Mol. Cell. Cardiol. 29, 2261–2271 (1997).

    CAS  PubMed  Google Scholar 

  94. Kang, M. J., Kim, J. S., Chae, S. W., Koh, K. N. & Koh, G. Y. Cyclins and cyclin dependent kinases during cardiac development. Mol. Cells 7, 360–366 (1997).

    CAS  PubMed  Google Scholar 

  95. Yoshizumi, M. et al. Disappearance of cyclin a correlates with permanent withdrawal of cardiomyocytes from the cell cycle in human and rat hearts. J. Clin. Invest. 95, 2275–2280 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Koh, K. N. et al. Persistent and heterogenous expression of the cyclin-dependent kinase inhibitor, p27KIP1, in rat hearts during development. J. Mol. Cell Cardiol. 30, 463–474 (1998).

    CAS  PubMed  Google Scholar 

  97. Pasumarthi, K. B. & Field, L. J. Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044–1054 (2002).

    CAS  PubMed  Google Scholar 

  98. Burton, P. B., Yacoub, M. H. & Barton, P. J. Cyclin-dependent kinase inhibitor expression in human heart failure. A comparison with fetal development. Eur. Heart J. 20, 604–611 (1999).

    CAS  PubMed  Google Scholar 

  99. Uosaki, H. et al. Transcriptional landscape of cardiomyocyte maturation. Cell Rep. 13, 1705–1716 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Correia, C. et al. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci. Rep. 7, 8590 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Mohamed, T. M. A. et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173, 104–116.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, X. et al. Tri-iodo-L-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J. Mol. Cell Cardiol. 72, 296–304 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Diez-Cunado, M. et al. miRNAs that induce human cardiomyocyte proliferation converge on the hippo pathway. Cell Rep. 23, 2168–2174 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou, Q., Li, L., Zhao, B. & Guan, K. L. The hippo pathway in heart development, regeneration, and diseases. Circulation Res. 116, 1431–1447 (2015).

    CAS  PubMed  Google Scholar 

  106. Mahmoud, A. I. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497, 249–253 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nakano, H. et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. eLife 6, e29330 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Mills, R. J. et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl Acad. Sci. USA 114, E8372–E8381 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hassink, R. J. et al. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc. Res. 78, 18–25 (2008).

    CAS  PubMed  Google Scholar 

  110. Zhu, W., Zhao, M., Mattapally, S., Chen, S. & Zhang, J. CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: remuscularization of injured ventricle. Circ. Res. 122, 88–96 (2018).

    CAS  PubMed  Google Scholar 

  111. Kamakura, T. et al. Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ. J. 77, 1307–1314 (2013).

    CAS  PubMed  Google Scholar 

  112. Churko, J. M. et al. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat. Commun. 9, 4906 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Friedman, C. E. et al. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell 23, 586–598.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kuppusamy, K. T. et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc. Natl Acad. Sci. USA 112, E2785–E2794 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kadota, S., Pabon, L., Reinecke, H. & Murry, C. E. In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. Stem Cell Rep. 8, 278–289 (2017).

    CAS  Google Scholar 

  116. Cho, G. S. et al. Neonatal transplantation confers maturation of PSC-derived cardiomyocytes conducive to modeling cardiomyopathy. Cell Rep. 18, 571–582 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Funakoshi, S. et al. Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci. Rep. 6, 19111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Laflamme, M. A. et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. 167, 663–671 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391 (2016).

    CAS  PubMed  Google Scholar 

  121. Gerbin, K. A. & Murry, C. E. The winding road to regenerating the human heart. Cardiovasc. Pathol. 24, 133–140 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Guo, Y. et al. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat. Commun. 9, 3837 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Ackers-Johnson, M. et al. A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ. Res. 119, 909–920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Banyasz, T. et al. Transformation of adult rat cardiac myocytes in primary culture. Exp. Physiol. 93, 370–382 (2008).

    PubMed  Google Scholar 

  125. Claycomb, W. C. & Palazzo, M. C. Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev. Biol. 80, 466–482 (1980).

    CAS  PubMed  Google Scholar 

  126. Ribeiro, A. J. et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl Acad. Sci. USA 112, 12705–12710 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, D. H. et al. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl Acad. Sci. USA 107, 565–570 (2010).

    CAS  PubMed  Google Scholar 

  128. Macadangdang, J. et al. Nanopatterned human iPSC-based model of a dystrophin-null cardiomyopathic phenotype. Cell Mol. Bioeng. 8, 320–332 (2015).

    CAS  PubMed  Google Scholar 

  129. Rao, C. et al. The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials 34, 2399–2411 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Werley, C. A. et al. Geometry-dependent functional changes in iPSC-derived cardiomyocytes probed by functional imaging and RNA sequencing. PLoS One 12, e0172671 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. Huethorst, E. et al. Enhanced human-induced pluripotent stem cell derived cardiomyocyte maturation using a dual microgradient substrate. ACS Biomater. Sci. Eng. 2, 2231–2239 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Jacot, J. G. et al. Cardiac myocyte force development during differentiation and maturation. Ann. NY Acad. Sci. 1188, 121–127 (2010).

    PubMed  Google Scholar 

  133. Martewicz, S., Serena, E., Zatti, S., Keller, G. & Elvassore, N. Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance. Stem Cell Res. 25, 107–114 (2017).

    CAS  PubMed  Google Scholar 

  134. Feaster, T. K. et al. Matrigel mattress: a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 117, 995–1000 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Herron, T. J. et al. Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circ. Arrhythm. Electrophysiol. 9, e003638 (2016).

    CAS  PubMed  Google Scholar 

  136. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    CAS  PubMed  Google Scholar 

  137. Ieda, M. et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell 16, 233–244 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    CAS  PubMed  Google Scholar 

  139. Tirziu, D., Giordano, F. J. & Simons, M. Cell communications in the heart. Circulation 122, 928–937 (2010).

    PubMed  PubMed Central  Google Scholar 

  140. Fountoulaki, K., Dagres, N. & Iliodromitis, E. K. Cellular communications in the heart. Card. Fail. Rev. 1, 64–68 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Brutsaert, D. L. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 83, 59–115 (2003).

    CAS  PubMed  Google Scholar 

  142. Yu, J. et al. Topological arrangement of cardiac fibroblasts regulates cellular plasticity. Circ. Res. 123, 73–85 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Herum, K. M., Choppe, J., Kumar, A., Engler, A. J. & McCulloch, A. D. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol. Biol. Cell 28, 1871–1882 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee, D. S. et al. Defined microRNAs induce aspects of maturation in mouse and human embryonic-stem-cell-derived cardiomyocytes. Cell Rep. 12, 1960–1967 (2015).

    CAS  PubMed  Google Scholar 

  145. Dunn, K. K. et al. Coculture of endothelial cells with human pluripotent stem cell-derived cardiac progenitors reveals a differentiation stage-specific enhancement of cardiomyocyte maturation. Biotechnol. J. 14, e1800725 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. Zuppinger, C. 3D culture for cardiac cells. Biochim. Biophys. Acta 1863, 1873–1881 (2016).

    CAS  PubMed  Google Scholar 

  147. Hirt, M. N., Hansen, A. & Eschenhagen, T. Cardiac tissue engineering: state of the art. Circ. Res. 114, 354–367 (2014).

    CAS  PubMed  Google Scholar 

  148. Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ulmer, B. M. et al. Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes. Stem Cell Rep. 10, 834–847 (2018).

    CAS  Google Scholar 

  150. Mannhardt, I. et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Rep. 7, 29–42 (2016).

    CAS  Google Scholar 

  151. Lemoine, M. D. et al. Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Sci. Rep. 7, 5464 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. Zhang, D. et al. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34, 5813–5820 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Schaaf, S. et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6, e26397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Tiburcy, M. et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135, 1832–1847 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Bargehr, J. et al. Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nat. Biotechnol. 37, 895–906 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ravenscroft, S. M., Pointon, A., Williams, A. W., Cross, M. J. & Sidaway, J. E. Cardiac non-myocyte cells show enhanced pharmacological function suggestive of contractile maturity in stem cell derived cardiomyocyte microtissues. Toxicol. Sci. 152, 99–112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Giacomelli, E. et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 144, 1008–1017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lindsey, S. E., Butcher, J. T. & Yalcin, H. C. Mechanical regulation of cardiac development. Front. Physiol. 5, 318 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Ruwhof, C. & van der Laarse, A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc. Res. 47, 23–37 (2000).

    CAS  PubMed  Google Scholar 

  160. Judd, J., Lovas, J. & Huang, G. N. Isolation, culture and transduction of adult mouse cardiomyocytes. J. Vis. Exp. 87, 54012 (2016).

    Google Scholar 

  161. Zimmermann, W. H. et al. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223–230 (2002).

    CAS  PubMed  Google Scholar 

  162. Tulloch, N. L. et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109, 47–59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ruan, J. L. et al. Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134, 1557–1567 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Wiegerinck, R. F. et al. Force frequency relationship of the human ventricle increases during early postnatal development. Pediatr. Res. 65, 414–419 (2009).

    PubMed  PubMed Central  Google Scholar 

  165. Leonard, A. et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J. Mol. Cell Cardiol. 118, 147–158 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101, 18129–18134 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Godier-Furnemont, A. F. et al. Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials 60, 82–91 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781–787 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927.e18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Eng, G. et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 7, 10312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hasenfuss, G. et al. Energetics of isometric force development in control and volume-overload human myocardium. Comparison with animal species. Circ. Res. 68, 836–846 (1991).

    CAS  PubMed  Google Scholar 

  172. Ronaldson-Bouchard, K. et al. Author correction: advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 572, E16–E17 (2019).

    CAS  PubMed  Google Scholar 

  173. Li, M. et al. Thyroid hormone action in postnatal heart development. Stem Cell Res. 13, 582–591 (2014).

    CAS  PubMed  Google Scholar 

  174. Rog-Zielinska, E. A. et al. Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α. Cell Death Differ. 22, 1106–1116 (2015).

    CAS  PubMed  Google Scholar 

  175. Rog-Zielinska, E. A. et al. Glucocorticoid receptor is required for foetal heart maturation. Hum. Mol. Genet. 22, 3269–3282 (2013).

    CAS  PubMed  Google Scholar 

  176. Birket, M. J. et al. PGC-1alpha and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function. Stem Cell Rep. 1, 560–574 (2013).

    CAS  Google Scholar 

  177. Parikh, S. S. et al. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 121, 1323–1330 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Foldes, G. et al. Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy? J. Mol. Cell Cardiol. 50, 367–376 (2011).

    PubMed  PubMed Central  Google Scholar 

  179. Wu, L. et al. Angiotensin II promotes cardiac differentiation of embryonic stem cells via angiotensin type 1 receptor. Differentiation 86, 23–29 (2013).

    CAS  PubMed  Google Scholar 

  180. Nakamura, M. & Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15, 387–407 (2018).

    CAS  PubMed  Google Scholar 

  181. Troncoso, R., Ibarra, C., Vicencio, J. M., Jaimovich, E. & Lavandero, S. New insights into IGF-1 signaling in the heart. Trends Endocrinol. Metab. 25, 128–137 (2014).

    CAS  PubMed  Google Scholar 

  182. McDevitt, T. C., Laflamme, M. A. & Murry, C. E. Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. J. Mol. Cell Cardiol. 39, 865–873 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    CAS  PubMed  Google Scholar 

  184. Lee, K. F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394–398 (1995).

    CAS  PubMed  Google Scholar 

  185. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995).

    CAS  PubMed  Google Scholar 

  186. Rupert, C. E. & Coulombe, K. L. K. IGF1 and NRG1 enhance proliferation, metabolic maturity, and the force-frequency response in hESC-derived engineered cardiac tissues. Stem Cell Int. 2017, 7648409 (2017).

    Google Scholar 

  187. Yang, X. et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep. 13, 657–668 (2019).

    CAS  Google Scholar 

  188. Courtnay, R. et al. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol. Biol. Rep. 42, 841–851 (2015).

    CAS  PubMed  Google Scholar 

  189. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  190. Semenza, G. L. et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529–32537 (1996).

    CAS  PubMed  Google Scholar 

  191. Hu, D. et al. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1alpha and LDHA. Circ. Res. 123, 1066–1079 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Menendez-Montes, I. et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev. Cell 39, 724–739 (2016).

    CAS  PubMed  Google Scholar 

  193. van den Berg, C. W. et al. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 142, 3231–3238 (2015).

    PubMed  Google Scholar 

  194. Fu, J. D. et al. Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One 6, e27417 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Miklas, J. W. et al. TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes. Nat. Commun. 10, 4671 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Poon, E. N. et al. Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovasc. Res. 114, 894–906 (2018).

    CAS  PubMed  Google Scholar 

  197. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491 (2007).

    CAS  PubMed  Google Scholar 

  198. Chow, M. Z. et al. Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth. Stem Cell Dev. 22, 2678–2690 (2013).

    CAS  Google Scholar 

  199. Poon, E. et al. Proteomic analysis of human pluripotent stem cell-derived, fetal, and adult ventricular cardiomyocytes reveals pathways crucial for cardiac metabolism and maturation. Circ. Cardiovasc. Genet. 8, 427–436 (2015).

    CAS  PubMed  Google Scholar 

  200. Hellen, N. et al. Proteomic analysis reveals temporal changes in protein expression in human induced pluripotent stem cell-derived cardiomyocytes in vitro. Stem Cell Dev. 28, 565–578 (2019).

    CAS  Google Scholar 

  201. Bhute, V. J. et al. Metabolomics identifies metabolic markers of maturation in human pluripotent stem cell-derived cardiomyocytes. Theranostics 7, 2078–2091 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Correia, C. et al. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol. Bioeng. 115, 630–644 (2018).

    CAS  PubMed  Google Scholar 

  203. Palpant, N. J. et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat. Protoc. 12, 15–31 (2017).

    CAS  PubMed  Google Scholar 

  204. Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).

    CAS  PubMed  Google Scholar 

  205. Chen, V. C. et al. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res. 15, 365–375 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Jackman, C., Li, H. & Bursac, N. Long-term contractile activity and thyroid hormone supplementation produce engineered rat myocardium with adult-like structure and function. Acta Biomater. 78, 98–110 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Reinecke, H., Zhang, M., Bartosek, T. & Murry, C. E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100, 193–202 (1999).

    CAS  PubMed  Google Scholar 

  208. Nakamura, K. & Murry, C. E. Function follows form — a review of cardiac cell therapy. Circ. J. 83, 2399–2412 (2019).

    PubMed  PubMed Central  Google Scholar 

  209. Sylva, M., van den Hoff, M. J. & Moorman, A. F. Development of the human heart. Am. J. Med. Genet. A 164A, 1347–1371 (2014).

    PubMed  Google Scholar 

  210. Rochais, F., Mesbah, K. & Kelly, R. G. Signaling pathways controlling second heart field development. Circ. Res. 104, 933–942 (2009).

    CAS  PubMed  Google Scholar 

  211. Manner, J. The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin. Anat. 22, 21–35 (2009).

    PubMed  Google Scholar 

  212. Kelly, R. G., Buckingham, M. E. & Moorman, A. F. Heart fields and cardiac morphogenesis. Cold Spring Harb. Perspect. Med. 4, a015750 (2014).

    PubMed  PubMed Central  Google Scholar 

  213. Del Monte-Nieto, G. et al. Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 557, 439–445 (2018).

    PubMed  Google Scholar 

  214. Zhang, W., Chen, H., Qu, X., Chang, C. P. & Shou, W. Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). Am. J. Med. Genet. C. Semin. Med. Genet. 163C, 144–156 (2013).

    PubMed  Google Scholar 

  215. Lunkenheimer, P. P. et al. Three-dimensional architecture of the left ventricular myocardium. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 288, 565–578 (2006).

    PubMed  Google Scholar 

  216. Sosnovik, D. E. & Geva, T. Imaging the microstructure of the human fetal heart. Circ. Cardiovasc. Imaging 11, e008298 (2018).

    PubMed  PubMed Central  Google Scholar 

  217. MacGrogan, D., Munch, J. & de la Pompa, J. L. Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat. Rev. Cardiol. 15, 685–704 (2018).

    PubMed  Google Scholar 

  218. Paige, S. L., Plonowska, K., Xu, A. & Wu, S. M. Molecular regulation of cardiomyocyte differentiation. Circ. Res. 116, 341–353 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Stankunas, K. et al. Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev. Cell 14, 298–311 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Sedmera, D. & Thompson, R. P. Myocyte proliferation in the developing heart. Dev. Dyn. 240, 1322–1334 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Olivetti, G. et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J. Mol. Cell Cardiol. 28, 1463–1477 (1996).

    CAS  PubMed  Google Scholar 

  222. Poindexter, B. J., Smith, J. R., Buja, L. M. & Bick, R. J. Calcium signaling mechanisms in dedifferentiated cardiac myocytes: comparison with neonatal and adult cardiomyocytes. Cell Calcium 30, 373–382 (2001).

    CAS  PubMed  Google Scholar 

  223. Horackova, M. & Byczko, Z. Differences in the structural characteristics of adult guinea pig and rat cardiomyocytes during their adaptation and maintenance in long-term cultures: confocal microscopy study. Exp. Cell Res. 237, 158–175 (1997).

    CAS  PubMed  Google Scholar 

  224. Mitcheson, J. S., Hancox, J. C. & Levi, A. J. Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties. Cardiovasc. Res. 39, 280–300 (1998).

    CAS  PubMed  Google Scholar 

  225. Janssen, P. M., Lehnart, S. E., Prestle, J. & Hasenfuss, G. Preservation of contractile characteristics of human myocardium in multi-day cell culture. J. Mol. Cell. Cardiol. 31, 1419–1427 (1999).

    CAS  PubMed  Google Scholar 

  226. Qiao, Y. et al. Multiparametric slice culture platform for the investigation of human cardiac tissue physiology. Prog. Biophy. Mol. Biol. 144, 139–150 (2018).

    Google Scholar 

  227. Brandenburger, M. et al. Organotypic slice culture from human adult ventricular myocardium. Cardiovasc. Res. 93, 50–59 (2012).

    CAS  PubMed  Google Scholar 

  228. Watson, S. A. et al. Preparation of viable adult ventricular myocardial slices from large and small mammals. Nat. Protoc. 12, 2623–2639 (2017).

    CAS  PubMed  Google Scholar 

  229. Ou, Q. et al. Physiological biomimetic culture system for pig and human heart slices. Circ. Res. 125, 628–642 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Leone, M., Musa, G. & Engel, F. B. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression. Cardiovasc. Res. 114, 1115–1131 (2018).

    CAS  PubMed  Google Scholar 

  231. Engel, F. B. Cardiomyocyte proliferation: a platform for mammalian cardiac repair. Cell Cycle 4, 1360–1363 (2005).

    CAS  PubMed  Google Scholar 

  232. Hesse, M. et al. Midbody positioning and distance between daughter nuclei enable unequivocal identification of cardiomyocyte cell division in mice. Circ. Res. 123, 1039–1052 (2018).

    CAS  PubMed  Google Scholar 

  233. Chopra, A. et al. Force generation via β-cardiac myosin, titin, and α-actinin drives cardiac sarcomere assembly from cell-matrix adhesions. Developmental Cell 44, 87–96.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Fenix, A. M. et al. Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes. eLife 7, e42144 (2018).

    PubMed  PubMed Central  Google Scholar 

  235. Ueno, S. et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 9685–9690 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    CAS  PubMed  Google Scholar 

  237. Horvath, A. et al. Low resting membrane potential and low inward rectifier potassium currents are not inherent features of hiPSC-derived cardiomyocytes. Stem Cell Rep. 10, 822–833 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Murry Laboratory for productive discussions on the biology of cardiac maturation. We also thank our peer-reviewers, who made this manuscript better. The authors’ work is supported in part by NIH grants R01HL128362, U54DK107979, R01HL141570, R01HL146868 and R01HL128368, an award from the Fondation Leducq Transatlantic Network of Excellence and a grant from the Robert B. McMillen Foundation. N.M. is supported by a fellowship from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, writing the article, discussion of its content, and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Charles E. Murry.

Ethics declarations

Competing interests

C.E.M. is a scientific founder and equity holder in Sana Biotechnology. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks M. Radisic, W. Zimmermann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pluripotent stem cells

Stem cells with the capacity to differentiate into any cell type of the embryo. This term encompasses embryonic stem cells and induced pluripotent stem cells.

Embryonic stages

In humans, the first trimester of in utero development.

Fetal stages

In humans, the second and third trimesters of in utero development.

Immature cardiomyocytes

Underdeveloped cardiomyocytes that lack the characteristics of adult cardiomyocytes.

Polyploidy

The state in which cells or organisms have more than two complete sets of chromosomes.

Membrane capacitance

Ratio of electric charge to membrane potential that is directly proportional to the cell surface area.

Mature cardiomyocytes

Cardiomyocytes that are fully developed and resemble in vivo adult cells in structure and function.

Compliant

The capacity to stretch or otherwise deform in response to a change in tension, mathematically defined as the change in length (strain) divided by the change in force (stress).

Tension

Force transmitted axially during contraction or relaxation.

microRNAs

(miRNAs). Small non-coding RNAs (~20 nucleotides) that downregulate protein levels through post-transcriptional regulation of mRNA.

Human induced pluripotent stem cell

(hiPSC). Stem cell generated by reprogramming a terminally differentiated, somatic cell to a pluripotent state.

Allogeneic

Genetically distinct but from the same species.

Elastic modulus

The stiffness of a material, mathematically defined as the change in stress divided by the change in strain (that is, the reciprocal of compliant).

Matrigel

A commercially available extracellular matrix secreted by mouse sarcoma cells.

Collagen

The principal fibrillar extracellular matrix protein in the heart.

Fibrin

A blood protein that self-assembles into a nanofiber meshwork; its natural function is in blood coagulation, but it has been repurposed for tissue engineering scaffolds.

Isometric contractile force

A contraction in which tension increases without changes in muscle length.

Frank–Starling relationship

The property of heart muscle whereby an increase in resting tension (preload) linearly increases the strength of contraction.

Force–frequency relationship

The property of mature heart muscle in which increasing frequency of stimulation results in greater force generation.

Afterload

Tension on cardiomyocytes experienced during systole, typically provided by blood pressure.

Auxotonic contraction

A form of contraction in which the muscle shortens against a changing tension.

Diad

Structure in the cardiomyocyte located at the sarcomere Z line, formed by a T-tubule paired with a terminal cisterna of the sarcoplasmic reticulum.

Conduction velocity

The speed of propagation of an action potential across a cell or multicellular tissue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karbassi, E., Fenix, A., Marchiano, S. et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 17, 341–359 (2020). https://doi.org/10.1038/s41569-019-0331-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0331-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research