Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reappraising the role of inflammation in heart failure

A Publisher Correction to this article was published on 12 March 2021

This article has been updated


The observation that heart failure with reduced ejection fraction is associated with elevated circulating levels of pro-inflammatory cytokines opened a new area of research that has revealed a potentially important role for the immune system in the pathogenesis of heart failure. However, until the publication in 2019 of the CANTOS trial findings on heart failure outcomes, all attempts to target inflammation in the heart failure setting in phase III clinical trials resulted in neutral effects or worsening of clinical outcomes. This lack of positive results in turn prompted questions on whether inflammation is a cause or consequence of heart failure. This Review summarizes the latest developments in our understanding of the role of the innate and adaptive immune systems in the pathogenesis of heart failure, and highlights the results of phase III clinical trials of therapies targeting inflammatory processes in the heart failure setting, such as anti-inflammatory and immunomodulatory strategies. The most recent of these studies, the CANTOS trial, raises the exciting possibility that, in the foreseeable future, we might be able to identify those patients with heart failure who have a cardio-inflammatory phenotype and will thus benefit from therapies targeting inflammation.

Key points

  • Patients with heart failure with reduced ejection fraction have elevated circulating levels of pro-inflammatory cytokines compared with healthy individuals.

  • The innate and adaptive immune systems are activated in heart failure and comprise non-cellular and cellular components, including macrophages, mast cells, B cells and T cells.

  • The repertoire of immunological responses differs in acute and chronic myocardial inflammation.

  • Initial phase III clinical trials targeting inflammation in the setting of heart failure had neutral results.

  • In the CANTOS trial, targeted anti-cytokine therapy with a monoclonal antibody against IL-1β resulted in improved heart failure outcomes in patients with myocardial infarction with or without established heart failure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The innate and adaptive immune systems in cardiac disease.
Fig. 2: Para-inflammation and chronic myocardial inflammation.
Fig. 3: Beneficial and deleterious effects of para-inflammation.

Change history


  1. 1.

    Levine, B., Kalman, J., Mayer, L., Fillit, H. M. & Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 223, 236–241 (1990).

    Google Scholar 

  2. 2.

    Mann, D. L. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ. Res. 116, 1254–1268 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Frantz, S. et al. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. Eur. J. Heart Fail. 20, 445–459 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Dick, S. A. & Epelman, S. Chronic heart failure and inflammation: what do we really know? Circ. Res. 119, 159–176 (2016).

    CAS  PubMed  Google Scholar 

  5. 5.

    Van Linthout, S. & Tschope, C. Inflammation – cause or consequence of heart failure or both? Curr. Heart Fail. Rep. 14, 251–265 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    Paulus, W. J. & Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    PubMed  Google Scholar 

  8. 8.

    Abernethy, A. et al. Pro-inflammatory biomarkers in stable versus acutely decompensated heart failure with preserved ejection fraction. J. Am. Heart Assoc. 7, e007385 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Goonewardena, S. N. et al. Monocyte subsets and inflammatory cytokines in acute decompensated heart failure. J. Card. Fail. 22, 358–365 (2016).

    CAS  PubMed  Google Scholar 

  10. 10.

    Mann, D. L. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ. Res. 108, 1133–1145 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mackey, D. & McFall, A. J. MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol. Microbiol. 61, 1365–1371 (2006).

    CAS  PubMed  Google Scholar 

  12. 12.

    Toldo, S. & Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol. 15, 203–214 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Mann, D. L., Topkara, V. K., Evans, S. & Barger, P. M. Innate immunity in the adult mammalian heart: for whom the cell tolls. Trans. Am. Clin. Climatol. Assoc. 121, 34–50 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Damas, J. K. et al. Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc. Res. 47, 778–787 (2000).

    CAS  PubMed  Google Scholar 

  17. 17.

    Shahini, N. et al. The alternative complement pathway is dysregulated in patients with chronic heart failure. Sci. Rep. 7, 42532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Noutsias, M., Pauschinger, M., Schultheiss, H. & Kühl, U. Phenotypic characterization of infiltrates in dilated cardiomyopathy - diagnostic significance of T-lymphocytes and macrophages in inflammatory cardiomyopathy. Med. Sci. Monit. 8, CR478–CR487 (2002).

    PubMed  Google Scholar 

  20. 20.

    Van Praet, L., Jacques, P., Van den Bosch, F. & Elewaut, D. The transition of acute to chronic bowel inflammation in spondyloarthritis. Nat. Rev. Rheumatol. 8, 288–295 (2012).

    PubMed  Google Scholar 

  21. 21.

    Torre-Amione, G. et al. Tumor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation 93, 704–711 (1996).

    CAS  PubMed  Google Scholar 

  22. 22.

    Bartekova, M., Radosinska, J., Jelemensky, M. & Dhalla, N. S. Role of cytokines and inflammation in heart function during health and disease. Heart Fail. Rev. 23, 733–758 (2018).

    CAS  PubMed  Google Scholar 

  23. 23.

    Parrillo, J. E. et al. A prospective randomized controlled trial of prednisone for dilated cardiomyopathy. N. Engl. J. Med. 321, 1061–1068 (1989).

    CAS  PubMed  Google Scholar 

  24. 24.

    Mann, D. L. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ. Res. 91, 988–998 (2002).

    CAS  PubMed  Google Scholar 

  25. 25.

    Bellinger, D. L. & Lorton, D. Autonomic regulation of cellular immune function. Auton. Neurosci. 182, 15–41 (2014).

    CAS  PubMed  Google Scholar 

  26. 26.

    Martelli, D., Yao, S. T., McKinley, M. J. & McAllen, R. M. Reflex control of inflammation by sympathetic nerves, not the vagus. J. Physiol. 592, 1677–1686 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gullestad, L. et al. Effect of high- versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J. Am. Coll. Cardiol. 34, 2061–2067 (1999).

    CAS  PubMed  Google Scholar 

  28. 28.

    Torre-Amione, G. et al. Decreased expression of tumor necrosis factor-α in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation 100, 1189–1193 (1999).

    CAS  PubMed  Google Scholar 

  29. 29.

    Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  PubMed  Google Scholar 

  30. 30.

    Toldo, S. et al. Interleukin-18 mediates Interleukin-1-induced cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 306, H1025–H1031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Gulick, T. S., Chung, M. K., Pieper, S. J., Lange, L. G. & Schreiner, G. F. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte β-adrenergic responsiveness. Proc. Natl Acad. Sci. USA 86, 6753–6757 (1989).

    CAS  PubMed  Google Scholar 

  32. 32.

    Yokoyama, T. et al. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J. Clin. Invest. 92, 2303–2312 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Yu, X., Kennedy, R. H. & Liu, S. J. JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J. Biol. Chem. 278, 16304–16309 (2003).

    CAS  PubMed  Google Scholar 

  34. 34.

    Bozkurt, B. et al. Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97, 1382–1391 (1998).

    CAS  PubMed  Google Scholar 

  35. 35.

    Sivasubramanian, N. et al. Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104, 826–831 (2001).

    CAS  PubMed  Google Scholar 

  36. 36.

    Hodgson, D. M. et al. Cellular remodeling in heart failure disrupts K(ATP) channel-dependent stress tolerance. EMBO J. 22, 1732–1742 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Zhang, W. et al. The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumor necrosis factor requires mast cell-fibroblast interactions. Circulation 124, 2106–2116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Mezzaroma, E. et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl Acad. Sci. USA 108, 19725–19730 (2011).

    CAS  PubMed  Google Scholar 

  39. 39.

    Jarrah, A. A. & Tarzami, S. T. The duality of chemokines in heart failure. Expert. Rev. Clin. Immunol. 11, 523–536 (2015).

    CAS  PubMed  Google Scholar 

  40. 40.

    Aukrust, P., Damas, J. K., Gullestad, L. & Froland, S. S. Chemokines in myocardial failure – pathogenic importance and potential therapeutic targets. Clin. Exp. Immunol. 124, 343–345 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Aukrust, P. et al. Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation 97, 1136–1143 (1998).

    CAS  PubMed  Google Scholar 

  42. 42.

    Youker, K. A. et al. High proportion of patients with end-stage heart failure regardless of aetiology demonstrates anti-cardiac antibody deposition in failing myocardium: humoral activation, a potential contributor of disease progression. Eur. Heart J. 35, 1061–1068 (2014).

    CAS  PubMed  Google Scholar 

  43. 43.

    Aukrust, P. et al. Complement activation in patients with congestive heart failure: effect of high-dose intravenous immunoglobulin treatment. Circulation 104, 1494–1500 (2001).

    CAS  PubMed  Google Scholar 

  44. 44.

    Zhang, W. et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J. Am. Heart Assoc. 4, e001993 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Tzeng, H. P. et al. Negative inotropic effects of high-mobility group box 1 protein in isolated contracting cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol 294, H1490–H1496 (2008).

    CAS  PubMed  Google Scholar 

  46. 46.

    Hartupee, J. et al. Diagnostic accuracy of damage-associated molecular patterns (DAMPs) in patients with heart failure with a reduced ejection fraction. J. Clin. Transl. Sci. 1, 208–209 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during Inflammation. Immunity 40, 91–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    CAS  PubMed  Google Scholar 

  49. 49.

    Lavine, K. J. et al. The macrophage in cardiac homeostasis and disease: JACC Macrophage in CVD Series (Part 4). J. Am. Coll. Cardiol. 72, 2213–2230 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Dick, S. A., Zaman, R. & Epelman, S. Using high-dimensional approaches to probe monocytes and macrophages in cardiovascular disease. Front. Immunol. 10, 2146 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Sager, H. B. et al. Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ. Res. 119, 853–864 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Bajpai, G. et al. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Li, W. et al. Heart-resident CCR2+ macrophages promote neutrophil extravasation through TLR9/MyD88/CXCL5 signaling. JCI Insight 1, e87315 (2016).

    PubMed Central  Google Scholar 

  55. 55.

    Nahrendorf, M. Myeloid cell contributions to cardiovascular health and disease. Nat. Med. 24, 711–720 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ismahil, M. A. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114, 266–282 (2014).

    CAS  PubMed  Google Scholar 

  57. 57.

    Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    CAS  PubMed  Google Scholar 

  58. 58.

    Tang, W. H. W., Li, D. Y. & Hazen, S. L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 16, 137–154 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

    PubMed  Google Scholar 

  60. 60.

    Liao, X. et al. Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proc. Natl Acad. Sci. USA 115, E4661–E4669 (2018).

    CAS  PubMed  Google Scholar 

  61. 61.

    Patel, B. et al. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic. Transl. Sci. 3, 230–244 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Xia, Y. et al. Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem. Cell Biol. 131, 471–481 (2009).

    CAS  PubMed  Google Scholar 

  63. 63.

    Nevers, T. et al. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ. Heart Fail. 8, 776–787 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Patel, B., Ismahil, M. A., Hamid, T., Bansal, S. S. & Prabhu, S. D. Mononuclear phagocytes are dispensable for cardiac remodeling in established pressure-overload heart failure. PLOS ONE 12, e0170781 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Weisheit, C. et al. Ly6C(low) and not Ly6C(high) macrophages accumulate first in the heart in a model of murine pressure-overload. PLOS ONE 9, e112710 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Lynch, T. L.t. et al. Cardiac inflammation in genetic dilated cardiomyopathy caused by MYBPC3 mutation. J. Mol. Cell Cardiol. 102, 83–93 (2017).

    CAS  PubMed  Google Scholar 

  67. 67.

    Tang, Q. & Bluestone, J. A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 9, 239–244 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Abbate, A. et al. Widespread myocardial inflammation and infarct-related artery patency. Circulation 110, 46–50 (2004).

    PubMed  Google Scholar 

  69. 69.

    Yndestad, A. et al. Enhanced expression of inflammatory cytokines and activation markers in T-cells from patients with chronic heart failure. Cardiovasc. Res. 60, 141–146 (2003).

    CAS  PubMed  Google Scholar 

  70. 70.

    Bansal, S. S. et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ. Heart Fail. 10, e003688 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Bansal, S. S. et al. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation 139, 206–221 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Andersson, B., Aberg, J., Lindelow, B., Tang, M. S. & Wikstrand, J. Dose-related effects of metoprolol on heart rate and pharmacokinetics in heart failure. J. Card. Fail. 7, 311–317 (2001).

    CAS  PubMed  Google Scholar 

  74. 74.

    Kallikourdis, M. et al. T cell costimulation blockade blunts pressure overload-induced heart failure. Nat. Commun. 8, 14680 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Laroumanie, F. et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 129, 2111–2124 (2014).

    CAS  PubMed  Google Scholar 

  76. 76.

    Nevers, T. et al. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J. Exp. Med. 214, 3311–3329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Ngwenyama, N. et al. CXCR3 regulates CD4+ T cell cardiotropism in pressure overload-induced cardiac dysfunction. JCI Insight 4, e125527 (2019).

    PubMed Central  Google Scholar 

  78. 78.

    Kantor, A. B. & Herzenberg, L. A. Origin of murine B cell lineages. Annu. Rev. Immunol. 11, 501–538 (1993).

    CAS  PubMed  Google Scholar 

  79. 79.

    LeBien, T. W. & Tedder, T. F. B lymphocytes: how they develop and function. Blood 112, 1570–1580 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Adamo, L. et al. Modulation of subsets of cardiac B lymphocytes improves cardiac function after acute injury. JCI Insight 3, e120137 (2018).

    PubMed Central  Google Scholar 

  81. 81.

    Bonner, F., Borg, N., Burghoff, S. & Schrader, J. Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLOS ONE 7, e34730 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Yan, X. et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell Cardiol. 62, 24–35 (2013).

    CAS  PubMed  Google Scholar 

  83. 83.

    Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Horckmans, M. et al. Pericardial adipose tissue regulates granulopoiesis, fibrosis and cardiac function after myocardial infarction. Circulation 137, 948–960 (2017).

    PubMed  Google Scholar 

  85. 85.

    Cordero-Reyes, A. M. et al. Full expression of cardiomyopathy is partly dependent on B-cells: a pathway that involves cytokine activation, immunoglobulin deposition, and activation of apoptosis. J. Am. Heart Assoc. 5, e002484 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Zhang, M. et al. The role of natural IgM in myocardial ischemia-reperfusion injury. J. Mol. Cell Cardiol. 41, 62–67 (2006).

    CAS  PubMed  Google Scholar 

  87. 87.

    Krijnen, P. A. et al. IgM colocalises with complement and C reactive protein in infarcted human myocardium. J. Clin. Pathol. 58, 382–388 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Kaya, Z., Leib, C. & Katus, H. A. Autoantibodies in heart failure and cardiac dysfunction. Circ. Res. 110, 145–158 (2012).

    CAS  PubMed  Google Scholar 

  89. 89.

    Lazzerini, P. E., Capecchi, P. L., Laghi-Pasini, F. & Boutjdir, M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat. Rev. Cardiol. 14, 521–535 (2017).

    CAS  PubMed  Google Scholar 

  90. 90.

    Jahns, R. et al. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J. Clin. Invest. 113, 1419–1429 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Tschope, C. et al. Targeting CD20+ B-lymphocytes in inflammatory dilated cardiomyopathy with rituximab improves clinical course: a case series. Eur. Heart J. Case Rep. 3, ytz131 (2019).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Vazquez, M. I., Catalan-Dibene, J. & Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 74, 318–326 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Mukai, K., Tsai, M., Saito, H. & Galli, S. J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 282, 121–150 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Frangogiannis, N. G., Burns, A. R., Michael, L. H. & Entman, M. L. Histochemical and morphological characteristics of canine cardiac mast cells. Histochem. J. 31, 221–229 (1999).

    CAS  PubMed  Google Scholar 

  95. 95.

    Ingason, A. B., Mechmet, F., Atacho, D. A. M., Steingrímsson, E. & Petersen, P. H. Distribution of mast cells within the mouse heart and its dependency on Mitf. Mol. Immunol. 105, 9–15 (2019).

    CAS  PubMed  Google Scholar 

  96. 96.

    Stewart, J. A. Jr. et al. Cardiac mast cell- and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. J. Mol. Cell Cardiol. 35, 311–319 (2003).

    CAS  PubMed  Google Scholar 

  97. 97.

    Olivetti, G. et al. Long-term pressure-induced cardiac hypertrophy: capillary and mast cell proliferation. Am. J. Physiol. 257, H1766–H1772 (1989).

    CAS  PubMed  Google Scholar 

  98. 98.

    Panizo, A. et al. Are mast cells involved in hypertensive heart disease? J. Hypertens. 13, 1201–1208 (1995).

    CAS  PubMed  Google Scholar 

  99. 99.

    Levick, S. P. et al. Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension 53, 1041–1047 (2009).

    CAS  PubMed  Google Scholar 

  100. 100.

    Engels, W., Reiters, P. H., Daemen, M. J., Smits, J. F. & van der Vusse, G. J. Transmural changes in mast cell density in rat heart after infarct induction in vivo. J. Pathol. 177, 423–429 (1995).

    CAS  PubMed  Google Scholar 

  101. 101.

    Levick, S. P. et al. Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc. Res. 89, 12–19 (2011).

    CAS  PubMed  Google Scholar 

  102. 102.

    Janicki, J. S., Brower, G. L. & Levick, S. P. The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling. Methods Mol. Biol. 1220, 121–139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Brower, G. L. & Janicki, J. S. Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. J. Card. Fail. 11, 548–556 (2005).

    CAS  PubMed  Google Scholar 

  104. 104.

    Hara, M. et al. Evidence for a role of mast cells in the evolution to congestive heart failure. J. Exp. Med. 195, 375–381 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Ayach, B. B. et al. Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc. Natl Acad. Sci. USA 103, 2304–2309 (2006).

    CAS  PubMed  Google Scholar 

  106. 106.

    Reber, L. L., Marichal, T. & Galli, S. J. New models for analyzing mast cell functions in vivo. Trends Immunol. 33, 613–625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Sperr, W. R. et al. The human cardiac mast cell: localization, isolation, phenotype, and functional characterization. Blood 84, 3876–3884 (1994).

    CAS  PubMed  Google Scholar 

  108. 108.

    Patella, V. et al. Human heart mast cells. Isolation, purification, ultrastructure, and immunologic characterization. J. Immunol. 154, 2855–2865 (1995).

    CAS  PubMed  Google Scholar 

  109. 109.

    Akgul, A. et al. Role of mast cells and their mediators in failing myocardium under mechanical ventricular support. J. Heart Lung Transpl. 23, 709–715 (2004).

    Google Scholar 

  110. 110.

    Miyazaki, M., Takai, S., Jin, D. & Muramatsu, M. Pathological roles of angiotensin II produced by mast cell chymase and the effects of chymase inhibition in animal models. Pharmacol. Ther. 112, 668–676 (2006).

    CAS  PubMed  Google Scholar 

  111. 111.

    Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Malhotra, A. & Shanker, A. NK cells: immune cross-talk and therapeutic implications. Immunotherapy 3, 1143–1166 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Ong, S., Rose, N. R. & Čiháková, D. Natural killer cells in inflammatory heart disease. Clin. Immunol. 175, 26–33 (2017).

    CAS  PubMed  Google Scholar 

  115. 115.

    Fairweather, D., Kaya, Z., Shellam, G. R., Lawson, C. M. & Rose, N. R. From infection to autoimmunity. J. Autoimmun. 16, 175–186 (2001).

    CAS  PubMed  Google Scholar 

  116. 116.

    Ong, S. et al. Natural killer cells limit cardiac inflammation and fibrosis by halting eosinophil infiltration. Am. J. Pathol. 185, 847–861 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    McNerney, M. E. et al. Role of natural killer cell subsets in cardiac allograft rejection. Am. J. Transpl. 6, 505–513 (2006).

    CAS  Google Scholar 

  118. 118.

    Zhang, Z. X. et al. Natural killer cells play a critical role in cardiac allograft vasculopathy in an interleukin-6–dependent manner. Transplantation 98, 1029–1039 (2014).

    CAS  PubMed  Google Scholar 

  119. 119.

    Vredevoe, D. L. et al. Interleukin-6 (IL-6) expression and natural killer (NK) cell dysfunction and anergy in heart failure. Am. J. Cardiol. 93, 1007–1011 (2004).

    CAS  PubMed  Google Scholar 

  120. 120.

    Anderson, J., Carlquist, J. & Hammond, E. Deficient natural killer cell activity in patients with idiopathic dilated cardiomyopathy. Lancet 320, 1124–1127 (1982).

    Google Scholar 

  121. 121.

    McTiernan, C. F. et al. Circulating T-cell subsets, monocytes, and natural killer cells in peripartum cardiomyopathy: results from the multicenter IPAC study. J. Card. Fail. 24, 33–42 (2018).

    PubMed  Google Scholar 

  122. 122.

    Hilgendorf, I. et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 114, 1611–1622 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Courties, G. et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J. Am. Coll. Cardiol. 63, 1556–1566 (2014).

    CAS  PubMed  Google Scholar 

  125. 125.

    Wang, J. et al. Effect of CCR2 inhibitor-loaded lipid micelles on inflammatory cell migration and cardiac function after myocardial infarction. Int. J. Nanomed. 13, 6441–6451 (2018).

    CAS  Google Scholar 

  126. 126.

    Getts, D. R. et al. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl Med. 6, 219ra217 (2014).

    Google Scholar 

  127. 127.

    US National Library of Medicine. (2019).

  128. 128.

    Kang, Y. S., Cha, J. J., Hyun, Y. Y. & Cha, D. R. Novel C-C chemokine receptor 2 antagonists in metabolic disease: a review of recent developments. Expert Opin. Investig. Drugs 20, 745–756 (2011).

    CAS  PubMed  Google Scholar 

  129. 129.

    Lim, S. Y., Yuzhalin, A. E., Gordon-Weeks, A. N. & Muschel, R. J. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7, 28697–28710 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Andrews, S. P. & Cox, R. J. Small molecule CXCR3 antagonists. J. Med. Chem. 59, 2894–2917 (2016).

    CAS  PubMed  Google Scholar 

  131. 131.

    Kuhn, C. & Weiner, H. L. Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy 8, 889–906 (2016).

    CAS  PubMed  Google Scholar 

  132. 132.

    Konig, M., Rharbaoui, F., Aigner, S., Dalken, B. & Schuttrumpf, J. Tregalizumab - a monoclonal antibody to target regulatory T cells. Front. Immunol. 7, 11 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS  PubMed  Google Scholar 

  134. 134.

    Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Mann, D. L. et al. Targeted anti-cytokine therapy in patients with chronic heart failure: results of the randomized etancercept worldwide evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    CAS  PubMed  Google Scholar 

  136. 136.

    Chung, E. S., Packer, M., Lo, K. H., Fasanmade, A. A. & Willerson, J. T. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the Anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).

    CAS  PubMed  Google Scholar 

  137. 137.

    Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  Google Scholar 

  138. 138.

    Svensson, E. C. M. A. et al. ET2-driven clonal hematopoiesis predicts enhanced response to canakinumab in the CANTOS trial: an exploratory analysis [abstract]. Circulation 138 (Suppl. 1), A15111 (2018).

    Google Scholar 

  139. 139.

    Kjekshus, J. et al. Rosuvastatin in older patients with systolic heart failure. N. Engl. J. Med. 357, 2248–2261 (2007).

    CAS  PubMed  Google Scholar 

  140. 140.

    Tavazzi, L. et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372, 1231–1239 (2008).

    PubMed  Google Scholar 

  141. 141.

    Tavazzi, L. et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372, 1223–1230 (2008).

    PubMed  Google Scholar 

  142. 142.

    Hare, J. M. et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J. Am. Coll. Cardiol. 51, 2301–2309 (2008).

    CAS  PubMed  Google Scholar 

  143. 143.

    Gullestad, L. et al. Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation 103, 220–225 (2001).

    CAS  PubMed  Google Scholar 

  144. 144.

    Moreira, D. M., Vieira, J. L. & Gottschall, C. A. The effects of methotrexate therapy on the physical capacity of patients with ischemic heart failure: a randomized double-blind, placebo-controlled trial (METIS trial). J. Card. Fail. 15, 828–834 (2009).

    CAS  PubMed  Google Scholar 

  145. 145.

    Torre-Amione, G. et al. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet 371, 228–236 (2008).

    CAS  PubMed  Google Scholar 

  146. 146.

    Jahns, R., Schlipp, A., Boivin, V. & Lohse, M. J. Targeting receptor antibodies in immune cardiomyopathy. Semin. Thromb. Hemost. 36, 212–218 (2010).

    CAS  PubMed  Google Scholar 

  147. 147.

    Mann, D. L. Autoimmunity, immunoglobulin adsorption and dilated cardiomyopathy: has the time come for randomized clinical trials? J. Am. Coll. Cardiol. 38, 184–186 (2001).

    CAS  PubMed  Google Scholar 

  148. 148.

    Munch, G. et al. Administration of the cyclic peptide COR-1 in humans (phase I study): ex vivo measurements of anti-beta1-adrenergic receptor antibody neutralization and of immune parameters. Eur. J. Heart Fail. 14, 1230–1239 (2012).

    PubMed  Google Scholar 

  149. 149.

    Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    CAS  Google Scholar 

  150. 150.

    Szulwach, K. E. et al. Single-cell genetic analysis using automated microfluidics to resolve somatic mosaicism. PLOS ONE 10, e0135007 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Taylor, D. A. et al. Identification of bone marrow cell subpopulations associated with improved functional outcomes in patients with chronic left ventricular dysfunction: an embedded cohort evaluation of the FOCUS-CCTRN trial. Cell Transpl. 25, 1675–1687 (2016).

    Google Scholar 

  152. 152.

    Gullestad, L. et al. Inflammatory cytokines in heart failure: mediators and markers. Cardiology 122, 23–35 (2012).

    CAS  PubMed  Google Scholar 

  153. 153.

    Sliwa, K., Skudicky, D., Candy, G., Wisenbaugh, T. & Sareli, P. Randomized investigation of effects of pentoxifylline on left ventricular performance in idiopathic dilated cardiomyopathy. Lancet 351, 1091–1093 (1998).

    CAS  PubMed  Google Scholar 

  154. 154.

    Skudicky, D., Bergemann, A., Sliwa, K., Candy, G. & Sareli, P. Beneficial effects of pentoxifylline in patients with idiopathic dilated cardiomyopathy treated with angiotensin-converting enzyme inhibitors and carvedilol: results of a randomized study. Circulation 103, 1083–1088 (2001).

    CAS  PubMed  Google Scholar 

  155. 155.

    Sliwa, K. et al. Effects of pentoxifylline on cytokine profiles and left ventricular performance in patients with decompensated congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am. J. Cardiol. 90, 1118–1122 (2002).

    CAS  PubMed  Google Scholar 

  156. 156.

    Sliwa, K. et al. Therapy of ischemic cardiomyopathy with the immunomodulating agent pentoxifylline: results of a randomized study. Circulation 109, 750–755 (2004).

    CAS  PubMed  Google Scholar 

  157. 157.

    McNamara, D. M. et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation 103, 2254–2259 (2001).

    CAS  PubMed  Google Scholar 

  158. 158.

    Gullestad, L. et al. Effect of thalidomide on cardiac remodeling in chronic heart failure: results of a double-blind, placebo-controlled study. Circulation 112, 3408–3414 (2005).

    CAS  PubMed  Google Scholar 

  159. 159.

    Deftereos, S. et al. Anti-inflammatory treatment with colchcine in stable heart failure: a prospective, randomized study. JACC Heart Fail. 2, 131–137 (2014).

    PubMed  Google Scholar 

  160. 160.

    Givertz, M. M. et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the EXACT-HF study. Circulation 131, 1763–1771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We apologize in advance to colleagues whose work was not directly cited in this Review because of the imposed space limitations. The authors receive support research funds from the NIH (R01 HL58081, HL-73017, HL089543, NIH T32 HL007081 and K08 HL1945108).

Author information




L.A., S.D.P., C.R.R. and D.L.M. researched data for article and wrote the manuscript. All authors provided substantial contribution to discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Douglas L. Mann.

Ethics declarations

Competing interests

L.A. and D.L.M. are co-founders of iCordis, a start-up company focused on developing B cell modulating therapies for the prevention and treatment of heart failure. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks P. Alcaide, C. Tschöpe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adamo, L., Rocha-Resende, C., Prabhu, S.D. et al. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol 17, 269–285 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing