Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Heart failure as interstitial cancer: emergence of a malignant fibroblast phenotype

Abstract

A prolonged state of left ventricular pressure overload, commonly caused by hypertension and aortic valve disease, promotes remodelling of the myocardium that can progress to heart failure with preserved ejection fraction (HFpEF). In animal models, a major factor driving progression from pressure-overload hypertrophy (POH) to HFpEF is the activation and proliferation of an abnormal fibroblast phenotype that is resistant to apoptosis, degrades normal stromal matrix and is replaced with a fibrotic matrix structure. A similar fibroblast phenotype has been identified in the stroma of solid cancers. This cancer-associated fibroblast drives tumour growth and invasion. The proliferation and expansion of these abnormal fibroblast populations in both HFpEF and cancer contribute to progression of disease. In early-phase clinical trials, chemotherapeutic agents targeting cancer-associated fibroblasts had antitumour properties. In this Perspectives article, we postulate that, because the abnormal fibroblast populations in POH and cancer have identical characteristics, chemotherapeutic agents targeting the POH-related fibroblast might attenuate the development of myocardial fibrosis, a pathophysiological hallmark of HFpEF. These agents must be designed to target the abnormal fibroblasts with high specificity because many classes of chemotherapeutic drugs can themselves cause myocardial dysfunction and heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parallels in the phenotypes of abnormal fibroblasts in cancer and POH.
Fig. 2: Regulation of the abnormal fibroblast by TGFβ.
Fig. 3: Abnormal growth and proliferation of fibroblasts in pressure-overload hypertrophy.

Similar content being viewed by others

References

  1. Mozaffarian, D. et al. Heart disease and stroke statistics — 2016 update: a report from the American Heart Association. Circulation 133, e38–e360 (2016).

    PubMed  Google Scholar 

  2. Baselga, J. Clinical trials of herceptin (trastuzumab). Eur. J. Cancer 37, S18–S24 (2001).

    CAS  PubMed  Google Scholar 

  3. Fisher, B. et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N. Engl. J. Med. 320, 479–484 (1989).

    CAS  PubMed  Google Scholar 

  4. Yang, Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest. 125, 3335–3337 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Westman, P. C. et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 67, 2050–2060 (2016).

    PubMed  Google Scholar 

  7. D’Elia, N., D’hooge, J. & Marwick, T. H. Association between myocardial mechanics and ischemic LV remodeling. JACC Cardiovasc. Imaging 8, 1430–1443 (2015).

    PubMed  Google Scholar 

  8. Poppe, K. K. & Doughty, R. N. Outcomes in patients with heart failure with preserved ejection fraction. Heart Fail. Clin. 10, 503–510 (2014).

    PubMed  Google Scholar 

  9. Huet, E. et al. Stroma in normal and cancer wound healing. FEBS J. 286, 2909–2920 (2019).

    CAS  PubMed  Google Scholar 

  10. Bainbridge, P. Wound healing and the role of fibroblasts. J. Wound Care. 22, 410–412 (2013).

    Google Scholar 

  11. Joshua, G. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016).

    Google Scholar 

  12. Moore-Morris, T., Guimarães-Camboa, N., Yutzey, K. E., Pucéat, M. & Evans, S. M. Cardiac fibroblasts: from development to heart failure. J. Mol. Med. 93, 823–830 (2015).

    CAS  PubMed  Google Scholar 

  13. Frohlich, E. D. & Susic, D. Pressure overload. Heart Fail. Clin. 8, 21–32 (2012).

    PubMed  Google Scholar 

  14. Creemers, E. E. & Pinto, Y. M. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc. Res. 89, 265–272 (2011).

    CAS  PubMed  Google Scholar 

  15. Spinale, F. G. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87, 1285–1342 (2007).

    CAS  PubMed  Google Scholar 

  16. Heneberg, P. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit. Rev. Oncol. Hematol. 97, 303–311 (2016).

    PubMed  Google Scholar 

  17. LeBleu, V. S. & Kalluri, R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis. Model. Mech. 11, dmm029447 (2018).

  18. Kakarla, S., Song, X. T. & Gottschalk, S. Cancer associated fibroblast as targets for immunotherapy. Immunotherapy 4, 1129–1138 (2012).

    CAS  PubMed  Google Scholar 

  19. Ellis, S., Lin, E. J. & Tartar, D. Immunology of wound healing. Curr. Dermatol. Rep. 7, 350–358 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Fan, B. et al. Role of PDGFs/PDGFRs signaling pathway in myocardial fibrosis of DOCA/salt hypertensive rats. Int. J. Clin. Exp. Pathol. 7, 16–27 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Park, C. K., Jung, W. H. & Koo, J. S. Expression of cancer-associated fibroblast-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma. Breast Cancer Res. Treat. 159, 55–69 (2016).

    CAS  PubMed  Google Scholar 

  22. Zhang, X. F. et al. Expression pattern of cancer-associated fibroblast and its clinical relevance in intrahepatic cholangiocarcinoma. Hum. Pathol. 65, 92–100 (2017).

    CAS  PubMed  Google Scholar 

  23. Ni, W. D. et al. Tenascin-C is a potential cancer-associated fibroblasts marker and predicts poor prognosis in prostate cancer. Biochem. Biophys. Res. Commun. 486, 607–612 (2017).

    CAS  PubMed  Google Scholar 

  24. Ali, S. R. et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ. Res. 115, 625–635 (2014).

    CAS  PubMed  Google Scholar 

  25. Shimojo, N. Tenascin-C may accelerate cardiac fibrosis by activating macrophages via the integrin αVβ3/nuclear factor-κB/interleukin-6 axis. Hypertension 66, 757–766 (2015).

    CAS  PubMed  Google Scholar 

  26. Huang, L., Xu, A. M., Liu, S., Liu, W. & Li, T. J. Cancer-associated fibroblasts in digestive tumors. World J. Gastroenterol. 20, 17804–17818 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Taddei, M. L., Giannoni, E., Comito, G. & Chiarugi, P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett. 341, 80–96 (2013).

    CAS  PubMed  Google Scholar 

  28. Koontongkaew, S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J. Cancer 4, 66–83 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Paulsson, J. & Micke, P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin. Cancer Biol. 25, 61–68 (2014).

    CAS  PubMed  Google Scholar 

  30. Zile, M. R. et al. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ. Heart Fail. 4, 246–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, R., Xue, J. & Xie, M. Osthole regulates TGF-β1 and MMP-2/9 expressions via activation of PPARα/γ in cultured mouse cardiac fibroblasts stimulated with angiotensin II. J. Pharm. Pharm. Sci. 16, 732–741 (2013).

    PubMed  Google Scholar 

  32. Polyakova, V., Hein, S., Kostin, S., Ziegelhoeffer, T. & Schaper, J. Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J. Am. Coll. Cardiol. 44, 1609–1618 (2004).

    CAS  PubMed  Google Scholar 

  33. Tillmanns, J. et al. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J. Mol. Cell Cardiol. 87, 194–203 (2015).

    CAS  PubMed  Google Scholar 

  34. Zi, F. et al. Fibroblast activation protein α in tumor microenvironment: recent progression and implications (review). Mol. Med. Rep. 11, 3203–3211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, H. et al. Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension. Mol. Med. Rep. 14, 776–782 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuwahara, F. et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106, 130–135 (2002).

    CAS  PubMed  Google Scholar 

  37. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Kandice R. Cell. 139, 891–906 (2009).

    CAS  Google Scholar 

  38. Stanisavljevic, J. et al. Snail1-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis. Cancer Res. 75, 284–295 (2015).

    CAS  PubMed  Google Scholar 

  39. Philips, N., Bashey, R. I. & Jimenez, S. A. Collagen and fibronectin expression in cardiac fibroblasts from hypertensive rats. Cardiovasc. Res. 28, 1342–1347 (1994).

    CAS  PubMed  Google Scholar 

  40. Grimm, D. et al. Extracellular matrix proteins in cardiac fibroblasts derived from rat hearts with chronic pressure overload: effects of beta-receptor blockade. J. Mol. Cell. Cardiol. 33, 487–501 (2001).

    CAS  PubMed  Google Scholar 

  41. Pontiggia, O. et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin. Breast Cancer Res. Treat. 133, 459–471 (2012).

    CAS  PubMed  Google Scholar 

  42. Ratajczak-Wielgomas, K. et al. Periostin expression in cancer-associated fibroblasts of invasive ductal breast carcinoma. Oncol. Rep. 36, 2745–2754 (2016).

    CAS  PubMed  Google Scholar 

  43. Underwood, T. J. et al. Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J. Pathol. 235, 466–477 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stewart, J. A. Jr. et al. Temporal alterations in cardiac fibroblast function following induction of pressure overload. Cell Tissue Res. 340, 117–126 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Marganski, W. A., De Biase, V. M., Burgess, M. L. & Dembo, M. Demonstration of altered contractile activity in hypertensive heart disease. Cardiovasc. Res. 60, 547–556 (2003).

    CAS  PubMed  Google Scholar 

  46. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell. Biol. 179, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brentnall, T. A. Arousal of cancer-associated stromal fibroblasts: palladin-activated fibroblasts promote tumor invasion. Cell Adh. Migr. 6, 488–494 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Karagiannis, G. S. et al. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res. 10, 1403–1418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Porter, K. E. & Turner, N. A. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol. Ther. 123, 255–278 (2009).

    CAS  PubMed  Google Scholar 

  50. He, Z. Y., Feng, B., Yang, S. L. & Luo, H. L. Intracardiac basic fibroblast growth factor and transforming growth factor-beta 1 mRNA and their proteins expression level in patients with pressure or volume-overload right or left ventricular hypertrophy. Acta Cardiol. 60, 21–25 (2005).

    PubMed  Google Scholar 

  51. Luo, H., Tu, G., Liu, Z. & Liu, M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett. 361, 155–163 (2015).

    PubMed  Google Scholar 

  52. Yang, J. Vascular mimicry formation is promoted by paracrine TGF-β and SDF1 of cancer-associated fibroblasts and inhibited by miR-101 in hepatocellular carcinoma. Cancer Lett. 383, 18–27 (2016).

    CAS  PubMed  Google Scholar 

  53. Fujiu, K. & Nagai, R. Fibroblast-mediated pathways in cardiac hypertrophy. J. Mol. Cell Cardiol. 70, 64–73 (2014).

    CAS  PubMed  Google Scholar 

  54. Grubisha, M. J., Cifuentes, M. E., Hammes, S. R. & Defranco, D. B. A local paracrine and endocrine network involving TGFbeta: Cox-2, ROS, and estrogen receptor beta influences reactive stromal cell regulation of prostate cancer cell motility. Mol. Endocrinol. 26, 940–954 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hawinkels, L. J. et al. Interaction with colon cancer cells hyperactivates TGF-beta signaling in cancer-associated fibroblasts. Oncogene 33, 97–107 (2014).

    CAS  PubMed  Google Scholar 

  56. Hendrayani, S. F., Al-Harbi, B., Al-Ansari, M. M., Silva, G. & Aboussekhra, A. The inflammatory/cancer-related IL-6/STAT3/NF-κB positive feedback loop includes AUF1 and maintains the active state of breast myofibroblasts. Oncotarget 7, 41974–41985 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. Turner, N. A. et al. Interleukin-1alpha stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 297, H1117–H1127 (2009).

    CAS  PubMed  Google Scholar 

  58. Tjomsland, V. et al. Interleukin 1α sustains the expression of inflammatory factors in human pancreatic cancer microenvironment by targeting cancer-associated fibroblasts. Neoplasia 13, 664–675 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Phosri, S. et al. Stimulation of adenosine a2b receptor inhibits endothelin-1-induced cardiac fibroblast proliferation and α-smooth muscle actin synthesis through the cAMP/Epac/PI3K/Akt-signaling pathway. Front. Pharmacol. 8, 428 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Lijnen, P. J., Petrov, V. V. & Fagard, R. H. Induction of cardiac fibrosis by angiotensin II. Methods Find Exp. Clin. Pharmacol. 22, 709–723 (2000).

    CAS  PubMed  Google Scholar 

  61. Hinsley, E. E., Kumar, S., Hunter, K. D., Whawell, S. A. & Lambert, D. W. Endothelin-1 stimulates oral fibroblasts to promote oral cancer invasion. Life Sci. 91, 557–561 (2012).

    CAS  PubMed  Google Scholar 

  62. Fujita, M. et al. Angiotensin type 1a receptor signaling-dependent induction of vascular endothelial growth factor in stroma is relevant to tumor-associated angiogenesis and tumor growth. Carcinogenesis. 26, 271–279 (2005).

    CAS  PubMed  Google Scholar 

  63. Zhang, K. et al. Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts. J. Cell Sci. 129, 1989–2002 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, J., Chen, H., Seth, A. & McCulloch, C. A. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 285, H1871–H1881 (2003).

    CAS  PubMed  Google Scholar 

  65. Cadamuro, M. Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology. 58, 1042–1053 (2013).

    CAS  PubMed  Google Scholar 

  66. Liao, C. H. Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J. Clin. Invest. 120, 242–253 (2010).

    CAS  PubMed  Google Scholar 

  67. Leask, A. & Abraham, D. J. TGF-beta signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).

    CAS  PubMed  Google Scholar 

  68. Lijnen, P. & Petrov, V. Transforming growth factor-beta 1-induced collagen production in cultures of cardiac fibroblasts is the result of the appearance of myofibroblasts. Methods Find. Exp. Clin. Pharmacol. 24, 333–344 (2002).

    CAS  PubMed  Google Scholar 

  69. Liu, F. L. et al. Autophagy is involved in TGF-β1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment. Oncotarget 7, 4122–4141 (2016).

    PubMed  Google Scholar 

  70. Skobe, M. & Fusenig, N. E. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl Acad. Sci. USA 95, 1050–1055 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hao, J., Ding, X. L., Yang, X. & Wu, X. Z. Prunella vulgaris polysaccharide inhibits growth and migration of breast carcinoma-associated fibroblasts by suppressing expression of basic fibroblast growth factor. Chin. J. Integr. Med. https://doi.org/10.1007/s11655-016-2587-x (2016).

    Article  PubMed  Google Scholar 

  72. Virag, J. A. et al. Fibroblast growth factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am. J. Pathol. 171, 1431–1440 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Santiago, J. J. et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev. Dyn. 239, 1573–1584 (2010).

    CAS  PubMed  Google Scholar 

  74. Wu, X. Hepatocyte growth factor activates tumor stromal fibroblasts to promote tumorigenesis in gastric cancer. Cancer Lett. 335, 128–135 (2013).

    CAS  PubMed  Google Scholar 

  75. Shen, H. Reprogramming of normal fibroblasts into cancer-associated fibroblasts by miRNAs-mediated CCL2/VEGFA signaling. PLOS Genet. 12, e1006244 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Giannoni, E. et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial–mesenchymal transition and cancer stemness. Cancer Res. 70, 6945–6956 (2010).

    CAS  PubMed  Google Scholar 

  77. Kanellakis, P., Ditiatkovski, M., Kostolias, G. & Bobik, A. A pro-fibrotic role for interleukin-4 in cardiac pressure overload. Cardiovasc. Res. 95, 77–85 (2012).

    CAS  PubMed  Google Scholar 

  78. Yu, Q. et al. IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice. Am. J. Physiol. Heart Circ. Physiol. 297, H76–H85 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schmid, J. O. et al. Cancer cells cue the p53 response of cancer-associated fibroblasts to cisplatin. Cancer Res. 72, 5824–5832 (2012).

    CAS  PubMed  Google Scholar 

  80. Cham, K. K. et al. Metronomic gemcitabine suppresses tumour growth, improves perfusion, and reduces hypoxia in human pancreatic ductal adenocarcinoma. Br. J. Cancer 103, 52–60 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, H. M. et al. Drug repurposing screening identifies bortezomib and panobinostat as drugs targeting cancer associated fibroblasts (CAFs) by synergistic induction of apoptosis. Invest. New Drugs 36, 545–560 (2018).

    CAS  PubMed  Google Scholar 

  82. Alvarez, R. et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br. J. Cancer 109, 926–933 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Feng, R. et al. Nab-paclitaxel interrupts cancer-stromal interaction through c-x-c motif chemokine 10-mediated interleukin-6 downregulation in vitro. Cancer Sci. 109, 2509–2519 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ma, Y. et al. Extreme low dose of 5-fluorouracil reverses MDR in cancer by sensitizing cancer associated fibroblasts and down-regulating P-gp. PLOS ONE 12, e0180023 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. de Gramont, A., Faivre, S. & Raymond, E. Novel TGF-β inhibitors ready for prime time in onco-immunology. Oncoimmunology 6, e1257453 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Fuyuhiro, Y. et al. Upregulation of cancer-associated myofibroblasts by TGF-β from scirrhous gastric carcinoma cells. Br. J. Cancer 105, 996–1001 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Katoh, M. FGFR inhibitors: effects on cancer cells, tumor microenvironment and whole-body homeostasis (review). Int. J. Mol. Med. 38, 3–15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Procopio, M. G. et al. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat. Cell Biol. 17, 1193–1204 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Teichgräber, V. et al. Specific inhibition of fibroblast activation protein (FAP)-alpha prevents tumor progression in vitro. Adv. Med. Sci. 60, 264–272 (2015).

    PubMed  Google Scholar 

  90. Liu, R., Li, H., Liu, L., Yu, J. & Ren, X. Fibroblast activation protein: a potential therapeutic target in cancer. Cancer Biol. Ther. 13, 123–129 (2012).

    PubMed  Google Scholar 

  91. Li, M. et al. Targeting of cancer-associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol. Med. Rep. 13, 2476–2484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wei, Y. et al. Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J. Clin. Invest. 127, 3675–3688 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Mediavilla-Varela, M., Boateng, K., Noyes, D. & Antonia, S. J. The anti-fibrotic agent pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts. BMC Cancer 16, 176 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Saito, H. et al. Importance of human peritoneal mesothelial cells in the progression, fibrosis, and control of gastric cancer: inhibition of growth and fibrosis by tranilast. Cancer 21, 55–67 (2018).

    CAS  Google Scholar 

  95. Schnittert, J., Heinrich, M. A., Kuninty, P. R., Storm, G. & Prakash, J. Reprogramming tumor stroma using an endogenous lipid lipoxin A4 to treat pancreatic cancer. Cancer Lett. 420, 247–258 (2018).

    CAS  PubMed  Google Scholar 

  96. Hara, M., Nagasaki, T., Shiga, K. & Takeyama, H. Suppression of cancer-associated fibroblasts and endothelial cells by itraconazole in bevacizumab-resistant gastrointestinal cancer. Anticancer Res. 36, 169–177 (2016).

    CAS  PubMed  Google Scholar 

  97. Whatcott, C. J. et al. Inhibition of ROCK1 kinase modulates both tumor cells and stromal fibroblasts in pancreatic cancer. PLoS One 12, e0183871 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Gabasa, M., Ikemori, R., Hilberg, F., Reguart, N. & Alcaraz, J. Nintedanib selectively inhibits the activation and tumour-promoting effects of fibroblasts from lung adenocarcinoma patients. Br. J. Cancer 117, 1128–1138 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kinoshita, K. et al. Imatinib mesylate inhibits the proliferation-stimulating effect of human lung cancer-associated stromal fibroblasts on lung cancer cells. Int. J. Oncol. 37, 869–877 (2010).

    CAS  PubMed  Google Scholar 

  100. Laing, N. et al. Inhibition of platelet-derived growth factor receptor α by MEDI-575 reduces tumor growth and stromal fibroblast content in a model of non-small cell lung cancer. Mol. Pharmacol. 83, 1247–1256 (2013).

    CAS  PubMed  Google Scholar 

  101. Mpekris, F. et al. Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy. J. Control. Release 261, 105–112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stokes, J. B. et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol. Cancer Ther. 10, 2135–2145 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Babiker, H. M. et al. Cardiotoxic effects of chemotherapy: a review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit. Rev. Oncol. Hematol. 126, 186–200 (2018).

    PubMed  Google Scholar 

  104. Nemeth, B. T., Varga, Z. V., Wu, W. J. & Pacher, P. Trastuzumab cardiotoxicity: from clinical trials to experimental studies. Br. J. Pharmacol. 174, 3727–3748 (2017).

    CAS  PubMed  Google Scholar 

  105. Shah, C. P. & Moreb, J. S. Cardiotoxicity due to targeted anticancer agents: a growing challenge. Ther. Adv. Cardiovasc. Dis. 13, 1753944719843435 (2019).

    PubMed  PubMed Central  Google Scholar 

  106. Hajari, C. A. & Johnson, P. Clinical use of nintedanib in patients with idiopathic pulmonary fibrosis. BMJ Open Respir. Res. 4, e000192 (2017).

    Google Scholar 

  107. Jensen, S. A. & Sørensen, J. B. Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother. Pharmacol. 58, 487–493 (2006).

    CAS  PubMed  Google Scholar 

  108. Mifková, A. et al. Synthetic polyamine BPA-C8 inhibits TGF-β1-mediated conversion of human dermal fibroblast to myofibroblasts and establishment of galectin-1-rich extracellular matrix in vitro. Chembiochem 15, 1465–1470 (2014).

    PubMed  Google Scholar 

  109. Daniels, C. E. et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J. Clin. Invest. 114, 1308–1316 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Schultz, J. E. Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J. Clin. Invest. 104, 709–719 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Millanvoye, E. et al. Growth rate and phospholipase C activity in cardiac and aortic spontaneously hypertensive rat cells. J. Hypertens. Suppl. 6, S369–S371 (1988).

    CAS  PubMed  Google Scholar 

  112. Klett, C. P., Palmer, A., Gallagher, A. M., Rioseco-Camacho, N. & Printz, M. P. Differences in cultured cardiac fibroblast populations isolated from SHR and WKY rats. Clin. Exp. Pharmacol. Physiol. Suppl. 22, S265–S267 (1995).

    CAS  PubMed  Google Scholar 

  113. Oka, T. et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ. Res. 101, 313–321 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Xia, Y. et al. Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension 58, 902–911 (2011).

    CAS  PubMed  Google Scholar 

  115. Leslie, K. O., Taatjes, D. J., Schwarz, J., vonTurkovich, M. & Low, R. B. Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit. Am. J. Pathol. 139, 207–216 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Baicu, C. F. et al. Time course of right ventricular pressure-overload induced myocardial fibrosis: relationship to changes in fibroblast post-synthetic procollagen processing. Am. J. Physiol. Heart Circ. Physiol. 303, H1128–H1134 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Corsa, C. A. The action of discoidin domain receptor 2 in basal tumor cells and stromal cancer-associated fibroblasts is critical for breast cancer metastasis. Cell Rep. 15, 2510–2523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sonnenberg, M. et al. Highly variable response to cytotoxic chemotherapy in carcinoma-associated fibroblasts (CAFs) from lung and breast. BMC Cancer 8, 364 (2008).

    PubMed  PubMed Central  Google Scholar 

  119. Morris, J. C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLOS ONE 9, e90353 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. Rijavec, E. et al. Belagenpumatucel-L for the treatment of non-small cell lung cancer. Expert. Opin. Biol. Ther. 15, 1371–1379 (2015).

    PubMed  Google Scholar 

  121. Nemunaitis, J. et al. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG™) in advanced cancer of the liver. Oncology 87, 21–29 (2014).

    CAS  PubMed  Google Scholar 

  122. Scott, A. M. et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 9, 1639–1647 (2003).

    CAS  PubMed  Google Scholar 

  123. Welt, S. et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J. Clin. Oncol. 12, 1193–1203 (1994).

    CAS  PubMed  Google Scholar 

  124. Yamamoto, K. et al. Stromal remodeling by the BET bromodomain inhibitor JQ1 suppresses the progression of human pancreatic cancer. Oncotarget 7, 61469–61484 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Guan, J. et al. Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett. 345, 132–139 (2014).

    CAS  PubMed  Google Scholar 

  126. Moatassim-Billah, S. et al. Anti-metastatic potential of somatostatin analog SOM230: indirect pharmacological targeting of pancreatic cancer-associated fibroblasts. Oncotarget 7, 41584–41598 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Sanchez-Lopez, E. et al. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene 35, 2634–2644 (2016).

    CAS  PubMed  Google Scholar 

  128. Sweeny, L. et al. Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor. Laryngoscope 122, 1539–1544 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Arpin, C. C. et al. Applying small molecule signal transducer and activator of transcription-3 (STAT3) protein inhibitors as pancreatic cancer therapeutics. Mol. Cancer Ther. 15, 794–805 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chang, J. et al. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer. Oncotarget 8, 26066–26078 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. Wang, L. et al. Terminating the criminal collaboration in pancreatic cancer: nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance. Biomaterials 144, 105–118 (2017).

    CAS  PubMed  Google Scholar 

  132. Zhao, J. et al. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy. Biomaterials 159, 215–228 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Henke, A. et al. Reduced contractility and motility of prostatic cancer-associated fibroblasts after inhibition of heat shock protein 90. Cancers (Basel) 8, E77 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award numbers R01HL130972 and 3R01HL130972-01A1S1 and a Merit Award from the Veterans Affairs Health Administration. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Veterans Affairs Health Administration. The authors thank R. Sargent, Sargent Illustration & Design, LLC, and S. Riffle, University of South Carolina School of Medicine, for assistance with the figures.

Author information

Authors and Affiliations

Authors

Contributions

K.E.O. and F.G.S. made substantial contributions to researching data for the article, discussions of content and the writing of the manuscript. All the authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Francis G. Spinale.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks I. Dixon, Z. Kassiri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oatmen, K.E., Cull, E. & Spinale, F.G. Heart failure as interstitial cancer: emergence of a malignant fibroblast phenotype. Nat Rev Cardiol 17, 523–531 (2020). https://doi.org/10.1038/s41569-019-0286-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0286-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing