Genetics of dilated cardiomyopathy: practical implications for heart failure management

Abstract

Given the global burden of heart failure, strategies to understand the underlying cause or to provide prognostic information are critical to reducing the morbidity and mortality associated with this highly prevalent disease. Cardiomyopathies often have a genetic cause, and the field of heart failure genetics is progressing rapidly. Through a deliberate investigation, evaluation for a familial component of cardiomyopathy can lead to increased identification of pathogenic genetic variants. Much research has also been focused on identifying markers of risk in patients with cardiomyopathy with the use of genetic testing. Advances in our understanding of genetic variants have been slightly offset by an increased recognition of the heterogeneity of disease expression. Greater breadth of genetic testing can increase the likelihood of identifying a variant of uncertain significance, which is resolved only rarely by cellular functional validation and segregation analysis. To increase the use of genetics in heart failure clinics, increased availability of genetic counsellors and other providers with experience in genetics is necessary. Ultimately, through ongoing research and increased clinical experience in cardiomyopathy genetics, an improved understanding of the disease processes will facilitate better clinical decision-making about the therapies offered, exemplifying the implementation of precision medicine.

Key points

  • The frontier of genetics is rapidly advancing and, increasingly, genetic testing in heart failure clinics is associated with benefit for family screening and individual prognostication.

  • A focused evaluation of the clinical characteristics and inheritance pattern of heart failure or sudden cardiac death, in addition to consultation with a genetic counsellor when appropriate, can facilitate a successful genetic evaluation.

  • Genetic testing is recommended in all patients with familial dilated cardiomyopathy (DCM) to facilitate screening, whereas guideline recommendations for testing in patients with sporadic DCM differ, but specific clinical features might increase the yield of testing.

  • Genetic testing in DCM is currently associated with the identification of a culprit variant in approximately 15–25% of patients with sporadic DCM and approximately 20–40% of patients with familial DCM.

  • The identification of a pathogenic variant might have important predictive and therapeutic implications; however, expression of the phenotype might depend on environmental triggers.

  • All first-degree relatives of patients with familial DCM should undergo clinical screening; guidelines for screening of first-degree relatives of patients with sporadic DCM differ.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cellular locations of proteins associated with DCM.
Fig. 2: Genetic testing in non-syndromic DCM.

References

  1. 1.

    Mozaffarian, D. et al. Heart disease and stroke statistics — 2016 update a report from the American Heart Association. Circulation 133, e38–e360 (2016).

    PubMed  Google Scholar 

  2. 2.

    Bui, A. L., Horwich, T. B. & Fonarow, G. C. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol. 8, 30–41 (2011).

    PubMed  Google Scholar 

  3. 3.

    Ponikowski, P. et al. Heart failure: preventing disease and death worldwide. ESC Heart Fail. 1, 4–25 (2014).

    PubMed  Google Scholar 

  4. 4.

    Gerber, Y. et al. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern. Med. 175, 996–1004 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States a policy statement from the American Heart Association. Circ. Heart Fail. 6, 606–619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Redfield, M. M. et al. Burden of systolic and diastolic ventricular dysfunction in the community. JAMA 289, 194 (2003).

    PubMed  Google Scholar 

  7. 7.

    Hershberger, R. E., Hedges, D. J. & Morales, A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10, 531–547 (2013).

    CAS  PubMed  Google Scholar 

  8. 8.

    Baldasseroni, S. et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian Network on Congestive Heart Failure. Am. Heart J. 143, 398–405 (2002).

    PubMed  Google Scholar 

  9. 9.

    Cahill, T. J., Ashrafian, H. & Watkins, H. Genetic cardiomyopathies causing heart failure. Circ. Res. 113, 660–675 (2013).

    CAS  PubMed  Google Scholar 

  10. 10.

    Burkett, E. L. & Hershberger, R. E. Clinical and genetic issues in familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 57, 1641–1649 (2011).

    Google Scholar 

  11. 11.

    Jefferies, J. L. & Towbin, J. A. Dilated cardiomyopathy. Lancet 375, 752–762 (2010).

    PubMed  Google Scholar 

  12. 12.

    Michels, V. et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N. Engl. J. Med. 326, 77–82 (1992).

    CAS  PubMed  Google Scholar 

  13. 13.

    Grünig, E. et al. Frequency and phenotypes of familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 31, 186–194 (1998).

    PubMed  Google Scholar 

  14. 14.

    McNally, E. M. & Mestroni, L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ. Res. 121, 731–748 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rosenbaum, A. N. & Pereira, N. L. Updates on the genetic paradigm in heart failure. Curr. Treat. Options Cardiovasc. Med. 21, 37 (2019).

    PubMed  Google Scholar 

  16. 16.

    Briasoulis, A., Asleh, R. & Pereira, N. in Encyclopedia of Cardiovascular Research and Medicine 1st edn (eds Sawyer, D. & Vasan, R.) 368–379 (Elsevier, 2018).

  17. 17.

    Elliott, P. Cardiomyopathy: diagnosis and management of dilated cardiomyopathy. Heart 84, 106–106 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Japp, A. G., Gulati, A., Cook, S. A., Cowie, M. R. & Prasad, S. K. The diagnosis and evaluation of dilated cardiomyopathy. J. Am. Coll. Cardiol. 67, 2996–3010 (2016).

    PubMed  Google Scholar 

  19. 19.

    Sweet, M. E., Taylor, M. R. & Mestroni, L. Diagnosis, prevalence, and screening of familial dilated cardiomyopathy. Expert. Opin. Orphan Drugs 3, 869–876 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Am. Coll. Med. Genet. Genomics 17, 405–424 (2015).

    Google Scholar 

  21. 21.

    Cresci, S. et al. Clinical and genetic modifiers of long-term survival in heart failure. J. Am. Coll. Cardiol. 54, 432–444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Liew, C.-C. & Dzau, V. J. Molecular genetics and genomics of heart failure. Nat. Rev. Genet. 5, 811–825 (2004).

    CAS  PubMed  Google Scholar 

  23. 23.

    Harakalova, M. et al. A systematic analysis of genetic dilated cardiomyopathy reveals numerous ubiquitously expressed and muscle-specific genes. Eur. J. Heart Fail. 17, 484–493 (2015).

    CAS  PubMed  Google Scholar 

  24. 24.

    Tayal, U., Prasad, S. & Cook, S. A. Genetics and genomics of dilated cardiomyopathy and systolic heart failure. Genome Med. 9, 1–14 (2017).

    Google Scholar 

  25. 25.

    Hershberger, R. E. et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 20, 899–909 (2018).

    PubMed  Google Scholar 

  26. 26.

    Lakdawala, N. K. et al. Genetic testing for dilated cardiomyopathy in clinical practice. J. Card. Fail. 18, 296–303 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ganesh, S. K. et al. Genetics and genomics for the prevention and treatment of cardiovascular disease: update. a scientific statement from the American Heart Association. Circulation 128, 2813–2851 (2013).

    PubMed  Google Scholar 

  28. 28.

    Pugh, T. J. et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet. Med. 16, 601–608 (2014).

    CAS  PubMed  Google Scholar 

  29. 29.

    Hershberger, R. E. et al. Genetic evaluation of cardiomyopathy—a Heart Failure Society of America practice guideline. J. Card. Fail. 24, 281–302 (2009).

    Google Scholar 

  30. 30.

    Adams, D. R. & Eng, C. M. Next-generation sequencing to diagnose suspected genetic disorders. N. Engl. J. Med. 379, 1353–1362 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Kushwaha, S. S., Fallon, J. T. & Fuster, V. Restrictive cardiomyopathy. N. Engl. J. Med. 336, 267–276 (1997).

    CAS  PubMed  Google Scholar 

  32. 32.

    Finsterer, J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr. Cardiol. 30, 659–681 (2009).

    PubMed  Google Scholar 

  33. 33.

    Towbin, J. A., Lorts, A. & Jefferies, J. L. Left ventricular non-compaction cardiomyopathy. Lancet 386, 813–825 (2015).

    PubMed  Google Scholar 

  34. 34.

    Gallego-Delgado, M. et al. Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J. Am. Coll. Cardiol. 67, 3021–3023 (2016).

    PubMed  Google Scholar 

  35. 35.

    Haas, J. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36, 1123–1135 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Bennett, R. L. The Practical Guide to the Genetic Family History 2nd edn (Wiley, 2010).

  37. 37.

    Arbustini, E. et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the world heart federation. Glob. Heart 8, 355–382 (2013).

    Google Scholar 

  38. 38.

    Mcnally, E. M., Golbus, J. R. & Puckelwartz, M. J. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Invest. 123, 19–26 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Baig, M. K. et al. Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relative and may represent early disease. J. Am. Coll. Cardiol. 31, 195–201 (1998).

    CAS  PubMed  Google Scholar 

  40. 40.

    Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J. Am. Coll. Cardiol. 62, e147–e239 (2013).

    PubMed  Google Scholar 

  41. 41.

    Charron, P. et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 31, 2715–2728 (2010).

    PubMed  Google Scholar 

  42. 42.

    Bozkurt, B. et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation 134, e579–e646 (2016).

    PubMed  Google Scholar 

  43. 43.

    Ackerman, M. J. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8, 1308–1339 (2011).

    PubMed  Google Scholar 

  44. 44.

    Towbin, J. A. et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm https://doi.org/10.1016/j.hrthm.2019.05.007 (2019).

  45. 45.

    Sylvius, N. et al. In vivo and in vitro examination of the functional significances of novel lamin gene mutations in heart failure patients. J. Med. Genet. 42, 639–647 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Fatkin, D. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341, 1715–1724 (1999).

    CAS  PubMed  Google Scholar 

  47. 47.

    van Berlo, J. H. et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J. Mol. Med. 83, 79–83 (2004).

    PubMed  Google Scholar 

  48. 48.

    Parks, S. B. et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am. Heart J. 156, 161–169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    van Tintelen, J. P. et al. High yield of LMNA mutations in patients with dilated cardiomyopathy and/or conduction disease referred to cardiogenetics outpatient clinics. Am. Heart J. 154, 1130–1139 (2007).

    PubMed  Google Scholar 

  50. 50.

    Morita, H., Seidman, J. G. & Seidman, C. E. Genetic causes of human heart failure. J. Clin. Invest. 115, 518–526 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Vikhorev, P. G. et al. Abnormal contractility in human heart myofibrils from patients with dilated cardiomyopathy due to mutations in TTN and contractile protein genes. Sci. Rep. 7, 14829 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Gramlich, M. et al. Stress-induced dilated cardiomyopathy in a knock-in mouse model mimicking human titin-based disease. J. Mol. Cell. Cardiol. 47, 352–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Gerull, B. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 30, 201–204 (2002).

    CAS  PubMed  Google Scholar 

  54. 54.

    Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Tayal, U. et al. Phenotype and clinical outcomes of titin cardiomyopathy. J. Am. Coll. Cardiol. 70, 2264–2274 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Jansweijer, J. A. et al. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur. J. Heart Fail. 19, 512–521 (2017).

    CAS  PubMed  Google Scholar 

  57. 57.

    Veselka, J., Anavekar, N. S. & Charron, P. Hypertrophic obstructive cardiomyopathy. Lancet 389, 1253–1267 (2017).

    PubMed  Google Scholar 

  58. 58.

    Mogensen, J. et al. Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 44, 2315–2325 (2004).

    CAS  PubMed  Google Scholar 

  59. 59.

    Moolman, J. C. et al. Sudden death due to troponin T mutations. J. Am. Coll. Cardiol. 29, 549–555 (1997).

    CAS  PubMed  Google Scholar 

  60. 60.

    Watkins, H. et al. Mutations in the genes for cardiac troponin t and α-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 332, 1058–1064 (1995).

    CAS  PubMed  Google Scholar 

  61. 61.

    Fujino, N. et al. A novel mutation Lys273Glu in the cardiac troponin T gene shows high degree of penetrance and transition from hypertrophic to dilated cardiomyopathy. Am. J. Cardiol. 89, 29–33 (2002).

    CAS  PubMed  Google Scholar 

  62. 62.

    Kokado, H. et al. Clinical features of hypertrophic cardiomyopathy caused by a Lys183 deletion mutation in the cardiac troponin I gene. Circulation 102, 663–669 (2000).

    CAS  PubMed  Google Scholar 

  63. 63.

    Regitz-Zagrosek, V., Erdmann, J., Wellnhofer, E., Raible, J. & Fleck, E. Novel mutation in the α-tropomyosin gene and transition from hypertrophic to hypocontractile dilated cardiomyopathy. Circulation 102, e112–e116 (2000).

    CAS  PubMed  Google Scholar 

  64. 64.

    Kamisago, M. et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 343, 1688–1696 (2000).

    CAS  PubMed  Google Scholar 

  65. 65.

    Daehmlow, S. et al. Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 298, 116–120 (2002).

    CAS  PubMed  Google Scholar 

  66. 66.

    Bos, J. M. & Ackerman, M. J. Z-disc genes in hypertrophic cardiomyopathy: stretching the cardiomyopathies? J. Am. Coll. Cardiol. 55, 1136–1138 (2010).

    CAS  PubMed  Google Scholar 

  67. 67.

    Knöll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    PubMed  Google Scholar 

  68. 68.

    Olson, T. M. et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105, 431–437 (2002).

    CAS  PubMed  Google Scholar 

  69. 69.

    Villard, E. et al. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur. Heart J. 26, 794–803 (2005).

    CAS  PubMed  Google Scholar 

  70. 70.

    Duboscq-Bidot, L. et al. Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 77, 118–125 (2008).

    CAS  PubMed  Google Scholar 

  71. 71.

    Dalakas, M. et al. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N. Engl. J. Med. 342, 770–780 (2000).

    CAS  PubMed  Google Scholar 

  72. 72.

    Li, D. et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100, 461–464 (1999).

    CAS  PubMed  Google Scholar 

  73. 73.

    Arbustini, E. et al. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur. J. Heart Fail. 8, 477–483 (2006).

    CAS  PubMed  Google Scholar 

  74. 74.

    Begay, R. L. et al. FLNC gene splice mutations cause dilated cardiomyopathy. JACC Basic Transl. Sci. 1, 344–359 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Ortiz-Genga, M. F. et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J. Am. Coll. Cardiol. 68, 2440–2451 (2016).

    CAS  PubMed  Google Scholar 

  76. 76.

    Begay, R. L. et al. Filamin C truncation mutations are associated with arrhythmogenic dilated cardiomyopathy and changes in the cell–cell adhesion structures. JACC Clin. Electrophysiol. 4, 504–514 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Selcen, D. et al. Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann. Neurol. 65, 83–89 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Elliott, P. et al. Prevalence of desmosomal protein gene mutations in patients with dilated cardiomyopathy. Circ. Cardiovasc. Genet. 3, 314–322 (2010).

    CAS  PubMed  Google Scholar 

  79. 79.

    Garcia-Pavia, P. et al. Desmosomal protein gene mutations in patients with idiopathic dilated cardiomyopathy undergoing cardiac transplantation: a clinicopathological study. Heart 97, 1744–1752 (2011).

    CAS  PubMed  Google Scholar 

  80. 80.

    Ichida, F. et al. Novel gene mutations in patients with left ventricular noncompaction or barth syndrome. Circulation 103, 1256–1263 (2001).

    CAS  PubMed  Google Scholar 

  81. 81.

    Captur, G. & Nihoyannopoulos, P. Left ventricular non-compaction: genetic heterogeneity, diagnosis and clinical course. Int. J. Cardiol. 140, 145–153 (2010).

    PubMed  Google Scholar 

  82. 82.

    D’Adamo, P. et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am. J. Hum. Genet. 61, 862–867 (1997).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Bione, S. et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat. Genet. 12, 385–389 (1996).

    CAS  PubMed  Google Scholar 

  84. 84.

    Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    van den Hoogenhof, M. M. G. et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138, 1330–1342 (2018).

    PubMed  Google Scholar 

  86. 86.

    Olson, T. M. et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 293, 447–454 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    McNair, W. P. et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 110, 2163–2167 (2004).

    CAS  PubMed  Google Scholar 

  88. 88.

    Brega, A., Narula, J. & Arbustini, E. Functional, structural, and genetic mitochondrial abnormalities in myocardial diseases. J. Nucl. Cardiol. 8, 89–97 (2001).

    CAS  PubMed  Google Scholar 

  89. 89.

    Zaragoza, M. V., Brandon, M. C., Diegoli, M., Arbustini, E. & Wallace, D. C. Mitochondrial cardiomyopathies: how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny. Eur. J. Hum. Genet. 19, 200–207 (2011).

    CAS  PubMed  Google Scholar 

  90. 90.

    Anan, R. et al. Cardiac involvement in mitochondrial diseases: a study on 17 patients with documented mitochondrial DNA defects. Circulation 91, 955–961 (1995).

    CAS  PubMed  Google Scholar 

  91. 91.

    Nair, V., Belanger, E. C. & Veinot, J. P. Lysosomal storage disorders affecting the heart: a review. Cardiovasc. Pathol. 39, 12–24 (2019).

    CAS  PubMed  Google Scholar 

  92. 92.

    Kamdar, F. & Garry, D. J. Dystrophin-deficient cardiomyopathy. J. Am. Coll. Cardiol. 67, 2533–2546 (2016).

    CAS  PubMed  Google Scholar 

  93. 93.

    Towbin, J. A. et al. X-linked dilated cardiomyopathy - molecular-genetic evidence of linkage to the Duchenne muscular-dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87, 1854–1865 (1993).

    CAS  PubMed  Google Scholar 

  94. 94.

    Mounkes, L. C., Burke, B. & Stewart, C. L. The A-type lamins: nuclear structural proteins as a focus for muscular dystrophy and cardiovascular diseases. Trends Cardiovasc. Med. 11, 280–285 (2001).

    CAS  PubMed  Google Scholar 

  95. 95.

    Bonne, G. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 21, 285–288 (1999).

    CAS  PubMed  Google Scholar 

  96. 96.

    Nigro, V. & Savarese, M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol. 33, 1–12 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Mestroni, L. et al. Guidelines for the study of familial dilated cardiomyopathies. Eur. Heart J. 20, 93–102 (1999).

    CAS  PubMed  Google Scholar 

  98. 98.

    Xue, Y., Ankala, A., Wilcox, W. R. & Hegde, M. R. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet. Med. 17, 444–451 (2015).

    CAS  PubMed  Google Scholar 

  99. 99.

    Yang, Y. et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 369, 1502–1511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Bagnall, R. D. et al. Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 72, 419–429 (2018).

    PubMed  Google Scholar 

  101. 101.

    Biesecker, L. G. & Green, R. C. Diagnostic clinical genome and exome sequencing. N. Engl. J. Med. 370, 2418–2425 (2014).

    PubMed  Google Scholar 

  102. 102.

    Mohammed, S. et al. Genetic insurance discrimination in sudden arrhythmia death syndromes empirical evidence from a cross-sectional survey in North America. Circ. Cardiovasc. Genet. 10, e001442 (2017).

    PubMed  Google Scholar 

  103. 103.

    Joly, Y., Braker, M. & Le Huynh, M. Genetic discrimination in private insurance: global perspectives. New Genet. Soc. 29, 351–368 (2010).

    Google Scholar 

  104. 104.

    Bland, A. et al. Clinically impactful differences in variant interpretation between clinicians and testing laboratories: a single-center experience. Genet. Med. 20, 369–373 (2018).

    PubMed  Google Scholar 

  105. 105.

    Amendola, L. M. et al. Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am. J. Hum. Genet. 99, 247 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Harrison, S. M. et al. Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar. Genet. Med. 19, 1096–1104 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Kelly, M. A. et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet. Med. 20, 351–359 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Hoffman-Andrews, L. The known unknown: the challenges of genetic variants of uncertain significance in clinical practice. J. Law Biosci. 4, 648–657 (2017).

    PubMed  Google Scholar 

  109. 109.

    Lv, W. et al. Functional annotation of TNNT2 variants of uncertain significance with genome-edited cardiomyocytes. Circulation 138, 2852–2854 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Stark, K. et al. Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy. PLOS Genet. 6, e1001167 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Villard, E. et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 32, 1065–1076 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Cappola, T. P. et al. Common variants in HSPB7 and FRMD4B associated with advanced heart failure. Circ. Cardiovasc. Genet. 3, 147–154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Meder, B. et al. A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur. Heart J. 35, 1069–1077 (2014).

    CAS  PubMed  Google Scholar 

  114. 114.

    Cappola, T. P. et al. Loss-of-function DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc. Natl Acad. Sci. USA 108, 2456–2461 (2011).

    CAS  PubMed  Google Scholar 

  115. 115.

    Franaszczyk, M. et al. The BAG3 gene variants in Polish patients with dilated cardiomyopathy: four novel mutations and a genotype-phenotype correlation. J. Transl Med. 12, 192 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Parsa, A. et al. Hypertrophy-associated polymorphisms ascertained in a founder cohort applied to heart failure risk and mortality. Clin. Transl Sci. 4, 17–23 (2011).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Fox, E. R. et al. Genome-wide association study of cardiac structure and systolic function in African Americans: the Candidate Gene Association Resource (CARe) study. Circ. Cardiovasc. Genet. 6, 37–46 (2013).

    PubMed  Google Scholar 

  118. 118.

    Smith, N. L. et al. Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Circ. Cardiovasc. Genet. 3, 256–266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Meune, C. et al. Primary prevention of sudden death in patients with lamin A/C gene mutations. N. Engl. J. Med. 354, 209–210 (2006).

    CAS  PubMed  Google Scholar 

  120. 120.

    Bécane, H. M. et al. High incidence of sudden death with conduction system and myocardial disease due to lamins A and C gene mutation. Pacing Clin. Electrophysiol. 23, 1661–1666 (2000).

    PubMed  Google Scholar 

  121. 121.

    Smith, J. G. et al. Discovery of genetic variation on chromosome 5q22 associated with mortality in heart failure. PLOS Genet. 12, e1006034 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Morrison, A. C. et al. Genomic variation associated with mortality among adults of European and African ancestry with heart failure: the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Circ. Cardiovasc. Genet. 3, 248–255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Myers, V. D. et al. Association of variants in BAG3 with cardiomyopathy outcomes in African American individuals. JAMA Cardiol. 3, 929–938 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Liggett, S. B. et al. A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure. Proc. Natl Acad. Sci. USA 103, 11288–11293 (2006).

    CAS  PubMed  Google Scholar 

  125. 125.

    Bruck, H. et al. The Arg389Gly β1-adrenoceptor polymorphism and catecholamine effects on plasma-renin activity. J. Am. Coll. Cardiol. 46, 2111–2115 (2005).

    CAS  PubMed  Google Scholar 

  126. 126.

    Terra, S. G. et al. β1-Adrenergic receptor polymorphisms and left ventricular remodeling changes in response to β-blocker therapy. Pharmacogenet. Genomics 15, 227–234 (2005).

    CAS  PubMed  Google Scholar 

  127. 127.

    White, H. et al. An evaluation of the β1 adrenergic receptor Arg389Gly polymorphism in individuals at risk of coronary events: a WOSCOPS substudy. Eur. Heart J. 23, 1087–1092 (2002).

    CAS  PubMed  Google Scholar 

  128. 128.

    White, H. L. et al. An evaluation of the β1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur. J. Heart Fail. 5, 463–468 (2003).

    CAS  PubMed  Google Scholar 

  129. 129.

    Andersson, B., Blange, I., Sylven, C. & Sylvén, C. Angiotensin-II type 1 receptor gene polymorphism and long-term survival in patients with idiopathic congestive heart failure. Eur. J. Heart Fail. 1, 363–369 (1999).

    CAS  PubMed  Google Scholar 

  130. 130.

    Huang, W., Xie, C., Zhou, H., Yang, T. & Sun, M. Association of the angiotensin-converting enzyme gene polymorphism with chronic heart failure in Chinese Han patients. Eur. J. Heart Fail. 6, 23–27 (2004).

    CAS  PubMed  Google Scholar 

  131. 131.

    McNamara, D. M. et al. Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. J. Am. Coll. Cardiol. 44, 1644–1649 (2004).

    Google Scholar 

  132. 132.

    Nelveg-Kristensen, K. E. et al. Pharmacogenetic risk stratification in angiotensin-converting enzyme inhibitor-treated patients with congestive heart failure: a retrospective cohort study. PLOS ONE 10, 1–16 (2015).

    Google Scholar 

  133. 133.

    Pare, G. et al. Genetic variants associated with angiotensin-converting enzyme inhibitor-associated angioedema. Pharmacogenet. Genomics 23, 470–478 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Pereira, N. L. & Weinshilboum, R. M. Cardiovascular pharmacogenomics and individualized drug therapy. Nat. Rev. Cardiol. 6, 632–638 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Merlo, M. et al. Evolving concepts in dilated cardiomyopathy. Eur. J. Heart Fail. 20, 228–239 (2017).

    PubMed  Google Scholar 

  136. 136.

    Van Spaendonck-Zwarts, K. Y. et al. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation 121, 2169–2175 (2010).

    PubMed  Google Scholar 

  137. 137.

    Blauwet, L. A. & Cooper, L. T. Diagnosis and management of peripartum cardiomyopathy. Heart 97, 1970–1981 (2011).

    PubMed  Google Scholar 

  138. 138.

    Scott, E., Hasbullah, J. S., Ross, C. J. & Carleton, B. C. Reducing anthracycline-induced cardiotoxicity through pharmacogenetics. Pharmacogenomics 19, 1147–1150 (2018).

    CAS  PubMed  Google Scholar 

  139. 139.

    Hazebroek, M. R. et al. Prognostic relevance of gene-environment interactions in patients with dilated cardiomyopathy applying the MOGE(S) classification. J. Am. Coll. Cardiol. 66, 1313–1323 (2015).

    PubMed  Google Scholar 

  140. 140.

    Pepin, M. E. et al. Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure. Lab. Invest. 99, 371–386 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Zierhut, H. A., MacFarlane, I. M., Ahmed, Z. & Davies, J. Genetic counselors’ experiences and interest in telegenetics and remote counseling. J. Genet. Couns. 27, 329–338 (2018).

    PubMed  Google Scholar 

  142. 142.

    Du, L. & Becher, S. I. Genetic and genomic consultation: are we ready for direct-to-consumer telegenetics? Front. Genet. 9, 550 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All the authors researched data for the article, wrote the manuscript and reviewed and edited it before submission. A.N.R. and N.L.P. contributed to discussions about the article content.

Corresponding author

Correspondence to Naveen L. Pereira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks L. Mestroni, A. Morales, G. Sinagra and M. van den Berg for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosenbaum, A.N., Agre, K.E. & Pereira, N.L. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 17, 286–297 (2020). https://doi.org/10.1038/s41569-019-0284-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing