Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Looking back and thinking forwards — 15 years of cardiology and cardiovascular research

Abstract

The first issue of Nature Reviews Cardiology was published in November 2004 under the name Nature Clinical Practice Cardiovascular Medicine. To celebrate our 15th anniversary in 2019, we invited six of our Advisory Board members to discuss what they considered the most important advances in their field of cardiovascular research or clinical practice in the past 15 years and what changes they envision for cardiovascular medicine in the next 15 years. Several practice-changing breakthroughs are described, including advances in procedural techniques to treat arrhythmias and hypertension and the development of novel therapeutic strategies to treat heart failure and pulmonary arterial hypertension, as well as those that target risk factors such as inflammation and elevated LDL-cholesterol levels. Furthermore, these key opinion leaders predict that machine learning technology and data derived from wearable devices will pave the way towards the coveted goal of personalized medicine.

The contributors

J.M.K. leads both clinical and research groups in the Department of Heart Rhythm Disorders at the Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia. He has an international reputation as a leader in the field of atrial arrhythmia research and has authored >380 peer-reviewed publications. He serves on the editorial board of 12 international cardiology journals and is an associate editor of JACC Clinical Electrophysiology. He is the immediate past president of the Asia Pacific Heart Rhythm Society and served as scientific chair of the Cardiac Society of Australia and New Zealand for 6 years.

S.L. is Professor in Biochemistry & Molecular Biology at the Faculty of Chemical & Pharmaceutical Sciences and Professor in Cell & Molecular Biology in the Faculty of Medicine, University of Chile in Santiago, Chile and adjunct professor in the Cardiology Division, University of Texas Southwestern Medical Center in Dallas, USA. He is also the director of the Advanced Center for Chronic Diseases (ACCDiS) in Santiago, Chile. He has published >260 articles in peer-reviewed journals, as well as book chapters. He is the current president of the Latino-American section of the International Society for Heart Research (ISHR) and an associate editor for Circulation. His research interests include cell signalling in the cardiovascular system, specifically the molecular mechanisms that regulate energy metabolism, hypertrophy, and death and survival of the heart, as well as important processes in the development of diseases, such as myocardial infarction, hypertension and heart failure (HF). Recently, his work has focused on the regulation of mitochondrial dynamics and function in the heart, inter-organelle communication in chronic diseases, primary cilia and polycystins in heart function, the non-canonical renin–angiotensin system and mechanisms in the genesis and development of HF with preserved ejection fraction (EF).

F.M. is Professor of Medicine and deputy director of the Department for Internal Medicine and Cardiology at Saarland University Hospital, and visiting professor at Harvard–MIT, Biomedical Engineering, Boston, MA, USA. He holds board certifications in internal medicine, cardiology, intensive care medicine, emergency medicine and hypertension. He serves as vice-chair of the Working Group for Interventional Hypertension Treatment of the European Society of Hypertension (ESH), a board member of the European Society of Cardiology (ESC) Council on Hypertension and a writing committee member of the 2018 ESC/ESH hypertension guidelines.

M.N. is a professor at Harvard Medical School and principal investigator at the Center for Systems Biology at Massachusetts General Hospital, Boston, MA, USA. His laboratory examines the cellular and molecular processes in atherosclerosis and myocardial infarction, with a particular focus on myeloid cells and the haematopoietic system.

M.H.Y. is Professor of Cardiothoracic Surgery at the National Heart and Lung Institute, Imperial College London, and founder and director of research at the Harefield Heart Science Centre (The Magdi Yacoub Institute), London, UK, overseeing >60 scientists and students in the areas of tissue-engineered heart valves, myocardial regeneration, novel left ventricular assist devices, stem cell biology, end-stage HF and transplantation immunology. He established the largest heart and lung transplantation programme in the world. He founded the Chain of Hope in 1995 to treat children with correctable cardiac conditions from war-torn and developing countries and established training and research programmes in local cardiac units. He also founded the Aswan Heart Centre in 2009, offering medical services free of charge to all patients and advancing basic science and biomedical research in Egypt.

D.Z. is a professor at the Capital Medical University, Beijing Anzhen Hospital in Beijing, China. She is a member of the China National Expert Committee for Cardiovascular Diseases, the Chinese Society of Preventive Cardiology and the Cardiology Society of Chinese Medical Doctors Association. She is also on the advisory or editorial board of journals including Nature Reviews Cardiology, International Journal of Cardiology and Chinese Journal of Cardiology. She has been involved in writing several international or China-specific guidelines for various topics of preventive cardiology, including management of dyslipidaemia and hypertension.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Evolution of AF ablation procedural care.
Fig. 2: Artificial intelligence for cardiovascular medicine.
Fig. 3: Potential non-blood-pressure-related indications for sympathetic modulation by renal denervation.
Fig. 4: Different causes of pulmonary hypertension in resource-rich versus resource-limited areas.

References

  1. 1.

    Haissaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Haissaguerre, M. et al. Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 101, 1409–1417 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Kanj, M. H. et al. Pulmonary vein antral isolation using an open irrigation ablation catheter for the treatment of atrial fibrillation: a randomized pilot study. J. Am. Coll. Cardiol. 49, 1634–1641 (2007).

    Article  PubMed  Google Scholar 

  4. 4.

    Phlips, T. et al. Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: the role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. Europace 20, f419–f427 (2018).

    Article  PubMed  Google Scholar 

  5. 5.

    Natale, A. et al. Paroxysmal AF catheter ablation with a contact force sensing catheter: results of the prospective, multicenter SMART-AF trial. J. Am. Coll. Cardiol. 64, 647–656 (2014).

    Article  PubMed  Google Scholar 

  6. 6.

    Neven, K. et al. Fatal end of a safety algorithm for pulmonary vein isolation with use of high-intensity focused ultrasound. Circ. Arrhythm. Electrophysiol. 3, 260–265 (2010).

    Article  PubMed  Google Scholar 

  7. 7.

    Kuck, K. H. et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N. Engl. J. Med. 374, 2235–2245 (2016).

    Article  PubMed  Google Scholar 

  8. 8.

    Mark, D. B. et al. Effect of catheter ablation vs medical therapy on quality of life among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA 321, 1275–1285 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Packer, D. L. et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA 321, 1261–1274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Friberg, L. et al. Catheter ablation for atrial fibrillation is associated with lower incidence of stroke and death: data from Swedish health registries. Eur. Heart J. 37, 2478–2487 (2016).

    Article  PubMed  Google Scholar 

  11. 11.

    Marrouche, N. F. et al. Catheter ablation for atrial fibrillation with heart failure. N. Engl. J. Med. 378, 417–427 (2018).

    Article  PubMed  Google Scholar 

  12. 12.

    Verma, A. et al. Approaches to catheter ablation for persistent atrial fibrillation. N. Engl. J. Med. 372, 1812–1822 (2015).

    Article  PubMed  Google Scholar 

  13. 13.

    Lau, D. H., Nattel, S., Kalman, J. M. & Sanders, P. Modifiable risk factors and atrial fibrillation. Circulation 136, 583–596 (2017).

    Article  PubMed  Google Scholar 

  14. 14.

    WHO. Global Status Report on Noncommunicable Diseases 2014. WHO https://www.who.int/nmh/publications/ncd-status-report-2014/en/ (2014).

  15. 15.

    WHO. Noncommunicable Diseases Country Profiles 2018. WHO https://www.who.int/nmh/publications/ncd-profiles-2018/en/ (2018).

  16. 16.

    Dadu, R. T. & Ballantyne, C. M. Lipid lowering with PCSK9 inhibitors. Nat. Rev. Cardiol. 11, 563–575 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Robinson, J. G. et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1489–1499 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Ruparelia, N., Chai, J. T., Fisher, E. A. & Choudhury, R. P. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat. Rev. Cardiol. 14, 133–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    McMurray, J. J. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Gu, J. et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor–neprilysin inhibitor (ARNi). J. Clin. Pharmacol. 50, 401–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Seferovic, J. P. et al. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 5, 333–340 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Raz, I. & Cahn, A. Heart failure: SGLT2 inhibitors and heart failure—clinical implications. Nat. Rev. Cardiol. 13, 185–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Wright, E. M. Renal Na+ glucose cotransporters. Am. J. Physiol. Renal Physiol. 280, F10–F18 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Chao, E. C. SGLT-2 inhibitors: a new mechanism for glycemic control. Clin. Diabetes 32, 4–11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zinman, B. et al. Empagliflozin, cardiovascular outcomes and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Kosiborod, M. et al. Lower risk of heart failure and death in patients initiated on sodium–glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study. Circulation 136, 249–259 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568, 351–356 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ranganathan, S., Nakai, K. & Schönbach, C. Encyclopedia of Bioinformatics and Computational Biology: abc of Bioinformatics 1st edn (Elsevier, 2019).

  31. 31.

    Tsay, D. & Patterson, C. From machine learning to artificial intelligence applications in cardiac care. Circulation 138, 2569–2575 (2018).

    Article  PubMed  Google Scholar 

  32. 32.

    Topol, E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again eBook (Basic Books, 2019).

  33. 33.

    Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mmHg, 1990–2015. JAMA 317, 165–182 (2017).

    Article  PubMed  Google Scholar 

  34. 34.

    Berra, E. et al. Evaluation of adherence should become an integral part of assessment of patients with apparently treatment-resistant hypertension. Hypertension 68, 297–306 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Schlaich, M. P., Sobotka, P. A., Krum, H., Lambert, E. & Esler, M. D. Renal sympathetic-nerve ablation for uncontrolled hypertension. N. Engl. J. Med. 361, 932–934 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Mahfoud, F., Schlaich, M., Böhm, M., Esler, M. & Lüscher, T. F. Catheter-based renal denervation: the next chapter begins. Eur. Heart J. 39, 4144–4149 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Böhm, M., Linz, D., Ukena, C., Esler, M. & Mahfoud, F. Renal denervation for the treatment of cardiovascular high risk-hypertension or beyond? Circ. Res. 115, 400–409 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Krum, H. et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383, 622–629 (2014).

    Article  PubMed  Google Scholar 

  39. 39.

    Esler, M. D. et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur. Heart J. 35, 1752–1759 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Azizi, M. et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 385, 1957–1965 (2015).

    Article  PubMed  Google Scholar 

  41. 41.

    Bhatt, D. L. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370, 1393–1401 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Kandzari, D. E. et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur. Heart J. 36, 219–227 (2015).

    Article  PubMed  Google Scholar 

  43. 43.

    Mahfoud, F. et al. Proceedings from the European Clinical Consensus Conference for renal denervation: considerations on future clinical trial design. Eur. Heart J. 36, 2219–2227 (2015).

    Article  PubMed  Google Scholar 

  44. 44.

    Mahfoud, F. et al. Proceedings from the 2nd European Clinical Consensus Conference for device-based therapies for hypertension: state of the art and considerations for the future. Eur. Heart J. 38, 3272–3281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Townsend, R. R. et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390, 2160–2170 (2017).

    Article  PubMed  Google Scholar 

  46. 46.

    Kandzari, D. E. et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 6736, 1–10 (2018).

    Google Scholar 

  47. 47.

    Azizi, M. et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391, 2335–2345 (2018).

    Article  PubMed  Google Scholar 

  48. 48.

    Hering, D. et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 61, 457–464 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Böhm, M. et al. Ambulatory heart rate reduction after catheter-based renal denervation in hypertensive patients not receiving anti-hypertensive medications: data from SPYRAL HTN-OFF MED, a randomized, sham-controlled, proof-of-concept trial. Eur. Heart J. 40, 743–751 (2019).

    Article  PubMed  Google Scholar 

  50. 50.

    Linz, D. et al. Catheter-based renal denervation reduces atrial nerve sprouting and complexity of atrial fibrillation in goats. Circ. Arrhythm. Electrophysiol. 8, 466–474 (2015).

    Article  PubMed  Google Scholar 

  51. 51.

    Linz, D. et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension 60, 172–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Pinto, A. R. et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLOS ONE 7, e36814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Heidt, T. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 115, 284–295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ensan, S. et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat. Immunol. 17, 159–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, 6432 (2019).

    Article  CAS  Google Scholar 

  60. 60.

    Leid, J. et al. Primitive embryonic macrophages are required for coronary development and maturation. Circ. Res. 118, 1498–1511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Godwin, J. W., Pinto, A. R. & Rosenthal, N. A. Macrophages are required for adult salamander limb regeneration. Proc. Natl Acad. Sci. USA 110, 9415–9420 (2013).

    Article  PubMed  Google Scholar 

  63. 63.

    Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Srivastava, D. & DeWitt, N. In vivo cellular reprogramming: the next generation. Cell 166, 1386–1396 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Chen, I. Y., Matsa, E. & Wu, J. C. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat. Rev. Cardiol. 13, 333–349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Hoeper, M. M. et al. A global view of pulmonary hypertension. Lancet Respir. Med. 4, 306–322 (2016).

    Article  PubMed  Google Scholar 

  67. 67.

    Rich, S., Haworth, S. G., Hassoun, P. M. & Yacoub, M. H. Pulmonary hypertension: the unaddressed global health burden. Lancet Respir. Med. 6, 577–579 (2018).

    Article  PubMed  Google Scholar 

  68. 68.

    Butrous, G. & Mathie, A. Infection in pulmonary vascular diseases: would another consortium really be the way to go? Glob. Cardiol. Sci. Pract. 2019, 1 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Lau, E. M. T., Giannoulatou, E., Celermajer, D. S. & Humbert, M. Epidemiology and treatment of pulmonary arterial hypertension. Nat. Rev. Cardiol. 14, 603–614 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Madani, M. M. Surgical treatment of chronic thromboembolic pulmonary hypertension: pulmonary thromboendarterectomy. Methodist DeBakey Cardiovasc. J. 12, 213–218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Kolosionek, E., Crosby, A., Harhay, M. O., Morrell, N. & Butrous, G. Pulmonary vascular disease associated with schistosomiasis. Expert Rev. Anti. Infect. Ther. 8, 1467–1473 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. 72.

    Yacoub, M., Mayosi, B., ElGuindy, A., Carpentier, A. & Yusuf, S. Eliminating acute rheumatic fever and rheumatic heart disease. Lancet. 390, 212–213 (2017).

    Article  PubMed  Google Scholar 

  73. 73.

    Jakovljevic, D. G. et al. Left ventricular assist device as a bridge to recovery for patients with advanced heart failure. J. Am. Coll. Cardiol. 69, 1924–1933 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Atherton, J. J. Stage B heart failure: rationale for screening. Heart Fail. Clin. 8, 273–283 (2012).

    Article  PubMed  Google Scholar 

  75. 75.

    Yacoub, M. H. & McLeod, C. The expanding role of implantable devices to monitor heart failure and pulmonary hypertension. Nat. Rev. Cardiol. 15, 770–779 (2018).

    Article  PubMed  Google Scholar 

  76. 76.

    Yacoub, M. H. & Terracciano, C. M. Bridge to recovery and the search for decision nodes. Circ. Heart Fail. 4, 393–395 (2011).

    Article  PubMed  Google Scholar 

  77. 77.

    Page, A., Messer, S. & Large, S. R. Heart transplantation from donation after circulatory determined death. Ann. Cardiothorac. Surg. 7, 75–81 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Yacoub, M. Cardiac donation after circulatory death: a time to reflect. Lancet 385, 2554–2556 (2015).

    Article  PubMed  Google Scholar 

  79. 79.

    Fischer, K. et al. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci. Rep. 6, 29081 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Längin, M. et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564, 430–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    Cooper, D. K. C. et al. Selection of patients for initial clinical trials of solid organ xenotransplantation. Transplantation 101, 1551–1558 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    El-Sherbiny, I. M. & Yacoub, M. H. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 316–342 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Dainis, A. M. et al. Cardiovascular precision medicine in the genomics era. JACC Basic Transl Sci. 3, 313–326 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Goldenberg, S. L., Nir, G. & Salcudean, S. E. A new era: artificial intelligence and machine learning in prostate cancer. Nat. Rev. Urol. 16, 391–403 (2019).

    Article  PubMed  Google Scholar 

  86. 86.

    Claas, S. A. & Arnett, D. K. The role of healthy lifestyle in the primordial prevention of cardiovascular disease. Curr. Cardiol. Rep. 18, 56 (2016).

    Article  PubMed  Google Scholar 

  87. 87.

    Sotos-Prieto, M. et al. Association between a healthy heart score and the development of clinical cardiovascular risk factors among women: potential role for primordial prevention. Circ. Cardiovasc. Qual. Outcomes 9, S77–S85 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Carey, R. M. et al. Prevention and control of hypertension: JACC health promotion series. J. Am. Coll. Cardiol. 72, 1278–1293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Bi, Y. et al. Status of cardiovascular health in Chinese adults. J. Am. Coll. Cardiol. 65, 1013–1025 (2015).

    Article  PubMed  Google Scholar 

  90. 90.

    Wang, Y. et al. Lifetime risk for cardiovascular disease in a Chinese population: the Chinese Multi-Provincial Cohort Study. Eur. J. Prev. Cardiol. 22, 380–388 (2015).

    Article  PubMed  Google Scholar 

  91. 91.

    Leening, M. J. et al. Lifetime perspectives on primary prevention of atherosclerotic cardiovascular disease. JAMA 315, 1449–1450 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. 92.

    Leistner, D. M. & Landmesser, U. Maintaining cardiovascular health in the digital era. Eur. Heart J. 40, 9–12 (2019).

    Article  PubMed  Google Scholar 

  93. 93.

    Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71, 1269–1324 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. 95.

    Murphy, A. et al. World Heart Federation cholesterol roadmap. Glob. Heart 12, 179–197 (2017).

    Article  PubMed  Google Scholar 

  96. 96.

    Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. 97.

    The STABILITY Investigators. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med. 370, 1702–1711 (2014).

    Article  CAS  Google Scholar 

  98. 98.

    Keene, D. et al. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin fibrates, and CETP inhibitors: meta-analysis of randomized controlled trials including 117,411 patients. BMJ 349, g4379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Gaziano, J. M. et al. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomized, double-blind, placebo-controlled trial. Lancet 392, 1036–1046 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. 100.

    The ASCEND Study Collaborative Group. Effects of aspirin for primary prevention in persons with diabetes mellitus. N. Engl. J. Med. 379, 1529–1539 (2018).

    Article  Google Scholar 

  101. 101.

    Zheng, S. L. & Roddick, A. J. Association of aspirin use for primary prevention with cardiovascular events and bleeding events. A systematic review and meta-analysis. JAMA 321, 277–287 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    O’Donnell, M. et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl. J. Med. 371, 612–623 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. 103.

    Mente, A. et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiology cohort study. Lancet 392, 496–506 (2018).

    Article  PubMed  Google Scholar 

  104. 104.

    Domanski, M. J. et al. Next steps in primary prevention of coronary heart disease. Rationale for and design of the ECAD trial. J. Am. Coll. Cardiol. 66, 1828–1836 (2015).

    Article  PubMed  Google Scholar 

  105. 105.

    Zhang, X. G. et al. Twenty-year epidemiologic study on LDL-C levels in relation to the risk of atherosclerotic events, hemorrhagic stroke, and cancer death among young and middle-aged population in China. J. Clin. Lipidol. 12, 1179–1189 (2018).

    Article  PubMed  Google Scholar 

  106. 106.

    Rist, P. M. et al. Lipid levels and the risk of hemorrhagic stroke among women. Neurology 92, 1–9 (2019).

    Article  CAS  Google Scholar 

  107. 107.

    Gidwani, S. & Nair, A. The burden of pulmonary hypertension in resource-limited settings. Glob. Heart 9, 297–310 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

F.M. is supported by Deutsche Forschungsgemeinschaft (SFB TRR219), Deutsche Gesellschaft für Kardiologie and Deutsche Hochdruckliga. S.L. is supported by Fondo de Financiamiento de Centros de Investigacion en Areas Prioritarias (FONDAP) grant 15130011 from Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), Chile. M.N. is supported by grants from the NHLBI HL139598 and HL142494.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article, contributed to discussions of content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Jonathan M. Kalman or Sergio Lavandero or Felix Mahfoud or Matthias Nahrendorf or Magdi H. Yacoub or Dong Zhao.

Ethics declarations

Competing interests

J.M.K. has received fellowship and research grants from Abbott, and from Biosense Webster and Medtronic in the form of unrestricted grants to the Royal Melbourne Hospital research directorate. F.M. has received speaker honoraria and consultancy fees from Berlin Chemie, Boehringer Ingelheim, Medtronic and ReCor. M.N. has been a paid a consultant fee or received research support from Alnylam, GlaxoSmithKline, IFM Therapeutics, Medtronic, Molecular Imaging, Novartis, Sigilon and Verseaux. The other authors declare no competing interests.

Additional information

Related links

100,000 Genomes Project: https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/

Human Heredity and Health in Africa: https://www.afshg.org/h3africa/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalman, J.M., Lavandero, S., Mahfoud, F. et al. Looking back and thinking forwards — 15 years of cardiology and cardiovascular research. Nat Rev Cardiol 16, 651–660 (2019). https://doi.org/10.1038/s41569-019-0261-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing