Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies

A Publisher Correction to this article was published on 08 October 2019

A Publisher Correction to this article was published on 02 October 2019

This article has been updated

Abstract

Research into cardiac autonomic control has received great interest in the past 20 years, and we are now at a critical juncture with regard to the clinical translation of the experimental findings. A rush to develop clinical interventions and implant a range of devices aimed at cardiac neuromodulation therapy has occurred. This interest has been driven by research, superimposed on commercial opportunities and perhaps the more relaxed regulatory framework governing implantable devices and interventions compared with that for pharmacotherapy. However, many of the results of the clinical trials into these therapies have been disappointing or conflicting. This lack of positive results is partly attributable to a scramble to find simple solutions for complex problems that we do not yet fully understand. Are there reasons to be optimistic? In this Review, we highlight areas in the field of cardiac autonomic control that we feel show the most promise for clinical translation and areas in which our current range of blunt tools need to be refined to bring about long-term success in treating arrhythmias.

Key points

  • Many primary cardiovascular diseases, such as hypertension, acute myocardial infarction and heart failure, are also diseases of the autonomic nervous system.

  • Sympathetic overactivity and vagal impairment are powerful negative prognostic indicators for morbidity and mortality associated with arrhythmia and sudden cardiac death.

  • Emerging evidence suggests that neuromodulation therapy might be clinically important in the management and prevention of lethal arrhythmia.

  • Neuromodulation device therapy has yielded conflicting and disappointing results in clinical trials, which might be related to stimulation parameters and/or the lack of site-specific targeting and appreciation of the complex neural circuitry driving postsynaptic excitability.

  • Surgical resection or ablation of specific ganglia, in particular the stellate ganglion, has produced encouraging therapeutic benefits in patients with sympathetic hyperactivity, who are prone to arrhythmia.

  • Understanding the relationship between neural circuitry and the molecular pathways underpinning abnormal neurotransmission to cardiac electrophysiology is essential to improve neuromodulation therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuromodulation targets for treating cardiac arrhythmia.
Fig. 2: Cardiac electrophysiological and autonomic responses after neuromodulation therapy.
Fig. 3: The cardio–neural hierarchy.
Fig. 4: Cardiac autonomic innervation and cardiac disease progression.
Fig. 5: Targeting the cardiac sympathetic nervous system with surgical denervation.
Fig. 6: Transcriptomics for the discovery of novel neuronal targets.
Fig. 7: Neurotransmitter switching in sympathetic neurons in prehypertension.
Fig. 8: Gene therapy to target presynaptic and postsynaptic sites involved in long QT syndrome.

Similar content being viewed by others

Change history

  • 08 October 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 02 October 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Samuels, M. A. The brain-heart connection. Circulation 116, 77–84 (2007).

    PubMed  Google Scholar 

  2. Esler, M. Heart and mind: psychogenic cardiovascular disease. J. Hypertens. 27, 692–695 (2009).

    CAS  PubMed  Google Scholar 

  3. Armour, J. A. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp. Physiol. 93, 165–176 (2008).

    CAS  PubMed  Google Scholar 

  4. Krul, S. P. J. et al. Treatment of atrial and ventricular arrhythmias through autonomic modulation. JACC Clin. Electrophysiol. 1, 496–508 (2015).

    PubMed  Google Scholar 

  5. Dawson, T. A. et al. Cardiac cholinergic NO-cGMP signaling following acute myocardial infarction and nNOS gene transfer. Am. J. Physiol. Heart Circ. Physiol. 295, H990–H998 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shen, M. J. & Zipes, D. P. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 114, 1004–1021 (2014).

    CAS  PubMed  Google Scholar 

  7. Schwartz, P. J. Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat. Rev. Cardiol. 11, 346–353 (2014).

    PubMed  Google Scholar 

  8. Ardell, J. L. et al. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J. Physiol. 594, 3877–3909 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shivkumar, K. et al. Clinical neurocardiology-defining the value of neuroscience-based cardiovascular therapeutics. J. Physiol. 594, 3911–3954 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Habecker, B. A. et al. Molecular and cellular neurocardiology: development, cellular and molecular adaptations to heart disease. J. Physiol. 594, 3853–3875 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Herring, N. & Paterson, D. J. Levick’s Introduction to Cardiovascular Physiology 6th edn (CRC Press, 2018).

  12. Ardell, J. L., Cardinal, R., Vermeulen, M. & Armour, J. A. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R470–R477 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Armour, J. A. Activity of in situ stellate ganglion neurons of dogs recorded extracellularly. Can. J. Physiol. Pharmacol. 64, 101–111 (1986).

    CAS  PubMed  Google Scholar 

  14. Paintal, A. S. Vagal afferent fibres. Ergeb. Physiol. 52, 74–156 (1963).

    CAS  PubMed  Google Scholar 

  15. Malliani, A., Recordati, G. & Schwartz, P. J. Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. J. Physiol. 229, 457–469 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fukuda, K., Kanazawa, H., Aizawa, Y., Ardell, J. L. & Shivkumar, K. Cardiac innervation and sudden cardiac death. Circ. Res. 116, 2005–2019 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vaseghi, M. & Shivkumar, K. The role of the autonomic nervous system in sudden cardiac death. Prog. Cardiovasc. Dis. 50, 404–419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rubart, M. & Zipes, D. P. Mechanisms of sudden cardiac death. J. Clin. Invest. 115, 2305–2315 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rutherford, S. L., Trew, M. L., Sands, G. B., LeGrice, I. J. & Smaill, B. H. High-resolution 3-dimensional reconstruction of the infarct border zone: impact of structural remodeling on electrical activation. Circ. Res. 111, 301–311 (2012).

    CAS  PubMed  Google Scholar 

  20. Wit, A. L. et al. Electrophysiologic mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Experimental approach and initial results demonstrating reentrant excitation. Am. J. Cardiol. 49, 166–185 (1982).

    CAS  PubMed  Google Scholar 

  21. Dillon, S. M., Allessie, M. A., Ursell, P. C. & Wit, A. L. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ. Res. 63, 182–206 (1988).

    CAS  PubMed  Google Scholar 

  22. de Bakker, J. M. et al. Slow conduction in the infarcted human heart. ‘Zigzag’ course of activation. Circulation 88, 915–926 (1993).

    PubMed  Google Scholar 

  23. Ajijola, O. A. et al. Sympathetic modulation of electrical activation in normal and infarcted myocardium: implications for arrhythmogenesis. Am. J. Physiol. Heart Circ. Physiol. 312, H608–H621 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Ng, G. A. et al. Sympathetic nerve stimulation produces spatial heterogeneities of action potential restitution. Heart Rhythm 6, 696–706 (2009).

    PubMed  Google Scholar 

  25. Mantravadi, R. et al. Autonomic nerve stimulation reverses ventricular repolarization sequence in rabbit hearts. Circ. Res. 100, e72–e80 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwartz, P. J., Pagani, M., Lombardi, F., Malliani, A. & Brown, A. M. A cardiocardiac sympathovagal reflex in the cat. Circ. Res. 32, 215–220 (1973).

    CAS  PubMed  Google Scholar 

  27. Kember, G., Armour, J. A. & Zamir, M. Neural control hierarchy of the heart has not evolved to deal with myocardial ischemia. Physiol. Genomics 45, 638–644 (2013).

    CAS  PubMed  Google Scholar 

  28. Zucker, I. H., Patel, K. P. & Schultz, H. D. Neurohumoral stimulation. Heart Fail. Clin. 8, 87–99 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Wang, H. J., Wang, W., Cornish, K. G., Rozanski, G. J. & Zucker, I. H. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension 64, 745–755 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Allen, E. et al. The electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart. Heart Rhythm 15, 1698–1707 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Salavatian, S. et al. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. Am. J. Physiol. Heart Circ. Physiol. 311, H1311–H1320 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Hamon, D. et al. Premature ventricular contraction coupling interval variability destabilizes cardiac neuronal and electrophysiological control: insights from simultaneous cardioneural mapping. Circ. Arrhythm. Electrophysiol. 10, e004937 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Hoover, D. B. et al. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience 164, 1170–1179 (2009).

    CAS  PubMed  Google Scholar 

  34. Takaki, F., Nakamuta, N., Kusakabe, T. & Yamamoto, Y. Sympathetic and sensory innervation of small intensely fluorescent (SIF) cells in rat superior cervical ganglion. Cell Tissue Res. 359, 441–451 (2015).

    CAS  PubMed  Google Scholar 

  35. Nakamura, K. et al. Pathological effects of chronic myocardial infarction on peripheral neurons mediating cardiac neurotransmission. Auton. Neurosci. 197, 34–40 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Rajendran, P. S. et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J. Physiol. 594, 321–341 (2016).

    CAS  PubMed  Google Scholar 

  37. Yoshie, K. et al. Cardiac vanilloid receptor-1 afferent depletion enhances stellate ganglion neuronal activity and efferent sympathetic response to cardiac stress. Am. J. Physiol. Heart Circ. Physiol. 314, H954–H966 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, H. J., Rozanski, G. J. & Zucker, I. H. Cardiac sympathetic afferent reflex control of cardiac function in normal and chronic heart failure states. J. Physiol. 595, 2519–2534 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Herring, N. Autonomic control of the heart: going beyond the classical neurotransmitters. Exp. Physiol. 100, 354–358 (2015).

    CAS  PubMed  Google Scholar 

  40. Bardsley, E. N., Davis, H., Buckler, K. J. & Paterson, D. J. Neurotransmitter switching coupled to beta-adrenergic signaling in sympathetic neurons in prehypertensive states. Hypertension 71, 1226–1238 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Weiss, J. N., Chen, P. S., Qu, Z., Karagueuzian, H. S. & Garfinkel, A. Ventricular fibrillation: how do we stop the waves from breaking? Circ. Res. 87, 1103–1107 (2000).

    CAS  PubMed  Google Scholar 

  42. Garfinkel, A. et al. Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl Acad. Sci. USA 97, 6061–6066 (2000).

    CAS  PubMed  Google Scholar 

  43. Kalla, M., Herring, N. & Paterson, D. J. Cardiac sympatho-vagal balance and ventricular arrhythmia. Auton. Neurosci. 199, 29–37 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Ishise, H. et al. Time course of sympathovagal imbalance and left ventricular dysfunction in conscious dogs with heart failure. J. Appl. Physiol. 84, 1234–1241 (1998).

    CAS  PubMed  Google Scholar 

  45. Motte, S. et al. Respiratory-related heart rate variability in progressive experimental heart failure. Am. J. Physiol. Heart Circ. Physiol. 289, H1729–H1735 (2005).

    CAS  PubMed  Google Scholar 

  46. Ma, R., Zucker, I. H. & Wang, W. Central gain of the cardiac sympathetic afferent reflex in dogs with heart failure. Am. J. Physiol. 273, H2664–H2671 (1997).

    CAS  PubMed  Google Scholar 

  47. Schwartz, P. J., Billman, G. E. & Stone, H. L. Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation 69, 790–800 (1984).

    CAS  PubMed  Google Scholar 

  48. Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    CAS  PubMed  Google Scholar 

  49. La Rovere, M. T. et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351, 478–484 (1998).

    PubMed  Google Scholar 

  50. Nolan, J. et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation 98, 1510–1516 (1998).

    CAS  PubMed  Google Scholar 

  51. Somers, V. K., Dyken, M. E., Mark, A. L. & Abboud, F. M. Sympathetic-nerve activity during sleep in normal subjects. N. Engl. J. Med. 328, 303–307 (1993).

    CAS  PubMed  Google Scholar 

  52. Verrier, R. L., Muller, J. E. & Hobson, J. A. Sleep, dreams, and sudden death: the case for sleep as an autonomic stress test for the heart. Cardiovasc. Res. 31, 181–211 (1996).

    CAS  PubMed  Google Scholar 

  53. Schwartz, P. J. et al. Neural control of heart rate is an arrhythmia risk modifier in long QT syndrome. J. Am. Coll. Cardiol. 51, 920–929 (2008).

    PubMed  Google Scholar 

  54. Crotti, L. et al. Vagal reflexes following an exercise stress test: a simple clinical tool for gene-specific risk stratification in the long QT syndrome. J. Am. Coll. Cardiol. 60, 2515–2524 (2012).

    PubMed  PubMed Central  Google Scholar 

  55. Marban, E., Robinson, S. W. & Wier, W. G. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J. Clin. Invest. 78, 1185–1192 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shiferaw, Y., Aistrup, G. L. & Wasserstrom, J. A. Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc. Res. 95, 265–268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Priori, S. G., Mantica, M. & Schwartz, P. J. Delayed afterdepolarizations elicited in vivo by left stellate ganglion stimulation. Circulation 78, 178–185 (1988).

    CAS  PubMed  Google Scholar 

  58. Lubbe, W. F., Podzuweit, T. & Opie, L. H. Potential arrhythmogenic role of cyclic adenosine monophosphate (AMP) and cytosolic calcium overload: implications for prophylactic effects of beta-blockers in myocardial infarction and proarrhythmic effects of phosphodiesterase inhibitors. J. Am. Coll. Cardiol. 19, 1622–1633 (1992).

    CAS  PubMed  Google Scholar 

  59. Tsien, R. W. et al. Mechanisms of calcium channel modulation by beta-adrenergic agents and dihydropyridine calcium agonists. J. Mol. Cell Cardiol. 18, 691–710 (1986).

    CAS  PubMed  Google Scholar 

  60. Lindemann, J. P., Jones, L. R., Hathaway, D. R., Henry, B. G. & Watanabe, A. M. beta-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J. Biol. Chem. 258, 464–471 (1983).

    CAS  PubMed  Google Scholar 

  61. Hund, T. J. et al. Role of activated CaMKII in abnormal calcium homeostasis and I(Na) remodeling after myocardial infarction: insights from mathematical modeling. J. Mol. Cell Cardiol. 45, 420–428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bogun, F. et al. Relationship of frequent postinfarction premature ventricular complexes to the reentry circuit of scar-related ventricular tachycardia. Heart Rhythm 5, 367–374 (2008).

    PubMed  Google Scholar 

  63. Ben-David, J. & Zipes, D. P. Differential response to right and left ansae subclaviae stimulation of early afterdepolarizations and ventricular tachycardia induced by cesium in dogs. Circulation 78, 1241–1250 (1988).

    CAS  PubMed  Google Scholar 

  64. January, C. T. & Riddle, J. M. Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ. Res. 64, 977–990 (1989).

    CAS  PubMed  Google Scholar 

  65. Bers, D. M. & Morotti, S. Ca2+ current facilitation is CaMKII-dependent and has arrhythmogenic consequences. Front. Pharmacol. 5, 144 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Sanguinetti, M. C., Jurkiewicz, N. K., Scott, A. & Siegl, P. K. Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circ. Res. 68, 77–84 (1991).

    CAS  PubMed  Google Scholar 

  67. Schwartz, P. J., Verrier, R. L. & Lown, B. Effect of stellectomy and vagotomy on ventricular refractoriness in dogs. Circ. Res. 40, 536–540 (1977).

    CAS  PubMed  Google Scholar 

  68. Bass, B. G. Restitution of the action potential in cat papillary muscle. Am. J. Physiol. 228, 1717–1724 (1975).

    CAS  PubMed  Google Scholar 

  69. Vaseghi, M., Lux, R. L., Mahajan, A. & Shivkumar, K. Sympathetic stimulation increases dispersion of repolarization in humans with myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 302, H1838–H1846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lang, D. et al. Arrhythmogenic remodeling of beta2 versus beta1 adrenergic signaling in the human failing heart. Circ. Arrhythm. Electrophysiol. 8, 409–419 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Han, J. & Moe, G. K. Nonuniform recovery of excitability in ventricular muscle. Circ. Res. 14, 44–60 (1964).

    CAS  PubMed  Google Scholar 

  72. Yagishita, D. et al. Sympathetic nerve stimulation, not circulating norepinephrine, modulates T-peak to T-end interval by increasing global dispersion of repolarization. Circ. Arrhythm. Electrophysiol. 8, 174–185 (2015).

    CAS  PubMed  Google Scholar 

  73. Nash, M. P. et al. Ventricular activation during sympathetic imbalance and its computational reconstruction. J. Appl. Physiol. 90, 287–298 (2001).

    CAS  PubMed  Google Scholar 

  74. Myles, R. C., Wang, L., Kang, C., Bers, D. M. & Ripplinger, C. M. Local beta-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circ. Res. 110, 1454–1464 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Stevenson, W. G. Ventricular scars and ventricular tachycardia. Trans. Am. Clin. Climatol Assoc. 120, 403–412 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. De Groot, J. R. & Coronel, R. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis. Cardiovasc. Res. 62, 323–334 (2004).

    PubMed  Google Scholar 

  77. Richardson, W. J., Clarke, S. A., Quinn, T. A. & Holmes, J. W. Physiological implications of myocardial scar structure. Compr. Physiol. 5, 1877–1909 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Luke, R. A. & Saffitz, J. E. Remodeling of ventricular conduction pathways in healed canine infarct border zones. J. Clin. Invest. 87, 1594–1602 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Watkins, H., Ashrafian, H. & Redwood, C. Inherited cardiomyopathies. N. Engl. J. Med. 364, 1643–1656 (2011).

    CAS  PubMed  Google Scholar 

  80. Janse, M. J., Schwartz, P. J., Wilms-Schopman, F., Peters, R. J. & Durrer, D. Effects of unilateral stellate ganglion stimulation and ablation on electrophysiologic changes induced by acute myocardial ischemia in dogs. Circulation 72, 585–595 (1985).

    CAS  PubMed  Google Scholar 

  81. Li, C. Y. & Li, Y. G. Cardiac sympathetic nerve sprouting and susceptibility to ventricular arrhythmias after myocardial infarction. Cardiol. Res. Pract. 2015, 698368 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Parrish, D. C. et al. Transient denervation of viable myocardium after myocardial infarction does not alter arrhythmia susceptibility. Am. J. Physiol. Heart Circ. Physiol. 314, H415–H423 (2018).

    PubMed  Google Scholar 

  83. Gardner, R. T. et al. Targeting protein tyrosine phosphatase sigma after myocardial infarction restores cardiac sympathetic innervation and prevents arrhythmias. Nat. Commun. 6, 6235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ostman, A., Hellberg, C. & Bohmer, F. D. Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer 6, 307–320 (2006).

    PubMed  Google Scholar 

  85. Cao, J. M. et al. Nerve sprouting and sudden cardiac death. Circ. Res. 86, 816–821 (2000).

    CAS  PubMed  Google Scholar 

  86. Zhou, S. et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ. Res. 95, 76–83 (2004).

    CAS  PubMed  Google Scholar 

  87. Hua, F. et al. c-Fos expression in rat brain stem and spinal cord in response to activation of cardiac ischemia-sensitive afferent neurons and electrostimulatory modulation. Am. J. Physiol. Heart Circ. Physiol. 287, H2728–H2738 (2004).

    CAS  PubMed  Google Scholar 

  88. Faerman, I. et al. Autonomic neuropathy and painless myocardial infarction in diabetic patients. Histologic evidence of their relationship. Diabetes 26, 1147–1158 (1977).

    CAS  PubMed  Google Scholar 

  89. Ieda, M. et al. Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation 114, 2351–2363 (2006).

    CAS  PubMed  Google Scholar 

  90. Jacobson, A. F. et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J. Am. Coll. Cardiol. 55, 2212–2221 (2010).

    PubMed  Google Scholar 

  91. Fallavollita, J. A. et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J. Am. Coll. Cardiol. 63, 141–149 (2014).

    PubMed  Google Scholar 

  92. Lautamaki, R. et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J. Nucl. Med. 56, 457–463 (2015).

    PubMed  Google Scholar 

  93. Cao, J. M. et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101, 1960–1969 (2000).

    CAS  PubMed  Google Scholar 

  94. Karliner, J. S. et al. Beta-adrenergic receptor properties of canine myocardium: effects of chronic myocardial infarction. J. Am. Coll. Cardiol. 8, 349–356 (1986).

    CAS  PubMed  Google Scholar 

  95. Olivas, A. et al. Myocardial infarction causes transient cholinergic transdifferentiation of cardiac sympathetic nerves via gp130. J. Neurosci. 36, 479–488 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kanazawa, H. et al. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J. Clin. Invest. 120, 408–421 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ajijola, O. A. et al. Extracardiac neural remodeling in humans with cardiomyopathy. Circ. Arrhythm. Electrophysiol. 5, 1010–1116 (2012).

    PubMed  PubMed Central  Google Scholar 

  98. Ajijola, O. A. et al. Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. JCI Insight 2, 94715 (2017).

    PubMed  Google Scholar 

  99. Danson, E. J. & Paterson, D. J. Reactive oxygen species and autonomic regulation of cardiac excitability. J. Cardiovasc. Electrophysiol. 17 (Suppl. 1), S104–S112 (2006).

    PubMed  Google Scholar 

  100. Batulevicius, D., Pauziene, N. & Pauza, D. H. Architecture and age-related analysis of the neuronal number of the guinea pig intrinsic cardiac nerve plexus. Ann. Anat. 187, 225–243 (2005).

    PubMed  Google Scholar 

  101. Blomquist, T. M., Priola, D. V. & Romero, A. M. Source of intrinsic innervation of canine ventricles: a functional study. Am. J. Physiol. 252, H638–H644 (1987).

    CAS  PubMed  Google Scholar 

  102. Pauza, D. H., Pauziene, N., Pakeltyte, G. & Stropus, R. Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase. Ann. Anat. 184, 125–136 (2002).

    PubMed  Google Scholar 

  103. Coote, J. H. Myths and realities of the cardiac vagus. J. Physiol. 591, 4073–4085 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lewis, M. E. et al. Vagus nerve stimulation decreases left ventricular contractility in vivo in the human and pig heart. J. Physiol. 534, 547–552 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Singh, S. et al. Topography of cardiac ganglia in the adult human heart. J. Thorac Cardiovasc. Surg. 112, 943–953 (1996).

    CAS  PubMed  Google Scholar 

  106. Pardini, B. J., Patel, K. P., Schmid, P. G. & Lund, D. D. Location, distribution and projections of intracardiac ganglion cells in the rat. J. Auton. Nerv. Syst. 20, 91–101 (1987).

    CAS  PubMed  Google Scholar 

  107. Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    CAS  PubMed  Google Scholar 

  108. Yamakawa, K. et al. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects. Am. J. Physiol. Heart Circ. Physiol. 309, H1579–H1590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ardell, J. L. et al. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. J. Physiol. 595, 6887–6903 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Schwartz, P. J. Vagal stimulation for heart failure. Curr. Opin. Cardiol. 26, 51–54 (2011).

    PubMed  Google Scholar 

  111. Schwartz, P. J. Vagal stimulation for heart diseases: from animals to men. - An example of translational cardiology. Circ. J. 75, 20–27 (2011).

    PubMed  Google Scholar 

  112. Einbrodt, E. Ueber herzreizung und ihr verhaeltnis zum blutdruck [German]. Akademie der Wissenschaften (Vienna) Sitzungsberichte 38, 345–359 (1859).

    Google Scholar 

  113. Myers, R. W. et al. Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation 49, 943–947 (1974).

    CAS  PubMed  Google Scholar 

  114. Corr, P. B. & Gillis, R. A. Role of the vagus nerves in the cardiovascular changes induced by coronary occlusion. Circulation 49, 86–97 (1974).

    CAS  PubMed  Google Scholar 

  115. Kolman, B. S., Verrier, R. L. & Lown, B. The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of sympathetic-parasympathetic interactions. Circulation 52, 578–585 (1975).

    CAS  PubMed  Google Scholar 

  116. Yoon, M. S., Han, J., Tse, W. W. & Rogers, R. Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles. Am. Heart J. 93, 60–65 (1977).

    CAS  PubMed  Google Scholar 

  117. Kent, K. M., Smith, E. R., Redwood, D. R. & Epstein, S. E. Electrical stability of acutely ischemic myocardium. Influences of heart rate and vagal stimulation. Circulation 47, 291–298 (1973).

    CAS  PubMed  Google Scholar 

  118. Schwartz, P. J. et al. Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation 78, 969–979 (1988).

    CAS  PubMed  Google Scholar 

  119. Vanoli, E. et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ. Res. 68, 1471–1481 (1991).

    CAS  PubMed  Google Scholar 

  120. Lakatta, E. G., Maltsev, V. A. & Vinogradova, T. M. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 106, 659–673 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Laurita, K. R. & Rosenbaum, D. S. Cellular mechanisms of arrhythmogenic cardiac alternans. Prog. Biophys. Mol. Biol. 97, 332–347 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Goldstein, R. E. et al. Influence of atropine and of vagally mediated bradycardia on the occurrence of ventricular arrhythmias following acute coronary occlusion in closed-chest dogs. Circulation 47, 1180–1190 (1973).

    CAS  PubMed  Google Scholar 

  123. Kent, K. M., Smith, E. R., Redwood, D. R. & Epstein, S. E. Beneficial electrophysiologic effects of nitroglycerin during acute myocardial infarction. Am. J. Cardiol. 33, 513–516 (1974).

    CAS  PubMed  Google Scholar 

  124. Zuanetti, G., De Ferrari, G. M., Priori, S. G. & Schwartz, P. J. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ. Res. 61, 429–435 (1987).

    CAS  PubMed  Google Scholar 

  125. Brack, K. E., Coote, J. H. & Ng, G. A. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation. Cardiovasc. Res. 91, 437–446 (2011).

    CAS  PubMed  Google Scholar 

  126. Kalla, M. et al. Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide. J. Physiol. 594, 3981–3992 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mesirca, P. et al. The G-protein-gated K+ channel, IKACh, is required for regulation of pacemaker activity and recovery of resting heart rate after sympathetic stimulation. J. Gen. Physiol. 142, 113–126 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Balligand, J. L., Kelly, R. A., Marsden, P. A., Smith, T. W. & Michel, T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc. Natl Acad. Sci. USA 90, 347–351 (1993).

    CAS  PubMed  Google Scholar 

  129. Han, X. et al. Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 95, 6510–6515 (1998).

    CAS  PubMed  Google Scholar 

  130. Herring, N., Danson, E. J. & Paterson, D. J. Cholinergic control of heart rate by nitric oxide is site specific. News Physiol. Sci. 17, 202–206 (2002).

    CAS  PubMed  Google Scholar 

  131. Martin, S. R., Emanuel, K., Sears, C. E., Zhang, Y. H. & Casadei, B. Are myocardial eNOS and nNOS involved in the beta-adrenergic and muscarinic regulation of inotropy? A systematic investigation. Cardiovasc. Res. 70, 97–106 (2006).

    CAS  PubMed  Google Scholar 

  132. Ng, G. A., Brack, K. E. & Coote, J. H. Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart—a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp. Physiol. 86, 319–329 (2001).

    CAS  PubMed  Google Scholar 

  133. Ellenbogen, K. A., Smith, M. L. & Eckberg, D. L. Increased vagal cardiac nerve traffic prolongs ventricular refractoriness in patients undergoing electrophysiology testing. Am. J. Cardiol. 65, 1345–1350 (1990).

    CAS  PubMed  Google Scholar 

  134. Herring, N., Golding, S. & Paterson, D. J. Pre-synaptic NO-cGMP pathway modulates vagal control of heart rate in isolated adult guinea pig atria. J. Mol. Cell Cardiol. 32, 1795–1804 (2000).

    CAS  PubMed  Google Scholar 

  135. Herring, N. & Paterson, D. J. Nitric oxide-cGMP pathway facilitates acetylcholine release and bradycardia during vagal nerve stimulation in the guinea-pig in vitro. J. Physiol. 535, 507–518 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Brack, K. E., Patel, V. H., Coote, J. H. & Ng, G. A. Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J. Physiol. 583, 695–704 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Machhada, A. et al. Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve. Heart Rhythm 12, 2285–2293 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Shinlapawittayatorn, K. et al. Vagus nerve stimulation initiated late during ischemia, but not reperfusion, exerts cardioprotection via amelioration of cardiac mitochondrial dysfunction. Heart Rhythm 11, 2278–2287 (2014).

    PubMed  Google Scholar 

  139. De Ferrari, G. M., Vanoli, E., Curcuruto, P., Tommasini, G. & Schwartz, P. J. Prevention of life-threatening arrhythmias by pharmacologic stimulation of the muscarinic receptors with oxotremorine. Am. Heart J. 124, 883–890 (1992).

    PubMed  Google Scholar 

  140. De Ferrari, G. M. et al. Pharmacologic modulation of the autonomic nervous system in the prevention of sudden cardiac death. A study with propranolol, methacholine and oxotremorine in conscious dogs with a healed myocardial infarction. J. Am. Coll. Cardiol. 22, 283–290 (1993).

    PubMed  Google Scholar 

  141. Farah, C., Michel, L. Y. M. & Balligand, J. L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 15, 292–316 (2018).

    CAS  PubMed  Google Scholar 

  142. Nicoletti, A. & Michel, J. B. Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. Cardiovasc. Res. 41, 532–543 (1999).

    CAS  PubMed  Google Scholar 

  143. Klein, R. M. et al. Inflammation of the myocardium as an arrhythmia trigger [German]. Z. Kardiol. 89 (Suppl. 3), 24–35 (2000).

    PubMed  Google Scholar 

  144. De Jesus, N. M. et al. Antiarrhythmic effects of interleukin 1 inhibition after myocardial infarction. Heart Rhythm 14, 727–736 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Calvillo, L. et al. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol. 58, 500–507 (2011).

    CAS  PubMed  Google Scholar 

  146. Wang, H. et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    CAS  PubMed  Google Scholar 

  147. Zhang, Y. et al. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ. Heart Fail 2, 692–699 (2009).

    CAS  PubMed  Google Scholar 

  148. Ando, M. et al. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation 112, 164–170 (2005).

    CAS  PubMed  Google Scholar 

  149. Sabbah, H. N. Electrical vagus nerve stimulation for the treatment of chronic heart failure. Cleve. Clin. J. Med. 78 (Suppl. 1), 24–29 (2011).

    PubMed  Google Scholar 

  150. Mohan, R. M. et al. Neuronal nitric oxide synthase gene transfer promotes cardiac vagal gain of function. Circul. Res. 91, 1089–1091 (2002).

    CAS  Google Scholar 

  151. Heaton, D. A. et al. Targeted nNOS gene transfer into the cardiac vagus rapidly increases parasympathetic function in the pig. J. Mol. Cell Cardiol. 39, 159–164 (2005).

    CAS  PubMed  Google Scholar 

  152. Billman, G. E., Schwartz, P. J. & Stone, H. L. The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 69, 1182–1189 (1984).

    CAS  PubMed  Google Scholar 

  153. Danson, E. J. & Paterson, D. J. Enhanced neuronal nitric oxide synthase expression is central to cardiac vagal phenotype in exercise-trained mice. J. Physiol. 546, 225–232 (2003).

    CAS  PubMed  Google Scholar 

  154. Mohan, R. M. et al. Peripheral pre-synaptic pathway reduces the heart rate response to sympathetic activation following exercise training: role of NO. Cardiovasc. Res. 47, 90–98 (2000).

    CAS  PubMed  Google Scholar 

  155. Verma, A. et al. Prevalence, predictors, and mortality significance of the causative arrhythmia in patients with electrical storm. J. Cardiovasc. Electrophysiol. 15, 1265–1270 (2004).

    PubMed  Google Scholar 

  156. Behling, A. et al. Cholinergic stimulation with pyridostigmine reduces ventricular arrhythmia and enhances heart rate variability in heart failure. Am. Heart J. 146, 494–500 (2003).

    CAS  PubMed  Google Scholar 

  157. ISIS-1 (First International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous atenolol among 16 027 cases of suspected acute myocardial infarction: ISIS-1. Lancet 2, 57–66 (1986).

    Google Scholar 

  158. Group, C. T. S. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med. 316, 1429–1435 (1987).

    Google Scholar 

  159. Pfeffer, M. A. et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N. Engl. J. Med. 327, 669–677 (1992).

    CAS  PubMed  Google Scholar 

  160. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353, 9–13 (1999).

    Google Scholar 

  161. Pedersen, C. T. et al. EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Heart Rhythm 11, e166–e196 (2014).

    PubMed  Google Scholar 

  162. Tung, R. et al. Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: an International VT Ablation Center Collaborative Group study. Heart Rhythm 12, 1997–2007 (2015).

    PubMed  PubMed Central  Google Scholar 

  163. Vaseghi, M. et al. Sympathetic innervation of the anterior left ventricular wall by the right and left stellate ganglia. Heart Rhythm 9, 1303–1309 (2012).

    PubMed  Google Scholar 

  164. Yanowitz, F., Preston, J. B. & Abildskov, J. A. Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ. Res. 18, 416–428 (1966).

    CAS  PubMed  Google Scholar 

  165. Irie, T. et al. Cardiac sympathetic innervation via middle cervical and stellate ganglia and antiarrhythmic mechanism of bilateral stellectomy. Am. J. Physiol. Heart Circ. Physiol. 312, H392–H405 (2017).

    PubMed  Google Scholar 

  166. Moss, A. J. & McDonald, J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N. Engl. J. Med. 285, 903–904 (1971).

    CAS  PubMed  Google Scholar 

  167. Schwartz, P. J. et al. Left cardiac sympathetic denervation in the therapy of congenital long QT syndrome. A worldwide report. Circulation 84, 503–511 (1991).

    CAS  PubMed  Google Scholar 

  168. Wilde, A. A. et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N. Engl. J. Med. 358, 2024–2029 (2008).

    CAS  PubMed  Google Scholar 

  169. Schwartz, P. J. et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation 109, 1826–1833 (2004).

    PubMed  Google Scholar 

  170. Vaseghi, M. et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm 11, 360–366 (2014).

    PubMed  Google Scholar 

  171. Vaseghi, M. et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J. Am. Coll. Cardiol. 69, 3070–3080 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Mahajan, A., Moore, J., Cesario, D. A. & Shivkumar, K. Use of thoracic epidural anesthesia for management of electrical storm: a case report. Heart Rhythm 2, 1359–1362 (2005).

    PubMed  Google Scholar 

  173. Kamibayashi, T. et al. Thoracic epidural anesthesia attenuates halothane-induced myocardial sensitization to dysrhythmogenic effect of epinephrine in dogs. Anesthesiology 82, 129–134 (1995).

    CAS  PubMed  Google Scholar 

  174. Meissner, A. et al. Effects of thoracic epidural anesthesia with and without autonomic nervous system blockade on cardiac monophasic action potentials and effective refractoriness in awake dogs. Anesthesiology 95, 132–138 (2001).

    CAS  PubMed  Google Scholar 

  175. Do, D. H. et al. Thoracic epidural anesthesia can be effective for the short-term management of ventricular tachycardia storm. J. Am. Heart Assoc. 6, e007080 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Meng, L., Tseng, C. H., Shivkumar, K. & Ajijola, O. Efficacy of stellate ganglion blockade in managing electrical storm: a systematic review. JACC Clin. Electrophysiol. 3, 942–949 (2017).

    PubMed  PubMed Central  Google Scholar 

  177. Tzafriri, A. R. et al. Arterial microanatomy determines the success of energy-based renal denervation in controlling hypertension. Sci. Transl Med. 7, 285ra265 (2015).

    Google Scholar 

  178. Huang, B. et al. Renal sympathetic denervation modulates ventricular electrophysiology and has a protective effect on ischaemia-induced ventricular arrhythmia. Exp. Physiol. 99, 1467–1477 (2014).

    PubMed  Google Scholar 

  179. Jiang, W. et al. Comparison between renal denervation and metoprolol on the susceptibility of ventricular arrhythmias in rats with myocardial infarction. Sci. Rep. 8, 10206 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. Remo, B. F. et al. Safety and efficacy of renal denervation as a novel treatment of ventricular tachycardia storm in patients with cardiomyopathy. Heart Rhythm 11, 541–546 (2014).

    PubMed  Google Scholar 

  181. Ukena, C. et al. Renal denervation for treatment of ventricular arrhythmias: data from an international multicenter registry. Clin. Res. Cardiol. 105, 873–879 (2016).

    CAS  PubMed  Google Scholar 

  182. Armaganijan, L. V. et al. 6-month outcomes in patients with implantable cardioverter-defibrillators undergoing renal sympathetic denervation for the treatment of refractory ventricular arrhythmias. JACC Cardiovasc. Interv. 8, 984–990 (2015).

    PubMed  Google Scholar 

  183. Bhatt, D. L. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370, 1393–1401 (2014).

    CAS  PubMed  Google Scholar 

  184. Kandzari, D. E. et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391, 2346–2355 (2018).

    PubMed  Google Scholar 

  185. Townsend, R. R. et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390, 2160–2170 (2017).

    Google Scholar 

  186. Azizi, M. et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391, 2335–2345 (2018).

    PubMed  Google Scholar 

  187. Liu, S. et al. Ablation of the ligament of Marshall and left stellate ganglion similarly reduces ventricular arrhythmias during acute myocardial infarction. Circ. Arrhythm. Electrophysiol. 11, e005945 (2018).

    PubMed  Google Scholar 

  188. Yu, L. et al. Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J. Am. Coll. Cardiol. 70, 2778–2790 (2017).

    PubMed  Google Scholar 

  189. Green, A. L. et al. Deep brain stimulation can regulate arterial blood pressure in awake humans. Neuroreport 16, 1741–1745 (2005).

    PubMed  Google Scholar 

  190. Pereira, E. A. et al. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp. Neurol. 223, 574–581 (2010).

    PubMed  Google Scholar 

  191. Sverrisdottir, Y. B. et al. Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans. Hypertension 63, 1000–1010 (2014).

    CAS  PubMed  Google Scholar 

  192. Tse, H. F. et al. Thoracic Spinal Cord Stimulation for Heart Failure as a Restorative Treatment (SCS HEART study): first-in-man experience. Heart Rhythm 12, 588–595 (2015).

    PubMed  Google Scholar 

  193. Wang, S. et al. Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model. Heart Rhythm 12, 1628–1635 (2015).

    PubMed  Google Scholar 

  194. Zipes, D. P. et al. Determining the Feasibility of Spinal Cord Neuromodulation for the Treatment of Chronic Systolic Heart Failure: the DEFEAT-HF study. JACC Heart Fail. 4, 129–136 (2016).

    PubMed  Google Scholar 

  195. Vaseghi, M. et al. Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction. JCI Insight 2, 86715 (2017).

    PubMed  Google Scholar 

  196. De Ferrari, G. M. et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32, 847–855 (2011).

    PubMed  Google Scholar 

  197. Zannad, F. et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 36, 425–433 (2015).

    PubMed  Google Scholar 

  198. Gold, M. R. et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J. Am. Coll. Cardiol. 68, 149–158 (2016).

    PubMed  Google Scholar 

  199. Premchand, R. K. et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J. Card Fail. 20, 808–816 (2014).

    PubMed  Google Scholar 

  200. Premchand, R. K. et al. Extended follow-up of patients with heart failure receiving autonomic regulation therapy in the ANTHEM-HF study. J. Card Fail. 22, 639–642 (2016).

    PubMed  Google Scholar 

  201. Libbus, I., Nearing, B. D., Amurthur, B., KenKnight, B. H. & Verrier, R. L. Autonomic regulation therapy suppresses quantitative T-wave alternans and improves baroreflex sensitivity in patients with heart failure enrolled in the ANTHEM-HF study. Heart Rhythm 13, 721–728 (2016).

    PubMed  Google Scholar 

  202. Kember, G., Ardell, J. L., Armour, J. A. & Zamir, M. Vagal nerve stimulation therapy: what is being stimulated? PLOS ONE 9, e114498 (2014).

    PubMed  PubMed Central  Google Scholar 

  203. Byku, M. & Mann, D. L. Neuromodulation of the failing heart: lost in translation? JACC Basic Transl Sci. 1, 95–106 (2016).

    PubMed  PubMed Central  Google Scholar 

  204. Ben-Menachem, E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 1, 477–482 (2002).

    Google Scholar 

  205. Nattel, S. & Dobrev, D. Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation. Nat. Rev. Cardiol. 13, 575–590 (2016).

    CAS  PubMed  Google Scholar 

  206. Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).

    CAS  PubMed  Google Scholar 

  207. Haissaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).

    CAS  PubMed  Google Scholar 

  208. Pappone, C. et al. Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation 104, 2539–2544 (2001).

    CAS  PubMed  Google Scholar 

  209. Tan, A. Y., Chen, P. S., Chen, L. S. & Fishbein, M. C. Autonomic nerves in pulmonary veins. Heart Rhythm 4, S57–60 (2007).

    PubMed  Google Scholar 

  210. Armour, J. A., Murphy, D. A., Yuan, B. X., Macdonald, S. & Hopkins, D. A. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat. Rec. 247, 289–298 (1997).

    CAS  PubMed  Google Scholar 

  211. Pauza, D. H., Skripka, V., Pauziene, N. & Stropus, R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat. Rec. 259, 353–382 (2000).

    CAS  PubMed  Google Scholar 

  212. Allessie, M. A., Lammers, W. J., Bonke, I. M. & Hollen, J. Intra-atrial reentry as a mechanism for atrial flutter induced by acetylcholine and rapid pacing in the dog. Circulation 70, 123–135 (1984).

    CAS  PubMed  Google Scholar 

  213. Coumel, P. et al. The atrial arrhythmia syndrome of vagal origin [French]. Arch. Mal. Coeur Vaiss 71, 645–656 (1978).

    CAS  PubMed  Google Scholar 

  214. Andersen, K. et al. Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur. Heart J. 34, 3624–3631 (2013).

    PubMed  Google Scholar 

  215. Wilhelm, M. Atrial fibrillation in endurance athletes. Eur. J. Prev. Cardiol. 21, 1040–1048 (2014).

    PubMed  Google Scholar 

  216. Abdulla, J. & Nielsen, J. R. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace 11, 1156–1159 (2009).

    PubMed  Google Scholar 

  217. Raju, H. & Kalman, J. M. Management of atrial fibrillation in the athlete. Heart Lung Circ. 27, 1086–1092 (2018).

    PubMed  Google Scholar 

  218. Zipes, D. P., Mihalick, M. J. & Robbins, G. T. Effects of selective vagal and stellate ganglion stimulation of atrial refractoriness. Cardiovasc. Res. 8, 647–655 (1974).

    CAS  PubMed  Google Scholar 

  219. Liu, L. & Nattel, S. Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am. J. Physiol. 273, H805–H816 (1997).

    CAS  PubMed  Google Scholar 

  220. Smeets, J. L., Allessie, M. A., Lammers, W. J., Bonke, F. I. & Hollen, J. The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circ. Res. 58, 96–108 (1986).

    CAS  PubMed  Google Scholar 

  221. Tan, A. Y. et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation 118, 916–925 (2008).

    PubMed  PubMed Central  Google Scholar 

  222. Scherlag, B. J., Yamanashi, W., Patel, U., Lazzara, R. & Jackman, W. M. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J. Am. Coll. Cardiol. 45, 1878–1886 (2005).

    PubMed  Google Scholar 

  223. Po, S. S. et al. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm 3, 201–208 (2006).

    PubMed  Google Scholar 

  224. Patterson, E. et al. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J. Am. Coll. Cardiol. 47, 1196–1206 (2006).

    CAS  PubMed  Google Scholar 

  225. Patterson, E., Po, S. S., Scherlag, B. J. & Lazzara, R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm 2, 624–631 (2005).

    PubMed  Google Scholar 

  226. Baez-Escudero, J. L., Keida, T., Dave, A. S., Okishige, K. & Valderrabano, M. Ethanol infusion in the vein of Marshall leads to parasympathetic denervation of the human left atrium: implications for atrial fibrillation. J. Am. Coll. Cardiol. 63, 1892–1901 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Valderrabano, M. et al. Retrograde ethanol infusion in the vein of Marshall: regional left atrial ablation, vagal denervation and feasibility in humans. Circ. Arrhythm. Electrophysiol. 2, 50–56 (2009).

    PubMed  Google Scholar 

  228. Rodriguez-Manero, M., Schurmann, P. & Valderrabano, M. Ligament and vein of Marshall: a therapeutic opportunity in atrial fibrillation. Heart Rhythm 13, 593–601 (2016).

    PubMed  Google Scholar 

  229. Jayachandran, J. V. et al. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation 101, 1185–1191 (2000).

    CAS  PubMed  Google Scholar 

  230. Chang, C. M. et al. Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation 103, 22–25 (2001).

    CAS  PubMed  Google Scholar 

  231. Nguyen, B. L., Fishbein, M. C., Chen, L. S., Chen, P. S. & Masroor, S. Histopathological substrate for chronic atrial fibrillation in humans. Heart Rhythm 6, 454–460 (2009).

    PubMed  PubMed Central  Google Scholar 

  232. Stavrakis, S. et al. The role of the autonomic ganglia in atrial fibrillation. JACC Clin. Electrophysiol. 1, 1–13 (2015).

    PubMed  PubMed Central  Google Scholar 

  233. Stavrakis, S. et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 65, 867–875 (2015).

    PubMed  PubMed Central  Google Scholar 

  234. Stavrakis, S. et al. Low-level vagus nerve stimulation suppresses post-operative atrial fibrillation and inflammation: a randomized study. JACC Clin. Electrophysiol. 3, 929–938 (2017).

    PubMed  Google Scholar 

  235. Tsai, C. F. et al. Bezold-Jarisch-like reflex during radiofrequency ablation of the pulmonary vein tissues in patients with paroxysmal focal atrial fibrillation. J. Cardiovasc. Electrophysiol. 10, 27–35 (1999).

    CAS  PubMed  Google Scholar 

  236. Hsieh, M. H. et al. Alterations of heart rate variability after radiofrequency catheter ablation of focal atrial fibrillation originating from pulmonary veins. Circulation 100, 2237–2243 (1999).

    CAS  PubMed  Google Scholar 

  237. Pappone, C. et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation 109, 327–334 (2004).

    PubMed  Google Scholar 

  238. Tan, A. Y. et al. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonary vein junction. J. Am. Coll. Cardiol. 48, 132–143 (2006).

    PubMed  Google Scholar 

  239. Verma, A. et al. Vagal responses induced by endocardial left atrial autonomic ganglion stimulation before and after pulmonary vein antrum isolation for atrial fibrillation. Heart Rhythm 4, 1177–1182 (2007).

    PubMed  Google Scholar 

  240. Kuck, K. H. et al. Impact of complete versus incomplete circumferential lines around the pulmonary veins during catheter ablation of paroxysmal atrial fibrillation: results from the gap-atrial fibrillation-german atrial fibrillation competence network 1 trial. Circ. Arrhythm. Electrophysiol. 9, e003337 (2016).

    PubMed  Google Scholar 

  241. Katritsis, D. G. et al. Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study. Heart Rhythm 8, 672–678 (2011).

    PubMed  Google Scholar 

  242. Po, S. S., Nakagawa, H. & Jackman, W. M. Localization of left atrial ganglionated plexi in patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 20, 1186–1189 (2009).

    PubMed  Google Scholar 

  243. Lemola, K. et al. Pulmonary vein isolation as an end point for left atrial circumferential ablation of atrial fibrillation. J. Am. Coll. Cardiol. 46, 1060–1066 (2005).

    PubMed  Google Scholar 

  244. Stabile, G. et al. Is pulmonary vein isolation necessary for curing atrial fibrillation? Circulation 108, 657–660 (2003).

    PubMed  Google Scholar 

  245. Jiang, R. H. et al. Incidence of pulmonary vein conduction recovery in patients without clinical recurrence after ablation of paroxysmal atrial fibrillation: mechanistic implications. Heart Rhythm 11, 969–976 (2014).

    PubMed  Google Scholar 

  246. Stavrakis, S. & Po, S. Ganglionated plexi ablation: physiology and clinical applications. Arrhythm. Electrophysiol. Rev. 6, 186–190 (2017).

    PubMed  PubMed Central  Google Scholar 

  247. Pokushalov, E. et al. Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm 6, 1257–1264 (2009).

    PubMed  Google Scholar 

  248. Katritsis, D. G. et al. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. J. Am. Coll. Cardiol. 62, 2318–2325 (2013).

    PubMed  Google Scholar 

  249. Pokushalov, E. et al. Ganglionated plexus ablation versus linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: a randomized comparison. Heart Rhythm 10, 1280–1286 (2013).

    PubMed  Google Scholar 

  250. Pokushalov, E. et al. Ganglionated plexi ablation for longstanding persistent atrial fibrillation. Europace 12, 342–346 (2010).

    PubMed  Google Scholar 

  251. Lin, J. et al. Autonomic mechanism to explain complex fractionated atrial electrograms (CFAE). J. Cardiovasc. Electrophysiol. 18, 1197–1205 (2007).

    PubMed  Google Scholar 

  252. Katritsis, D., Giazitzoglou, E., Sougiannis, D., Voridis, E. & Po, S. S. Complex fractionated atrial electrograms at anatomic sites of ganglionated plexi in atrial fibrillation. Europace 11, 308–315 (2009).

    PubMed  Google Scholar 

  253. Katritsis, D. et al. Autonomic modulation of complex fractionated atrial electrograms in patients with paroxysmal atrial fibrillation. J. Interv. Card. Electrophysiol. 31, 217–223 (2011).

    PubMed  Google Scholar 

  254. Verma, A. et al. Approaches to catheter ablation for persistent atrial fibrillation. N. Engl. J. Med. 372, 1812–1822 (2015).

    PubMed  Google Scholar 

  255. Sha, Y. et al. Low-level right vagal stimulation: anticholinergic and antiadrenergic effects. J. Cardiovasc. Electrophysiol. 22, 1147–1153 (2011).

    PubMed  Google Scholar 

  256. Sairaku, A. et al. High-frequency stimulation of the atria increases early recurrence following pulmonary vein isolation in patients with persistent atrial fibrillation. Heart Rhythm 9, 1386–1392 (2012).

    PubMed  Google Scholar 

  257. Jungen, C. et al. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias. Nat. Commun. 8, 14155 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. He, B. et al. Effects of ganglionated plexi ablation on ventricular electrophysiological properties in normal hearts and after acute myocardial ischemia. Int. J. Cardiol. 168, 86–93 (2013).

    PubMed  Google Scholar 

  259. Hou, Y. et al. Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, conduction, refractoriness, and inducibility of atrial fibrillation. J. Am. Coll. Cardiol. 50, 61–68 (2007).

    PubMed  Google Scholar 

  260. Lo, L. W. et al. Paradoxical long-term proarrhythmic effects after ablating the “head station” ganglionated plexi of the vagal innervation to the heart. Heart Rhythm 10, 751–757 (2013).

    PubMed  Google Scholar 

  261. Matsukawa, T., Sugiyama, Y. & Mano, T. Age-related changes in baroreflex control of heart rate and sympathetic nerve activity in healthy humans. J. Auton. Nerv. Syst. 60, 209–212 (1996).

    CAS  PubMed  Google Scholar 

  262. Li, S. et al. Low-level vagosympathetic stimulation: a paradox and potential new modality for the treatment of focal atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2, 645–651 (2009).

    PubMed  Google Scholar 

  263. Yu, L. et al. Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. J. Cardiovasc. Electrophysiol. 22, 455–463 (2011).

    PubMed  Google Scholar 

  264. Hardwick, J. C., Ryan, S. E., Beaumont, E., Ardell, J. L. & Southerland, E. M. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Auton. Neurosci. 181, 4–12 (2014).

    CAS  PubMed  Google Scholar 

  265. Fallgatter, A. J. et al. Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J. Neural Transm. (Vienna) 110, 1437–1443 (2003).

    CAS  Google Scholar 

  266. Yu, L. et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm 10, 428–435 (2013).

    PubMed  Google Scholar 

  267. Pokushalov, E. et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: one-year follow-up of a randomized pilot study. Circ. Arrhythm. Electrophysiol. 8, 1334–1341 (2015).

    CAS  PubMed  Google Scholar 

  268. de Jong, M. R. et al. Treatment of atrial fibrillation in patients with enhanced sympathetic tone by pulmonary vein isolation or pulmonary vein isolation and renal artery denervation: clinical background and study design: The ASAF trial: ablation of sympathetic atrial fibrillation. Clin. Res. Cardiol. 107, 539–547 (2018).

    PubMed  Google Scholar 

  269. Vaseghi, M. et al. Supraventricular tachycardia after orthotopic cardiac transplantation. J. Am. Coll. Cardiol. 51, 2241–2249 (2008).

    PubMed  Google Scholar 

  270. Bardsley, E. N. et al. RNA sequencing reveals novel transcripts from sympathetic stellate ganglia during cardiac sympathetic hyperactivity. Sci. Rep. 8, 8633 (2018).

    PubMed  PubMed Central  Google Scholar 

  271. Davis, H., Bardsley, E. N. & Paterson, D. J. Transcriptional profiling of stellate ganglia from normotensive and spontaneously hypertensive rat strains. Sci. Data 5, 180123 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Li, D. & Paterson, D. J. Cyclic nucleotide regulation of cardiac sympatho-vagal responsiveness. J. Physiol. 594, 3993–4008 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Liu, K. et al. Phosphodiesterase 2A as a therapeutic target to restore cardiac neurotransmission during sympathetic hyperactivity. JCI Insight 3, 98694 (2018).

    PubMed  Google Scholar 

  274. Li, D. et al. Efficacy of B-type natriuretic peptide is coupled to phosphodiesterase 2A in cardiac sympathetic neurons. Hypertension 66, 190–198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Bayles, R. G. et al. Transcriptomic and neurochemical analysis of the stellate ganglia in mice highlights sex differences. Sci. Rep. 8, 8963 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Adler-Graschinsky, E. & Langer, S. Z. Possible role of a beta-adrenoceptor in the regulation of noradrenaline release by nerve stimulation through a positive feed-back mechanism. Br. J. Pharmacol. 53, 43–50 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Larsen, H. E., Lefkimmiatis, K. & Paterson, D. J. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease. Sci. Rep. 6, 38898 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Bardsley, E. N., Larsen, H. E. & Paterson, D. J. Impaired cAMP-cGMP cross-talk during cardiac sympathetic dysautonomia. Channels (Austin) 11, 178–180 (2017).

    Google Scholar 

  279. Li, D. et al. Abnormal intracellular calcium homeostasis in sympathetic neurons from young prehypertensive rats. Hypertension 59, 642–649 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Shanks, J., Mane, S., Ryan, R. & Paterson, D. J. Ganglion-specific impairment of the norepinephrine transporter in the hypertensive rat. Hypertension 61, 187–193 (2013).

    CAS  PubMed  Google Scholar 

  281. Shanks, J. et al. Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol. 305, H980–H986 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Shanks, J. & Herring, N. Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1411–R1420 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Paton, J. F., Kasparov, S. & Paterson, D. J. Nitric oxide and autonomic control of heart rate: a question of specificity. Trends Neurosci. 25, 626–631 (2002).

    CAS  PubMed  Google Scholar 

  284. Danson, E. J., Li, D., Wang, L., Dawson, T. A. & Paterson, D. J. Targeting cardiac sympatho-vagal imbalance using gene transfer of nitric oxide synthase. J. Mol. Cell Cardiol. 46, 482–489 (2009).

    CAS  PubMed  Google Scholar 

  285. Larsen, H. E., Bardsley, E. N., Lefkimmiatis, K. & Paterson, D. J. Dysregulation of neuronal Ca2+ channel linked to heightened sympathetic phenotype in prohypertensive states. J. Neurosci. 36, 8562–8573 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Li, D., Wang, L., Lee, C. W., Dawson, T. A. & Paterson, D. J. Noradrenergic cell specific gene transfer with neuronal nitric oxide synthase reduces cardiac sympathetic neurotransmission in hypertensive rats. Hypertension 50, 69–74 (2007).

    CAS  PubMed  Google Scholar 

  287. Li, D. et al. Targeted neuronal nitric oxide synthase transgene delivery into stellate neurons reverses impaired intracellular calcium transients in prehypertensive rats. Hypertension 61, 202–207 (2013).

    CAS  PubMed  Google Scholar 

  288. Lu, C. J. et al. CAPON modulates neuronal calcium handling and cardiac sympathetic neurotransmission during dysautonomia in hypertension. Hypertension 65, 1288–1297 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Arking, D. E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 38, 644–651 (2006).

    CAS  PubMed  Google Scholar 

  290. Eijgelsheim, M. et al. Genetic variation in NOS1AP is associated with sudden cardiac death: evidence from the Rotterdam study. Hum. Mol. Genet. 18, 4213–4218 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Crotti, L. et al. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation 120, 1657–1663 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Chang, K. C. et al. CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc. Natl Acad. Sci. USA 105, 4477–4482 (2008).

    CAS  PubMed  Google Scholar 

  293. Schwartz, P. J. et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103, 89–95 (2001).

    CAS  PubMed  Google Scholar 

  294. Jaffrey, S. R., Snowman, A. M., Eliasson, M. J., Cohen, N. A. & Snyder, S. H. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 20, 115–124 (1998).

    CAS  PubMed  Google Scholar 

  295. Meng, L., Shivkumar, K. & Ajijola, O. Autonomic regulation and ventricular arrhythmias. Curr. Treat Options Cardiovasc. Med. 20, 38 (2018).

    PubMed  Google Scholar 

  296. Jänig, W. Neurocardiology: a neurobiologist’s perspective. J. Physiol. 594, 3955–3962 (2016).

    PubMed  PubMed Central  Google Scholar 

  297. Shen, M. J. et al. Neural mechanisms of atrial arrhythmias. Nat. Rev. Cardiol. 9, 30–39 (2012).

    Google Scholar 

Download references

Acknowledgements

N.H. is a British Heart Foundation (BHF) Intermediate Fellow (FS/15/8/3115). D.J.P. acknowledges the NIH Stimulating Peripheral Activity to Relieve Conditions (SPARC) award OT2OD023848 and BHF programme grant RG/17/14/33085. N.H., M.K. and D.J.P. also acknowledge support from the BHF Centre of Research Excellence (RE/08/004), Oxford, UK.

Reviewer information

Nature Reviews Cardiology thanks P. J. Schwartz, M.Vaseghi and R. L. Verrier for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

N.H. and D.J.P. developed the idea of the Review. All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Neil Herring or David J. Paterson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herring, N., Kalla, M. & Paterson, D.J. The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 16, 707–726 (2019). https://doi.org/10.1038/s41569-019-0221-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0221-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing