Review Article | Published:

Molecular mechanisms of arrhythmogenic cardiomyopathy

Abstract

Arrhythmogenic cardiomyopathy is a genetic disorder characterized by the risk of life-threatening arrhythmias, myocardial dysfunction and fibrofatty replacement of myocardial tissue. Mutations in genes that encode components of desmosomes, the adhesive junctions that connect cardiomyocytes, are the predominant cause of arrhythmogenic cardiomyopathy and can be identified in about half of patients with the condition. However, the molecular mechanisms leading to myocardial destruction, remodelling and arrhythmic predisposition remain poorly understood. Through the development of animal, induced pluripotent stem cell and other models of disease, advances in our understanding of the pathogenic mechanisms of arrhythmogenic cardiomyopathy over the past decade have brought several signalling pathways into focus. These pathways include canonical and non-canonical WNT signalling, the Hippo–Yes-associated protein (YAP) pathway and transforming growth factor-β signalling. These studies have begun to identify potential therapeutic targets whose modulation has shown promise in preclinical models. In this Review, we summarize and discuss the reported molecular mechanisms underlying the pathogenesis of arrhythmogenic cardiomyopathy.

Key points

  • Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder characterized by the risk of life-threatening arrhythmias, myocardial dysfunction and fibrofatty replacement of myocardial tissue.

  • Disease-causing mutations, most commonly in genes encoding desmosomal proteins, can be identified in approximately half of patients with ACM.

  • The molecular links between desmosome mutations and the pathological hallmarks of ACM — cardiomyocyte loss, fibrosis, adipogenesis, inflammation and arrhythmogenesis — are under active investigation but remain poorly defined.

  • Probable pathogenic mechanisms include loss of mechanical integrity at cell–cell junctions, altered signalling pathways at intercalated discs, disruption of ion channels and gap junctions, and aberrant protein trafficking.

  • The development of refined disease models and studies of the molecular pathogenesis of ACM promise to yield novel therapeutic targets and disease treatments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Sen-Chowdhry, S. & McKenna, W. J. Reconciling the protean manifestations of arrhythmogenic cardiomyopathy. Circ. Arrhythm. Electrophysiol. 3, 566–570 (2010).

  2. 2.

    Marcus, F. I. et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation 65, 384–398 (1982).

  3. 3.

    Thiene, G., Nava, A., Corrado, D., Rossi, L. & Pennelli, N. Right ventricular cardiomyopathy and sudden death in young people. N. Engl. J. Med. 318, 129–133 (1988).

  4. 4.

    Sen-Chowdhry, S., Morgan, R. D., Chambers, J. C. & McKenna, W. J. Arrhythmogenic cardiomyopathy: etiology, diagnosis, and treatment. Annu. Rev. Med. 61, 233–253 (2010).

  5. 5.

    Peters, S., Trümmel, M. & Meyners, W. Prevalence of right ventricular dysplasia-cardiomyopathy in a non-referral hospital. Int. J. Cardiol. 97, 499–501 (2004).

  6. 6.

    Rampazzo, A. et al. The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23–q24. Hum. Mol. Genet. 3, 959–962 (1994).

  7. 7.

    Corrado, D. et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA 296, 1593–1601 (2006).

  8. 8.

    Thiene, G., Corrado, D. & Basso, C. Arrhythmogenic right ventricular cardiomyopathy/dysplasia. Orphanet J. Rare Dis. 2, 45 (2007).

  9. 9.

    Bauce, B. et al. Clinical phenotype and diagnosis of arrhythmogenic right ventricular cardiomyopathy in pediatric patients carrying desmosomal gene mutations. Heart Rhythm 8, 1686–1695 (2011).

  10. 10.

    Te Riele, A. S. J. M. et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy in the pediatric population: clinical characterization and comparison with adult-onset disease. JACC Clin. Electrophysiol. 1, 551–560 (2015).

  11. 11.

    Groeneweg, J. A. et al. Clinical presentation, long-term follow-up, and outcomes of 1001 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients and family members. Circ. Cardiovasc. Genet. 8, 437–446 (2015).

  12. 12.

    Lazzarini, E. et al. The ARVD/C genetic variants database: 2014 update. Hum. Mutat. 36, 403–410 (2015).

  13. 13.

    Corrado, D. et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: need for an international registry. Study Group on Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy of the Working Groups on Myocardial and Pericardial Disease and Arrhythmias of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the World Heart Federation. Circulation 101, E101–E106 (2000).

  14. 14.

    Sen-Chowdhry, S. et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J. Am. Coll. Cardiol. 52, 2175–2187 (2008).

  15. 15.

    Martins, D. et al. Myocardial inflammation detected by cardiac MRI in arrhythmogenic right ventricular cardiomyopathy: a paediatric case series. Int. J. Cardiol. 271, 81–86 (2018).

  16. 16.

    Sen-Chowdhry, S. et al. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 115, 1710–1720 (2007).

  17. 17.

    Marcus, F. I. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur. Heart J. 31, 806–814 (2010).

  18. 18.

    Shimizu, W. Arrhythmias originating from the right ventricular outflow tract: how to distinguish ‘malignant’ from ‘benign’? Heart Rhythm 6, 1507–1511 (2009).

  19. 19.

    Zhang, L., Liu, L., Kowey, P. R. & Fontaine, G. H. The electrocardiographic manifestations of arrhythmogenic right ventricular dysplasia. Curr. Cardiol. Rev. 10, 237–245 (2014).

  20. 20.

    Abdelhamid, M. A. & Diab, H. S. The arrhythmic burden in patients with sarcoidosis. Is it a real concern? Egypt. J. Chest Dis. Tuberc. 65, 311–317 (2016).

  21. 21.

    James, C. A. et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J. Am. Coll. Cardiol. 62, 1290–1297 (2013).

  22. 22.

    Maron, B. J. et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation 132, e273–e280 (2015).

  23. 23.

    Mitchell, J. H., Haskell, W., Snell, P. & Van Camp, S. P. Task Force 8: classification of sports. J. Am. Coll. Cardiol. 45, 1364–1367 (2005).

  24. 24.

    Ruwald, A.-C. et al. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 36, 1735–1743 (2015).

  25. 25.

    Mazzanti, A. et al. Arrhythmogenic right ventricular cardiomyopathy: clinical course and predictors of arrhythmic risk. J. Am. Coll. Cardiol. 68, 2540–2550 (2016).

  26. 26.

    Protonotarios, N. et al. Cardiac abnormalities in familial palmoplantar keratosis. Br. Heart J. 56, 321–326 (1986).

  27. 27.

    Protonotarios, N. I., Tsatsopoulou, A. A. & Gatzoulis, K. A. Arrhythmogenic right ventricular cardiomyopathy caused by a deletion in plakoglobin (Naxos disease). Card. Electrophysiol. Rev. 6, 72–80 (2002).

  28. 28.

    McKoy, G. et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355, 2119–2124 (2000).

  29. 29.

    Coonar, A. S. et al. Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and woolly hair (Naxos disease) maps to 17q21. Circulation 97, 2049–2058 (1998).

  30. 30.

    Carvajal-Huerta, L. Epidermolytic palmoplantar keratoderma with woolly hair and dilated cardiomyopathy. J. Am. Acad. Dermatol. 39, 418–421 (1998).

  31. 31.

    Norgett, E. E. et al. Recessive mutation in desmoplakin disrupts desmoplakin–intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum. Mol. Genet. 9, 2761–2766 (2000).

  32. 32.

    Gerull, B. et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat. Genet. 36, 1162–1164 (2004).

  33. 33.

    Heuser, A. et al. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am. J. Hum. Genet. 79, 1081–1088 (2006).

  34. 34.

    Pilichou, K. et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113, 1171–1179 (2006).

  35. 35.

    den Haan, A. D. et al. Comprehensive desmosome mutation analysis in north americans with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Cardiovasc. Genet. 2, 428–435 (2009).

  36. 36.

    Fressart, V. et al. Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice. Europace 12, 861–868 (2010).

  37. 37.

    Xu, T. et al. Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. J. Am. Coll. Cardiol. 55, 587–597 (2010).

  38. 38.

    Vite, A. & Radice, G. L. N-Cadherin/catenin complex as a master regulator of intercalated disc function. Cell Commun. Adhes. 21, 169–179 (2014).

  39. 39.

    Vermij, S. H., Abriel, H. & van Veen, T. A. B. Refining the molecular organization of the cardiac intercalated disc. Cardiovasc. Res. 113, 259–275 (2017).

  40. 40.

    Mayosi, B. M. et al. Identification of cadherin 2 (CDH2) mutations in arrhythmogenic right ventricular cardiomyopathy. Circ. Cardiovasc. Genet. 10, e001605 (2017).

  41. 41.

    Turkowski, K. L., Tester, D. J., Bos, J. M., Haugaa, K. H. & Ackerman, M. J. Whole exome sequencing with genomic triangulation implicates CDH2-encoded N-cadherin as a novel pathogenic substrate for arrhythmogenic cardiomyopathy. Congenit. Heart Dis. 12, 226–235 (2017).

  42. 42.

    van Hengel, J. et al. Mutations in the area composita protein αT-catenin are associated with arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 34, 201–210 (2013).

  43. 43.

    Hoorntje, E. T. et al. Arrhythmogenic cardiomyopathy: pathology, genetics, and concepts in pathogenesis. Cardiovasc. Res. 113, 1521–1531 (2017).

  44. 44.

    Goossens, S. et al. A unique and specific interaction between alphaT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. J. Cell Sci. 120, 2126–2136 (2007).

  45. 45.

    Bermúdez-Jiménez, F. J. et al. The novel desmin mutation p. Glu401Asp impairs filament formation, disrupts cell membrane integrity and causes severe arrhythmogenic left ventricular cardiomyopathy/dysplasia. Circulation 137, 1595–1610 (2017).

  46. 46.

    Xiong, Q. et al. Arrhythmogenic cardiomyopathy in a patient with a rare loss-of-function KCNQ1 mutation. J. Am. Heart Assoc. 4, e001526 (2015).

  47. 47.

    Forleo, C. et al. Clinical and functional characterization of a novel mutation in lamin a/c gene in a multigenerational family with arrhythmogenic cardiac laminopathy. PLOS ONE 10, e0121723 (2015).

  48. 48.

    van der Heijden, J. F. & Hassink, R. J. The phospholamban p. Arg14del founder mutation in Dutch patients with arrhythmogenic cardiomyopathy. Neth. Heart J. 21, 284–285 (2013).

  49. 49.

    Tamargo, J. TGFβ3 mutations cause arrhythmogenic right ventricular dysplasia type 1 and open the door to understanding the biological role of TGFβ3 (where there’s a will, there’s a way). Cardiovasc. Res. 96, 188–190 (2012).

  50. 50.

    Pilichou, K. et al. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. J. Exp. Med. 206, 1787–1802 (2009).

  51. 51.

    Li, D. et al. Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy. Hum. Mol. Genet. 20, 4582–4596 (2011).

  52. 52.

    Stroud, M. J. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys. Rev. 10, 1033–1051 (2018).

  53. 53.

    Sequeira, V., Nijenkamp, L. L. A. M., Regan, J. A. & van der Velden, J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. Biochim. Biophys. Acta 1838, 700–722 (2014).

  54. 54.

    Lorenzon, A. et al. Desmin mutations and arrhythmogenic right ventricular cardiomyopathy. Am. J. Cardiol. 111, 400–405 (2013).

  55. 55.

    Klauke, B. et al. De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum. Mol. Genet. 19, 4595–4607 (2010).

  56. 56.

    Burke, B. & Stewart, C. L. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell Biol. 14, 13–24 (2013).

  57. 57.

    Le Dour, C. et al. Decreased WNT/β-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. Hum. Mol. Genet. 26, 333–343 (2017).

  58. 58.

    Quarta, G. et al. Mutations in the Lamin A/C gene mimic arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 33, 1128–1136 (2012).

  59. 59.

    Rajkumar, R., Sembrat, J. C., McDonough, B., Seidman, C. E. & Ahmad, F. Functional effects of the TMEM43 Ser358Leu mutation in the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. BMC Med. Genet. 13, 21 (2012).

  60. 60.

    Merner, N. D. et al. Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am. J. Hum. Genet. 82, 809–821 (2008).

  61. 61.

    Christensen, A. H., Andersen, C. B., Tybjaerg-Hansen, A., Haunso, S. & Svendsen, J. H. Mutation analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right ventricular cardiomyopathy. Clin. Genet. 80, 256–264 (2011).

  62. 62.

    Baskin, B. et al. TMEM43 mutations associated with arrhythmogenic right ventricular cardiomyopathy in non-Newfoundland populations. Hum. Genet. 132, 1245–1252 (2013).

  63. 63.

    Granzier, H., Wu, Y., Siegfried, L. & LeWinter, M. Titin: physiological function and role in cardiomyopathy and failure. Heart Fail. Rev. 10, 211–223 (2005).

  64. 64.

    Gigli, M. et al. A review of the giant protein Titin in clinical molecular diagnostics of cardiomyopathies. Front. Cardiovasc. Med. 3, 21 (2016).

  65. 65.

    Rampazzo, A. et al. ARVD4, a new locus for arrhythmogenic right ventricular cardiomyopathy, maps to chromosome 2 long arm. Genomics 45, 259–263 (1997).

  66. 66.

    Taylor, M. et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. Circulation 124, 876–885 (2011).

  67. 67.

    Ortiz-Genga, M. F. et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J. Am. Coll. Cardiol. 68, 2440–2451 (2016).

  68. 68.

    Kiselev, A. et al. De novo mutations in FLNC leading to early-onset restrictive cardiomyopathy and congenital myopathy. Hum. Mutat. 39, 1161–1172 (2018).

  69. 69.

    MacLennan, D. H. & Kranias, E. G. Phospholamban: a crucial regulator of cardiac contractility. Nat. Rev. Mol. Cell Biol. 4, 566 (2003).

  70. 70.

    van der Zwaag, P. A. et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur. J. Heart Fail. 14, 1199–1207 (2012).

  71. 71.

    Sepehrkhouy, S. et al. Distinct fibrosis pattern in desmosomal and phospholamban mutation carriers in hereditary cardiomyopathies. Heart Rhythm 14, 1024–1032 (2017).

  72. 72.

    Tiso, N. et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet. 10, 189–194 (2001).

  73. 73.

    Roux-Buisson, N. et al. Prevalence and significance of rare RYR2 variants in arrhythmogenic right ventricular cardiomyopathy/dysplasia: results of a systematic screening. Heart Rhythm 11, 1999–2009 (2014).

  74. 74.

    Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200 (2001).

  75. 75.

    Roston, T. M. et al. A novel RYR2 loss-of-function mutation (I4855M) is associated with left ventricular non-compaction and atypical catecholaminergic polymorphic ventricular tachycardia. J. Electrocardiol. 50, 227–233 (2017).

  76. 76.

    Moncayo-Arlandi, J. & Brugada, R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat. Rev. Cardiol. 14, 744–756 (2017).

  77. 77.

    Rook, M. B., Evers, M. M., Vos, M. A. & Bierhuizen, M. F. A. Biology of cardiac sodium channel Nav1.5 expression. Cardiovasc. Res. 93, 12–23 (2012).

  78. 78.

    Te Riele, A. S. J. M. et al. Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc. Res. 113, 102–111 (2017).

  79. 79.

    Beffagna, G. et al. Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc. Res. 65, 366–373 (2005).

  80. 80.

    Kaplan, S. R. et al. Structural and molecular pathology of the heart in Carvajal syndrome. Cardiovasc. Pathol. 13, 26–32 (2004).

  81. 81.

    Prompona, M., Kozlik-Feldmann, R., Mueller-Hoecker, J., Reiser, M. & Huber, A. Images in cardiovascular medicine. Magnetic resonance imaging characteristics in Carvajal syndrome (variant of Naxos disease). Circulation 116, e524–e530 (2007).

  82. 82.

    Kolar, A. J. O., Milroy, C. M., Day, P. F. & Suvarna, S. K. Dilated cardiomyopathy and sudden death in a teenager with palmar-plantar keratosis (occult Carvajal syndrome). J. Forensic Leg. Med. 15, 185–188 (2008).

  83. 83.

    Pelargonio, G., Dello Russo, A., Sanna, T., De Martino, G. & Bellocci, F. Myotonic dystrophy and the heart. Heart 88, 665–670 (2002).

  84. 84.

    Samanta, R., Pouliopoulos, J., Thiagalingam, A. & Kovoor, P. Role of adipose tissue in the pathogenesis of cardiac arrhythmias. Heart Rhythm 13, 311–320 (2016).

  85. 85.

    Baroldi, G., Silver, M. D., De Maria, R., Parodi, O. & Pellegrini, A. Lipomatous metaplasia in left ventricular scar. Can. J. Cardiol. 13, 65–71 (1997).

  86. 86.

    Corrado, D. et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J. Am. Coll. Cardiol. 30, 1512–1520 (1997).

  87. 87.

    Castelletti, S. et al. Desmoplakin missense and non-missense mutations in arrhythmogenic right ventricular cardiomyopathy: genotype-phenotype correlation. Int. J. Cardiol. 249, 268–273 (2017).

  88. 88.

    Ruiz, P. et al. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J. Cell Biol. 135, 215–225 (1996).

  89. 89.

    Gallicano, G. I. et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell Biol. 143, 2009–2022 (1998).

  90. 90.

    Grossmann, K. S. et al. Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J. Cell Biol. 167, 149–160 (2004).

  91. 91.

    Kirchhof, P. et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation 114, 1799–1806 (2006).

  92. 92.

    Gomes, J. et al. Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin-A combined murine and human study. Eur. Heart J. 33, 1942–1953 (2012).

  93. 93.

    Cerrone, M. et al. Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. Cardiovasc. Res. 95, 460–468 (2012).

  94. 94.

    Cerrone, M. et al. Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat. Commun. 8, 106 (2017).

  95. 95.

    Brodehl, A. et al. Transgenic mice overexpressing desmocollin-2 (DSC2) develop cardiomyopathy associated with myocardial inflammation and fibrotic remodeling. PLOS ONE 12, e0174019 (2017).

  96. 96.

    Rizzo, S. et al. Intercalated disc abnormalities, reduced Na+ current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc. Res. 95, 409–418 (2012).

  97. 97.

    Notari, M. et al. iASPP, a previously unidentified regulator of desmosomes, prevents arrhythmogenic right ventricular cardiomyopathy (ARVC)-induced sudden death. Proc. Natl Acad. Sci. USA 112, E973–E981 (2015).

  98. 98.

    Chelko, S. P. et al. Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy. JCI Insight 1, 85923 (2016).

  99. 99.

    Ellawindy, A. et al. Rho-kinase inhibition during early cardiac development causes arrhythmogenic right ventricular cardiomyopathy in mice. Arterioscler. Thromb. Vasc. Biol. 35, 2172–2184 (2015).

  100. 100.

    Garcia-Gras, E. et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J. Clin. Invest. 116, 2012–2021 (2006).

  101. 101.

    Kant, S., Holthöfer, B., Magin, T. M., Krusche, C. A. & Leube, R. E. Desmoglein 2-dependent arrhythmogenic cardiomyopathy is caused by a loss of adhesive function. Circ. Cardiovasc. Genet. 8, 553–563 (2015).

  102. 102.

    Lyon, R. C. et al. Connexin defects underlie arrhythmogenic right ventricular cardiomyopathy in a novel mouse model. Hum. Mol. Genet. 23, 1134–1150 (2014).

  103. 103.

    Yang, Z. et al. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Res. 99, 646–655 (2006).

  104. 104.

    Chen, S. N. et al. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ. Res. 114, 454–468 (2014).

  105. 105.

    Yamaguchi, Y. et al. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation. Proc. Natl Acad. Sci. USA 112, 2070–2075 (2015).

  106. 106.

    Lombardi, R. et al. Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 109, 1342–1353 (2011).

  107. 107.

    Lombardi, R. et al. Cardiac fibro-adipocyte progenitors express desmosome proteins and preferentially differentiate to adipocytes upon deletion of the desmoplakin gene. Circ. Res. 119, 41–54 (2016).

  108. 108.

    Lombardi, R. et al. Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 104, 1076–1084 (2009).

  109. 109.

    Claycomb, W. C. et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl Acad. Sci. USA 95, 2979–2984 (1998).

  110. 110.

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

  111. 111.

    Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).

  112. 112.

    Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41 (2009).

  113. 113.

    Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

  114. 114.

    Mannhardt, I. et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Rep. 7, 29–42 (2016).

  115. 115.

    Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018).

  116. 116.

    Basso, C. et al. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation 94, 983–991 (1996).

  117. 117.

    Asimaki, A. & Saffitz, J. E. Remodeling of cell-cell junctions in arrhythmogenic cardiomyopathy. Cell Commun. Adhes. 21, 13–23 (2014).

  118. 118.

    Caspi, O. et al. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ. Cardiovasc. Genet. 6, 557–568 (2013).

  119. 119.

    Li, J. et al. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling. Mol. Cell. Biol. 31, 1134–1144 (2011).

  120. 120.

    Huang, H., Asimaki, A., Lo, D., McKenna, W. & Saffitz, J. Disparate effects of different mutations in plakoglobin on cell mechanical behavior. Cell Motil. Cytoskeleton 65, 964–978 (2008).

  121. 121.

    Schlipp, A. et al. Desmoglein-2 interaction is crucial for cardiomyocyte cohesion and function. Cardiovasc. Res. 104, 245–257 (2014).

  122. 122.

    Sawant, A. C. et al. Exercise has a disproportionate role in the pathogenesis of arrhythmogenic right ventricular dysplasia/cardiomyopathy in patients without desmosomal mutations. J. Am. Heart Assoc. 3, e001471 (2014).

  123. 123.

    Bosman, L. P. et al. Predicting arrhythmic risk in arrhythmogenic right ventricular cardiomyopathy: a systematic review and meta-analysis. Heart Rhythm 15, 1097–1107 (2018).

  124. 124.

    Gerçek, M. et al. Cardiomyocyte hypertrophy in arrhythmogenic cardiomyopathy. Am. J. Pathol. 187, 752–766 (2017).

  125. 125.

    Mallat, Z. et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N. Engl. J. Med. 335, 1190–1196 (1996).

  126. 126.

    Kavantzas, N. G., Lazaris, A. C., Agapitos, E. V., Nanas, J. & Davaris, P. S. Histological assessment of apoptotic cell death in cardiomyopathies. Pathology 32, 176–180 (2000).

  127. 127.

    Valente, M. et al. In vivo evidence of apoptosis in arrhythmogenic right ventricular cardiomyopathy. Am. J. Pathol. 152, 479–484 (1998).

  128. 128.

    Franke, W. W. et al. Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells. Cell Tissue Res. 353, 99–115 (2013).

  129. 129.

    Akdis, D. et al. Myocardial expression profiles of candidate molecules in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia compared to those with dilated cardiomyopathy and healthy controls. Heart Rhythm 13, 731–741 (2016).

  130. 130.

    Ihrie, R. A. et al. Perp is a mediator of p53-dependent apoptosis in diverse cell types. Curr. Biol. 13, 1985–1990 (2003).

  131. 131.

    Marques, M. R., Ihrie, R. A., Horner, J. S. & Attardi, L. D. The requirement for perp in postnatal viability and epithelial integrity reflects an intrinsic role in stratified epithelia. J. Invest. Dermatol. 126, 69–73 (2006).

  132. 132.

    Hariharan, V. et al. Arrhythmogenic right ventricular cardiomyopathy mutations alter shear response without changes in cell-cell adhesion. Cardiovasc. Res. 104, 280–289 (2014).

  133. 133.

    Asimaki, A. et al. Identification of a new modulator of the intercalated disc in a zebrafish model of arrhythmogenic cardiomyopathy. Sci. Transl Med. 6, 240ra74 (2014).

  134. 134.

    Alaee, M., Nool, K. & Pasdar, M. Plakoglobin restores tumor suppressor activity of p53R175H mutant by sequestering the oncogenic potential of β-catenin. Cancer Sci. 109, 1876–1888 (2018).

  135. 135.

    Fink, S. L. & Cookson, B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907–1916 (2005).

  136. 136.

    Leask, A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ. Res. 116, 1269–1276 (2015).

  137. 137.

    Dobaczewski, M. et al. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ. Res. 107, 418–428 (2010).

  138. 138.

    Khalil, H. et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 127, 3770–3783 (2017).

  139. 139.

    Leask, A. TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc. Res. 74, 207–212 (2007).

  140. 140.

    Jain, M. et al. Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J. Biol. Chem. 288, 770–777 (2013).

  141. 141.

    Yu, L., Hébert, M. C. & Zhang, Y. E. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 21, 3749–3759 (2002).

  142. 142.

    Zhang, H. et al. Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy. Sci. Rep. 6, 28101 (2016).

  143. 143.

    Rampazzo, A. et al. Arrhythmogenic right ventricular cardiomyopathy type 1 (ARVD1): confirmation of locus assignment and mutation screening of four candidate genes. Eur. J. Hum. Genet. 11, 69–76 (2003).

  144. 144.

    Dubash, A. D. et al. Plakophilin-2 loss promotes TGF-β1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. J. Cell Biol. 212, 425–438 (2016).

  145. 145.

    Stadiotti, I. et al. Arrhythmogenic cardiomyopathy: the guilty party in adipogenesis. J. Cardiovasc. Transl Res. 10, 446–454 (2017).

  146. 146.

    Moses, K. A., DeMayo, F., Braun, R. M., Reecy, J. L. & Schwartz, R. J. Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. Genesis 31, 176–180 (2001).

  147. 147.

    Zhou, B., von Gise, A., Ma, Q., Rivera-Feliciano, J. & Pu, W. T. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem. Biophys. Res. Commun. 375, 450–453 (2008).

  148. 148.

    Verzi, M. P., McCulley, D. J., De Val, S., Dodou, E. & Black, B. L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev. Biol. 287, 134–145 (2005).

  149. 149.

    Agah, R. et al. Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 100, 169–179 (1997).

  150. 150.

    Chong, J. J. H. et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9, 527–540 (2011).

  151. 151.

    Kim, C. et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494, 105–110 (2013).

  152. 152.

    Dorn, T. et al. Interplay of cell-cell contacts and RhoA/MRTF-A signaling regulates cardiomyocyte identity. EMBO J. 37, e98133 (2018).

  153. 153.

    Lorenzon, A. et al. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 8, 60640–60655 (2017).

  154. 154.

    Giuliodori, A. et al. Loss of cardiac Wnt/β-catenin signalling in Desmoplakin-deficient AC8 zebrafish models is rescuable by genetic and pharmacological intervention. Cardiovasc. Res. 114, 1082–1097 (2018).

  155. 155.

    Zhurinsky, J., Shtutman, M. & Ben-Ze’ev, A. Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J. Cell Sci. 113, 3127–3139 (2000).

  156. 156.

    Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767–779 (2012).

  157. 157.

    Laudes, M. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes. J. Mol. Endocrinol. 46, R65–R72 (2011).

  158. 158.

    Salomon, D. et al. Regulation of beta-catenin levels and localization by overexpression of plakoglobin and inhibition of the ubiquitin-proteasome system. J. Cell Biol. 139, 1325–1335 (1997).

  159. 159.

    Noorman, M. et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 10, 412–419 (2013).

  160. 160.

    Asimaki, A. et al. A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N. Engl. J. Med. 360, 1075–1084 (2009).

  161. 161.

    Lombardi, R. et al. Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ. Res. 109, 1342–1353 (2011).

  162. 162.

    Daugherty, R. L. et al. α-Catenin is an inhibitor of transcription. Proc. Natl Acad. Sci. USA 111, 5260–5265 (2014).

  163. 163.

    Grigoryan, T., Wend, P., Klaus, A. & Birchmeier, W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 22, 2308–2341 (2008).

  164. 164.

    Chen, X. et al. The β-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol. Cell. Biol. 26, 4462–4473 (2006).

  165. 165.

    Cristancho, A. G. & Lazar, M. A. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12, 722–734 (2011).

  166. 166.

    McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

  167. 167.

    Li, L., Miano, J. M., Cserjesi, P. & Olson, E. N. SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ. Res. 78, 188–195 (1996).

  168. 168.

    Kanazawa, A. et al. Wnt5b partially inhibits canonical Wnt/beta-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes. Biochem. Biophys. Res. Commun. 330, 505–510 (2005).

  169. 169.

    Godsel, L. M. et al. Plakophilin 2 couples actomyosin remodeling to desmosomal plaque assembly via RhoA. Mol. Biol. Cell 21, 2844–2859 (2010).

  170. 170.

    Schlessinger, K., Hall, A. & Tolwinski, N. Wnt signaling pathways meet Rho GTPases. Genes Dev. 23, 265–277 (2009).

  171. 171.

    Yu, F.-X., Zhao, B. & Guan, K.-L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828 (2015).

  172. 172.

    Karaman, R. & Halder, G. Cell junctions in Hippo signaling. Cold Spring Harb. Perspect. Biol. 10, a028753 (2018).

  173. 173.

    Halder, G., Dupont, S. & Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13, 591–600 (2012).

  174. 174.

    Schlegelmilch, K. et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

  175. 175.

    Vite, A., Zhang, C., Yi, R., Emms, S. & Radice, G. L. α-Catenin-dependent cytoskeletal tension controls Yap activity in the heart. Development 145, dev149823 (2018).

  176. 176.

    Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

  177. 177.

    Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A. & Nishida, E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J. 31, 1109–1122 (2012).

  178. 178.

    Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

  179. 179.

    Azzolin, L. et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157–170 (2014).

  180. 180.

    Lefterova, M. I., Haakonsson, A. K., Lazar, M. A. & Mandrup, S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 25, 293–302 (2014).

  181. 181.

    Son, N.-H. et al. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J. Clin. Invest. 117, 2791–2801 (2007).

  182. 182.

    Liu, J., Wang, H., Zuo, Y. & Farmer, S. R. Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol. Cell. Biol. 26, 5827–5837 (2006).

  183. 183.

    Gurha, P., Chen, X., Lombardi, R., Willerson, J. T. & Marian, A. J. Knockdown of plakophilin 2 downregulates miR-184 through CpG hypermethylation and suppression of the E2F1 pathway and leads to enhanced adipogenesis in vitro. Circ. Res. 119, 731–750 (2016).

  184. 184.

    Quang, K. L. et al. Loss of cardiomyocyte integrin-linked kinase produces an arrhythmogenic cardiomyopathy in mice. Circ. Arrhythm. Electrophysiol. 8, 921–932 (2015).

  185. 185.

    Asimaki, A. et al. Altered desmosomal proteins in granulomatous myocarditis and potential pathogenic links to arrhythmogenic right ventricular cardiomyopathy. Circ. Arrhythm. Electrophysiol. 4, 743–752 (2011).

  186. 186.

    Campuzano, O. et al. Arrhythmogenic right ventricular cardiomyopathy: severe structural alterations are associated with inflammation. J. Clin. Pathol. 65, 1077–1083 (2012).

  187. 187.

    Pollack, A., Kontorovich, A. R., Fuster, V. & Dec, G. W. Viral myocarditis—diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 12, 670–680 (2015).

  188. 188.

    Heim, A., Grumbach, I., Stille-Siegener, M. & Figulla, H. R. Detection of enterovirus RNA in the myocardium of a patient with arrhythmogenic right ventricular cardiomyopathy by in situ hybridization. Clin. Infect. Dis. 25, 1471–1472 (1997).

  189. 189.

    Grumbach, I. M. et al. Coxsackievirus genome in myocardium of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Cardiology 89, 241–245 (1998).

  190. 190.

    Bowles, N. E., Ni, J., Marcus, F. & Towbin, J. A. The detection of cardiotropic viruses in the myocardium of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J. Am. Coll. Cardiol. 39, 892–895 (2002).

  191. 191.

    Calabrese, F. et al. No detection of enteroviral genome in the myocardium of patients with arrhythmogenic right ventricular cardiomyopathy. J. Clin. Pathol. 53, 382–387 (2000).

  192. 192.

    Belkaya, S. et al. Autosomal recessive cardiomyopathy presenting as acute myocarditis. J. Am. Coll. Cardiol. 69, 1653–1665 (2017).

  193. 193.

    Tanawuttiwat, T., Sager, S. J., Hare, J. M. & Myerburg, R. J. Myocarditis and ARVC/D: variants or mimics? Heart Rhythm 10, 1544–1548 (2013).

  194. 194.

    Li, D., Zhang, W., Liu, Y., Haneline, L. S. & Shou, W. Lack of plakoglobin in epidermis leads to keratoderma. J. Biol. Chem. 287, 10435–10443 (2012).

  195. 195.

    Asimaki, A., Kléber, A. G., MacRae, C. A. & Saffitz, J. E. Arrhythmogenic cardiomyopathy - new insights into disease mechanisms and drug discovery. Prog. Pediatr. Cardiol. 37, 3–7 (2014).

  196. 196.

    Kleber, A. G. & Saffitz, J. E. Role of the intercalated disc in cardiac propagation and arrhythmogenesis. Front. Physiol. 5, 404 (2014).

  197. 197.

    Severs, N. J. et al. Remodelling of gap junctions and connexin expression in heart disease. Biochim. Biophys. Acta 1662, 138–148 (2004).

  198. 198.

    Jongsma, H. J. & Wilders, R. Gap junctions in cardiovascular disease. Circ. Res. 86, 1193–1197 (2000).

  199. 199.

    Fidler, L. M. et al. Abnormal connexin43 in arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 mutations. J. Cell. Mol. Med. 13, 4219–4228 (2009).

  200. 200.

    Kaplan, S. R. et al. Remodeling of myocyte gap junctions in arrhythmogenic right ventricular cardiomyopathy due to a deletion in plakoglobin (Naxos disease). Heart Rhythm 1, 3–11 (2004).

  201. 201.

    Oxford, E. M. et al. Connexin43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells. Circ. Res. 101, 703–711 (2007).

  202. 202.

    Chen, X., Chen, L., Chen, Z., Chen, X. & Song, J. Remodelling of myocardial intercalated disc protein connexin 43 causes increased susceptibility to malignant arrhythmias in ARVC/D patients. Forens. Sci. Int. 275, 14–22 (2017).

  203. 203.

    Siragam, V. et al. TMEM43 mutation p. S358L alters intercalated disc protein expression and reduces conduction velocity in arrhythmogenic right ventricular cardiomyopathy. PLOS ONE 9, e109128 (2014).

  204. 204.

    Sato, P. Y. et al. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ. Res. 105, 523–526 (2009).

  205. 205.

    Lowe, J. S. et al. Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J. Cell Biol. 180, 173–186 (2008).

  206. 206.

    Sato, P. Y. et al. Interactions between ankyrin-G, plakophilin-2, and connexin43 at the cardiac intercalated disc. Circ. Res. 109, 193–201 (2011).

  207. 207.

    Patel, D. M., Dubash, A. D., Kreitzer, G. & Green, K. J. Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. J. Cell Biol. 206, 779–797 (2014).

  208. 208.

    Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128, 547–560 (2007).

  209. 209.

    Agullo-Pascual, E. et al. Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. Cardiovasc. Res. 100, 231–240 (2013).

  210. 210.

    Agullo-Pascual, E. et al. Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc. Res. 104, 371–381 (2014).

  211. 211.

    Lal, H., Ahmad, F., Woodgett, J. & Force, T. The GSK-3 family as therapeutic target for myocardial diseases. Circ. Res. 116, 138–149 (2015).

  212. 212.

    Song, Z., Ko, C. Y., Nivala, M., Weiss, J. N. & Qu, Z. Calcium-voltage coupling in the genesis of early and delayed afterdepolarizations in cardiac myocytes. Biophys. J. 108, 1908–1921 (2015).

  213. 213.

    El-Battrawy, I. et al. Electrical dysfunctions in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with an arrhythmogenic right ventricular cardiomyopathy. Europace 20, f46–f56 (2018).

  214. 214.

    Karmouch, J. et al. A distinct cellular basis for early cardiac arrhythmias, the cardinal manifestation of arrhythmogenic cardiomyopathy, and the skin phenotype of cardiocutaneous syndromes. Circ. Res. 121, 1346–1359 (2017).

  215. 215.

    Lal, H. et al. Cardiac fibroblast glycogen synthase kinase-3β regulates ventricular remodeling and dysfunction in ischemic heart. Circulation 130, 419–430 (2014).

  216. 216.

    Kapoor, M. et al. GSK-3beta in mouse fibroblasts controls wound healing and fibrosis through an endothelin-1-dependent mechanism. J. Clin. Invest. 118, 3279–3290 (2008).

  217. 217.

    Konstam, M. A. et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation 86, 431–438 (1992).

  218. 218.

    Greenberg, B. et al. Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction. Results of the SOLVD echocardiography substudy. Circulation 91, 2573–2581 (1995).

  219. 219.

    Schnee, J. M. & Hsueh, W. A. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc. Res. 46, 264–268 (2000).

  220. 220.

    Schorb, W. et al. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ. Res. 72, 1245–1254 (1993).

  221. 221.

    Campbell, S. E. & Katwa, L. C. Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J. Mol. Cell. Cardiol. 29, 1947–1958 (1997).

  222. 222.

    Gray, M. O., Long, C. S., Kalinyak, J. E., Li, H. T. & Karliner, J. S. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc. Res. 40, 352–363 (1998).

  223. 223.

    Morel, E. et al. Blockade of the renin-angiotensin-aldosterone system in patients with arrhythmogenic right ventricular dysplasia: A double-blind, multicenter, prospective, randomized, genotype-driven study (BRAVE study). Clin. Cardiol. 41, 300–306 (2018).

  224. 224.

    Cernecka, H. et al. Ramipril restores PPARβ/δ and PPARγ expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat. Eur. J. Pharmacol. 791, 244–253 (2016).

  225. 225.

    Djouadi, F. et al. A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc. Res. 84, 83–90 (2009).

  226. 226.

    Xu, Z. et al. Genotype-phenotype relationship in patients with arrhythmogenic right ventricular cardiomyopathy caused by desmosomal gene mutations: a systematic review and meta-analysis. Sci. Rep. 7, 41387 (2017).

  227. 227.

    Gehmlich, K. et al. Novel missense mutations in exon 15 of desmoglein-2: role of the intracellular cadherin segment in arrhythmogenic right ventricular cardiomyopathy? Heart Rhythm 7, 1446–1453 (2010).

  228. 228.

    Posch, M. G. et al. A missense variant in desmoglein-2 predisposes to dilated cardiomyopathy. Mol. Genet. Metab. 95, 74–80 (2008).

  229. 229.

    Al-Sabeq, B., Krahn, A. D., Conacher, S., Klein, G. J. & Laksman, Z. Arrhythmogenic right ventricular cardiomyopathy with recessive inheritance related to a new homozygous desmocollin-2 mutation. Can. J. Cardiol. 30, 696.e1–696.e3 (2014).

  230. 230.

    Lorenzon, A. et al. Homozygous desmocollin-2 mutations and arrhythmogenic cardiomyopathy. Am. J. Cardiol. 116, 1245–1251 (2015).

  231. 231.

    Karmouch, J., Protonotarios, A. & Syrris, P. Genetic basis of arrhythmogenic cardiomyopathy. Curr. Opin. Cardiol. 33, 276–281 (2018).

  232. 232.

    Brun, F. et al. Titin and desmosomal genes in the natural history of arrhythmogenic right ventricular cardiomyopathy. J. Med. Genet. 51, 669–676 (2014).

  233. 233.

    Cruz, F. M. et al. Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J. Am. Coll. Cardiol. 14, 1438–1450 (2015).

  234. 234.

    Kirchner, F. et al. Molecular insights into arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 missense mutations. Circ. Cardiovasc. Genet. 5, 400–411 (2012).

  235. 235.

    Cerrone, M. et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation 129, 1092–1103 (2014).

  236. 236.

    Ma, D. et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 34, 1122–1133 (2013).

  237. 237.

    Wen, J. Y. et al. Maturation-based model of arrhythmogenic right ventricular dysplasia using patient-specific induced pluripotent stem cells. Circ. J. 79, 1402–1408 (2015).

  238. 238.

    Matthes, S. A. et al. Plakophilin-2 and the migration, differentiation and transformation of cells derived from the epicardium of neonatal rat hearts. Cell Commun. Adhes. 18, 73–84 (2011).

  239. 239.

    Zhang, Q. et al. Silencing of desmoplakin decreases connexin43/Nav1.5 expression and sodium current in HL-1 cardiomyocytes. Mol. Med. Rep. 8, 780–786 (2013).

  240. 240.

    Beffagna, G. et al. Missense mutations in desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med. Genet. 8, 65 (2007).

  241. 241.

    Gehmlich, K. et al. A novel desmocollin-2 mutation reveals insights into the molecular link between desmosomes and gap junctions. Heart Rhythm 8, 711–718 (2011).

  242. 242.

    Gerull, B. et al. Homozygous founder mutation in desmocollin-2 (DSC2) causes arrhythmogenic cardiomyopathy in the Hutterite population. Circ. Cardiovasc. Genet. 6, 326–327 (2013).

  243. 243.

    Eshkind, L. et al. Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. Eur. J. Cell Biol. 81, 592–598 (2002).

  244. 244.

    Zhang, Z. et al. Normalization of Naxos plakoglobin levels restores cardiac function in mice. J. Clin. Invest. 125, 1708–1712 (2015).

  245. 245.

    Asimaki, A. et al. A novel dominant mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am. J. Hum. Genet. 81, 964–973 (2007).

  246. 246.

    Stroud, M. J. et al. Luma is not essential for murine cardiac development and function. Cardiovasc. Res. 114, 378–388 (2017).

  247. 247.

    Begay, R. L. et al. Filamin C truncation mutations are associated with arrhythmogenic dilated cardiomyopathy and changes in the cell-cell adhesion structures. JACC Clin. Electrophysiol. 4, 504–514 (2018).

Download references

Acknowledgements

M.A.T. is supported by the NIH (T32HL07572). D.J.A. is supported by the AHA (16CSA28750006). W.T.P. is supported by the NIH (UG3 HL141798) and the AHA (16CSA28750006) and by charitable donations from the Boston Children’s Heart Center. The Inherited Cardiac Arrhythmia Program (S.F.C., D.J.A. and W.T.P.) is generously supported by the Mannion and Roberts families.

Reviewer information

Nature Reviews Cardiology thanks M. Delmar, A. J. Marian and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

K.M.A., M.A.T., S.F.C. and W.T.P. researched data for the article, and K.M.A., M.A.T. and W.T.P. discussed its content. K.M.A., M.A.T., S.F.C., D.J.A. and W.T.P. wrote the manuscript, and K.M.A., M.A.T., S.P.S., J.E.S., D.J.A. and W.T.P. reviewed and edited it before submission.

Competing interests

The authors declare no competing interests.

Correspondence to William T. Pu.

Rights and permissions

Reprints and Permissions

About this article

Fig. 1: Cellular components implicated in ACM.
Fig. 2: Gross and histological features of ACM.
Fig. 3: Proposed molecular mechanisms contributing to the pathogenesis of ACM.