Review Article | Published:

Tricuspid valve disease: diagnosis, prognosis and management of a rapidly evolving field


Tricuspid valve disease, and particularly tricuspid regurgitation, is a highly prevalent condition with a complex pathophysiology and long-term adverse consequences. Although historically neglected, tricuspid valve disease has gained increasing recognition, with important advances in the assessment and management of this disorder over the past 2 decades. Surgical treatment remains the standard of care, but it continues to have one of the the highest death rates among all cardiac valve-related procedures, and a broad range of patients still do not receive effective therapy for tricuspid valve disease in contemporary clinical practice. Therefore, several alternative, less-invasive technologies for treating patients with severe, native tricuspid valve disease at high surgical risk have been developed in the past decade, with promising early results. This Review summarizes key findings and highlights the latest developments in the diagnosis and management framework that are transforming clinical practice in the complex field of tricuspid valve disease.

Key points

  • Tricuspid regurgitation is common in patients with chronic heart failure but is vastly undertreated, and its incidence is increasing, particularly among older patients with transtricuspid leads, right ventricular dysfunction or previous left-sided valve surgery.

  • Isolated tricuspid valve surgery remains rare and is associated with high in-hospital mortality, particularly in patients with previous left-sided valve surgery or initial tricuspid valve repair.

  • Comprehensive, multimodality imaging with novel quantification methods for severity assessment might improve the timely selection of those patients with meaningful clinical benefit after tricuspid valve interventions.

  • Concomitant surgical repair of tricuspid annular dilatation at the time of left-sided valve surgery is likely to become the standard of practice.

  • Three ongoing clinical trials will provide definite results on the benefit of prophylactic tricuspid valve repair during mitral valve surgery.

  • Early feasibility and safety data of emerging transcatheter therapies for tricuspid valve repair and replacement are a landmark step forward in tricuspid valve disease management; long-term durability and clinical outcomes need to be addressed in future trials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Stuge, O. & Liddicoat, J. Emerging opportunities for cardiac surgeons within structural heart disease. J. Thorac. Cardiovasc. Surg. 132, 1258–1261 (2006).

  2. 2.

    Zack, C. J. et al. National trends and outcomes in isolated tricuspid valve surgery. J. Am. Coll. Cardiol. 70, 2953–2960 (2017).

  3. 3.

    Alqahtani, F. et al. Contemporary trends in the use and outcomes of surgical treatment of tricuspid regurgitation. J. Am. Heart Assoc. 6, e007597 (2017).

  4. 4.

    Dreyfus, J. et al. Timing of referral of patients with severe isolated tricuspid valve regurgitation to surgeons (from a French Nationwide Database). Am. J. Cardiol. 122, 323–326 (2018).

  5. 5.

    Dhoble, A. et al. National 10-year trends and outcomes of isolated and concomitant tricuspid valve surgery. J. Cardiovasc. Surg. (Torino) 60, 119–127 (2019).

  6. 6.

    Nath, J., Foster, E. & Heidenreich, P. A. Impact of tricuspid regurgitation on long-term survival. J. Am. Coll. Cardiol. 43, 405–409 (2004).

  7. 7.

    Topilsky, Y. et al. Clinical outcome of isolated tricuspid regurgitation. JACC Cardiovasc. Imaging 7, 1185–1194 (2014).

  8. 8.

    Rodes-Cabau, J., Taramasso, M. & O’Gara, P. T. Diagnosis and treatment of tricuspid valve disease: current and future perspectives. Lancet 388, 2431–2442 (2016).

  9. 9.

    Asmarats, L., Puri, R., Latib, A., Navia, J. L. & Rodes-Cabau, J. Transcatheter tricuspid valve interventions: landscape, challenges, and future directions. J. Am. Coll. Cardiol. 71, 2935–2956 (2018).

  10. 10.

    Antunes, M. J. et al. Management of tricuspid valve regurgitation: position statement of the European Society of Cardiology Working Groups of Cardiovascular Surgery and Valvular Heart Disease. Eur. J. Cardiothorac. Surg. 52, 1022–1030 (2017).

  11. 11.

    Chang, J. D., Manning, W. J., Ebrille, E. & Zimetbaum, P. J. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. J. Am. Coll. Cardiol. 69, 2331–2341 (2017).

  12. 12.

    Dreyfus, G. D., Martin, R. P., Chan, K. M., Dulguerov, F. & Alexandrescu, C. Functional tricuspid regurgitation: a need to revise our understanding. J. Am. Coll. Cardiol. 65, 2331–2336 (2015).

  13. 13.

    Dreyfus, G. D., Corbi, P. J., Chan, K. M. & Bahrami, T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann. Thorac. Surg. 79, 127–132 (2005).

  14. 14.

    Taramasso, M. et al. The growing clinical importance of secondary tricuspid regurgitation. J. Am. Coll. Cardiol. 59, 703–710 (2012).

  15. 15.

    Topilsky, Y. et al. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. Circ. Cardiovasc. Imaging 5, 314–323 (2012).

  16. 16.

    Utsunomiya, H. et al. Functional tricuspid regurgitation caused by chronic atrial fibrillation: a real-time 3-dimensional transesophageal echocardiography study. Circ. Cardiovasc. Imaging 10, e004897 (2017).

  17. 17.

    Spinner, E. M. et al. Correlates of tricuspid regurgitation as determined by 3D echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation, and papillary muscle displacement. Circ. Cardiovasc. Imaging 5, 43–50 (2012).

  18. 18.

    Rivero Carvallo, J. M. Signo para el diagnostico de las insuficiencias tricuspideas [Spanish]. Arch. Inst. Cardiol. Mex. 16, 531–540 (1946).

  19. 19.

    Topilsky, Y. et al. Pathophysiology of tricuspid regurgitation: quantitative Doppler echocardiographic assessment of respiratory dependence. Circulation 122, 1505–1513 (2010).

  20. 20.

    Lau, G. T., Tan, H. C. & Kritharides, L. Type of liver dysfunction in heart failure and its relation to the severity of tricuspid regurgitation. Am. J. Cardiol. 90, 1405–1409 (2002).

  21. 21.

    Agricola, E. et al. Effects of functional tricuspid regurgitation on renal function and long-term prognosis in patients with heart failure. J. Cardiovasc. Med. (Hagerstown) 18, 60–68 (2017).

  22. 22.

    Ailawadi, G. et al. Model for end-stage liver disease predicts mortality for tricuspid valve surgery. Ann. Thorac. Surg. 87, 1460–1468 (2009).

  23. 23.

    Tsuda, K. et al. Simplified model for end-stage liver disease score predicts mortality for tricuspid valve surgery. Interact. Cardiovasc. Thorac. Surg. 16, 630–635 (2013).

  24. 24.

    Grote Beverborg, N., van Veldhuisen, D. J. & van der Meer, P. Anemia in heart failure: still relevant? JACC Heart Fail. 6, 201–208 (2018).

  25. 25.

    Kim, Y. J. et al. Determinants of surgical outcome in patients with isolated tricuspid regurgitation. Circulation 120, 1672–1678 (2009).

  26. 26.

    Yoon, C. H. et al. B-type natriuretic peptide in isolated severe tricuspid regurgitation: determinants and impact on outcome. J. Cardiovasc. Ultrasound 18, 139–145 (2010).

  27. 27.

    Neuhold, S. et al. Impact of tricuspid regurgitation on survival in patients with chronic heart failure: unexpected findings of a long-term observational study. Eur. Heart J. 34, 844–852 (2013).

  28. 28.

    Roques, F. et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur. J. Cardiothorac. Surg. 15, 816–822 (1999).

  29. 29.

    Nashef, S. A. et al. EuroSCORE II. Eur. J. Cardiothorac. Surg. 41, 734–745 (2012).

  30. 30.

    O’Brien, S. M. et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 2—isolated valve surgery. Ann. Thorac. Surg. 88, S23–42 (2009).

  31. 31.

    LaPar, D. J. et al. Development of a risk prediction model and clinical risk score for isolated tricuspid valve surgery. Ann. Thorac. Surg. 106, 129–136 (2018).

  32. 32.

    Hahn, R. T. State-of-the-art review of echocardiographic imaging in the evaluation and treatment of functional tricuspid regurgitation. Circ. Cardiovasc. Imaging 9, e005332 (2016).

  33. 33.

    Zoghbi, W. A. et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 30, 303–371 (2017).

  34. 34.

    Lancellotti, P. et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 14, 611–644 (2013).

  35. 35.

    Grant, A. D., Thavendiranathan, P., Rodriguez, L. L., Kwon, D. & Marwick, T. H. Development of a consensus algorithm to improve interobserver agreement and accuracy in the determination of tricuspid regurgitation severity. J. Am. Soc. Echocardiogr. 27, 277–284 (2014).

  36. 36.

    Taramasso, M. et al. The International Multicenter TriValve Registry: which patients are undergoing transcatheter tricuspid repair? JACC Cardiovasc. Interv. 10, 1982–1990 (2017).

  37. 37.

    Hahn, R. T. & Zamorano, J. L. The need for a new tricuspid regurgitation grading scheme. Eur. Heart J. Cardiovasc. Imaging 18, 1342–1343 (2017).

  38. 38.

    Stankovic, I. et al. Incremental value of the en face view of the tricuspid valve by two-dimensional and three-dimensional echocardiography for accurate identification of tricuspid valve leaflets. J. Am. Soc. Echocardiogr. 27, 376–384 (2014).

  39. 39.

    de Agustin, J. A. et al. Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. J. Am. Soc. Echocardiogr. 26, 1063–1072 (2013).

  40. 40.

    Dreyfus, J. et al. Comparison of 2-dimensional, 3-dimensional, and surgical measurements of the tricuspid annulus size: clinical implications. Circ. Cardiovasc. Imaging 8, e003241 (2015).

  41. 41.

    Kammerlander, A. A. et al. Right ventricular dysfunction, but not tricuspid regurgitation, is associated with outcome late after left heart valve procedure. J. Am. Coll. Cardiol. 64, 2633–2642 (2014).

  42. 42.

    Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1–39 (2015).

  43. 43.

    Topilsky, Y. et al. Preoperative factors associated with adverse outcome after tricuspid valve replacement. Circulation 123, 1929–1939 (2011).

  44. 44.

    Hsiao, S. H. et al. Severe tricuspid regurgitation shows significant impact in the relationship among peak systolic tricuspid annular velocity, tricuspid annular plane systolic excursion, and right ventricular ejection fraction. J. Am. Soc. Echocardiogr. 19, 902–910 (2006).

  45. 45.

    Greiner, S. et al. Reliability of noninvasive assessment of systolic pulmonary artery pressure by Doppler echocardiography compared to right heart catheterization: analysis in a large patient population. J. Am. Heart Assoc. 3, e001103 (2014).

  46. 46.

    Geske, J. B., Scantlebury, D. C., Thomas, J. D. & Nishimura, R. A. Hemodynamic evaluation of severe tricuspid regurgitation. J. Am. Coll. Cardiol. 62, e441 (2013).

  47. 47.

    Rao, S., Tate, D. A. & Stouffer, G. A. Hemodynamic findings in severe tricuspid regurgitation. Catheter. Cardiovasc. Interv. 81, 162–169 (2013).

  48. 48.

    Kwon, D. A. et al. Prediction of outcome in patients undergoing surgery for severe tricuspid regurgitation following mitral valve surgery and role of tricuspid annular systolic velocity. Am. J. Cardiol. 98, 659–661 (2006).

  49. 49.

    Lee, J. W. et al. Long-term prognosis of isolated significant tricuspid regurgitation. Circ. J. 74, 375–380 (2010).

  50. 50.

    Fukunaga, N., Okada, Y., Konishi, Y., Murashita, T. & Koyama, T. Late outcome of tricuspid annuloplasty using a flexible band/ring for functional tricuspid regurgitation. Circ. J. 79, 1299–1306 (2015).

  51. 51.

    Fukuda, S. et al. Determinants of recurrent or residual functional tricuspid regurgitation after tricuspid annuloplasty. Circulation 114, I582–I587 (2006).

  52. 52.

    Naoum, C., Blanke, P., Cavalcante, J. L. & Leipsic, J. Cardiac computed tomography and magnetic resonance imaging in the evaluation of mitral and tricuspid valve disease: implications for transcatheter interventions. Circ. Cardiovasc. Imaging 10, e005331 (2017).

  53. 53.

    Prihadi, E. A. et al. Imaging needs in novel transcatheter tricuspid valve interventions. JACC Cardiovasc. Imaging 11, 736–754 (2018).

  54. 54.

    Hung, J. et al. Usefulness of echocardiographic determined tricuspid regurgitation in predicting event-free survival in severe heart failure secondary to idiopathic-dilated cardiomyopathy or to ischemic cardiomyopathy. Am. J. Cardiol. 82, 1301–1303 (1998).

  55. 55.

    Koelling, T. M., Aaronson, K. D., Cody, R. J., Bach, D. S. & Armstrong, W. F. Prognostic significance of mitral regurgitation and tricuspid regurgitation in patients with left ventricular systolic dysfunction. Am. Heart J. 144, 524–529 (2002).

  56. 56.

    Grupper, A. et al. Effects of tricuspid valve regurgitation on outcome in patients with cardiac resynchronization therapy. Am. J. Cardiol. 115, 783–789 (2015).

  57. 57.

    Bar, N. et al. Clinical outcome of isolated tricuspid regurgitation in patients with preserved left ventricular ejection fraction and pulmonary hypertension. J. Am. Soc. Echocardiogr. 31, 34–41 (2018).

  58. 58.

    Dahou, A. et al. Tricuspid regurgitation is associated with increased risk of mortality in patients with low-flow low-gradient aortic stenosis and reduced ejection fraction: results of the multicenter TOPAS study (True or Pseudo-Severe Aortic Stenosis). JACC Cardiovasc. Interv. 8, 588–596 (2015).

  59. 59.

    Van de Veire, N. R. et al. Tricuspid annuloplasty prevents right ventricular dilatation and progression of tricuspid regurgitation in patients with tricuspid annular dilatation undergoing mitral valve repair. J. Thorac. Cardiovasc. Surg. 141, 1431–1439 (2011).

  60. 60.

    Goldstone, A. B. et al. Natural history of coexistent tricuspid regurgitation in patients with degenerative mitral valve disease: implications for future guidelines. J. Thorac. Cardiovasc. Surg. 148, 2802–2809 (2014).

  61. 61.

    Dumont, C. et al. Pre- and postoperative tricuspid regurgitation in patients with severe symptomatic aortic stenosis: importance of pre-operative tricuspid annulus diameter. Eur. Heart J. Cardiovasc. Imaging 19, 319–328 (2018).

  62. 62.

    Ohno, Y. et al. Association of tricuspid regurgitation with clinical and echocardiographic outcomes after percutaneous mitral valve repair with the MitraClip System: 30-day and 12-month follow-up from the GRASP Registry. Eur. Heart J. Cardiovasc. Imaging 15, 1246–1255 (2014).

  63. 63.

    Schwartz, L. A. et al. Impact of right ventricular dysfunction and tricuspid regurgitation on outcomes in patients undergoing transcatheter aortic valve replacement. J. Am. Soc. Echocardiogr. 30, 36–46 (2017).

  64. 64.

    McCarthy, F. H. et al. Association of tricuspid regurgitation with transcatheter aortic valve replacement outcomes: a report from the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. Ann. Thorac. Surg. 105, 1121–1128 (2018).

  65. 65.

    Amat-Santos, I. J. et al. Tricuspid but not mitral regurgitation determines mortality after TAVI in patients with nonsevere mitral regurgitation. Rev. Esp. Cardiol. (Engl. Ed) 71, 357–364 (2018).

  66. 66.

    Pavasini, R. et al. Role of the tricuspid regurgitation after mitraclip and transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 19, 654–659 (2018).

  67. 67.

    Prihadi, E. A. et al. Development of significant tricuspid regurgitation over time and prognostic implications: new insights into natural history. Eur. Heart J. 39, 3574–3581 (2018).

  68. 68.

    Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 18, 891–975 (2016).

  69. 69.

    Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, e57–e185 (2014).

  70. 70.

    Cevasco, M. & Shekar, P. S. Surgical management of tricuspid stenosis. Ann. Cardiothorac. Surg. 6, 275–282 (2017).

  71. 71.

    Bruce, C. J. & Connolly, H. M. Right-sided valve disease deserves a little more respect. Circulation 119, 2726–2734 (2009).

  72. 72.

    Wooley, C. F., Fontana, M. E., Kilman, J. W. & Ryan, J. M. Tricuspid stenosis. Atrial systolic murmur, tricuspid opening snap, and right atrial pressure pulse. Am. J. Med. 78, 375–384 (1985).

  73. 73.

    Baumgartner, H. et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 22, 1–23 (2009).

  74. 74.

    Yeter, E., Ozlem, K., Kilic, H., Ramazan, A. & Acikel, S. Tricuspid balloon valvuloplasty to treat tricuspid stenosis. J. Heart Valve Dis. 19, 159–160 (2010).

  75. 75.

    Baumgartner, H. et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 38, 2739–2791 (2017).

  76. 76.

    McElhinney, D. B. et al. Mid-term valve-related outcomes after transcatheter tricuspid valve-in-valve or valve-in-ring replacement. J. Am. Coll. Cardiol. 73, 148–157 (2019).

  77. 77.

    Connolly, H. M. et al. Early and late outcomes of surgical treatment in carcinoid heart disease. J. Am. Coll. Cardiol. 66, 2189–2196 (2015).

  78. 78.

    Seeburger, J. et al. Minimally invasive isolated tricuspid valve surgery. J. Heart Valve Dis. 19, 189–193 (2010).

  79. 79.

    Bevan, P. J., Haydock, D. A. & Kang, N. Long-term survival after isolated tricuspid valve replacement. Heart Lung Circ. 23, 697–702 (2014).

  80. 80.

    De Meester, P., Van De Bruaene, A., Voigt, J. U., Herijgers, P. & Budts, W. Outcome and determinants of prognosis in patients undergoing isolated tricuspid valve surgery: retrospective single center analysis. Int. J. Cardiol. 175, 333–339 (2014).

  81. 81.

    Urbandt, P., Santana, O., Mihos, C. G., Pineda, A. M. & Joseph, L. Minimally invasive approach for isolated tricuspid valve surgery. J. Heart Valve Dis. 23, 783–787 (2014).

  82. 82.

    Arbulu, A., Holmes, R. J. & Asfaw, I. Tricuspid valvulectomy without replacement. Twenty years’ experience. J. Thorac. Cardiovasc. Surg. 102, 917–922 (1991).

  83. 83.

    Miro, J. M., Moreno, A. & Mestres, C. A. Infective endocarditis in intravenous drug abusers. Curr. Infect. Dis. Rep. 5, 307–316 (2003).

  84. 84.

    Chikwe, J., Itagaki, S., Anyanwu, A. & Adams, D. H. Impact of concomitant tricuspid annuloplasty on tricuspid regurgitation, right ventricular function, and pulmonary artery hypertension after repair of mitral valve prolapse. J. Am. Coll. Cardiol. 65, 1931–1938 (2015).

  85. 85.

    Beckmann, A. et al. German heart surgery report 2016: the annual updated registry of the German Society for Thoracic and Cardiovascular Surgery. Thorac. Cardiovasc. Surg. 65, 505–518 (2017).

  86. 86.

    Kilic, A., Saha-Chaudhuri, P., Rankin, J. S. & Conte, J. V. Trends and outcomes of tricuspid valve surgery in North America: an analysis of more than 50,000 patients from the Society of Thoracic Surgeons database. Ann. Thorac. Surg. 96, 1546–1552 (2013).

  87. 87.

    US National Library of Medicine. (2019).

  88. 88.

    US National Library of Medicine. (2018).

  89. 89.

    US National Library of Medicine. (2017).

  90. 90.

    Buzzatti, N. et al. Long-term outcomes of tricuspid valve replacement after previous left-side heart surgery. Eur. J. Cardiothorac. Surg. 46, 713–719 (2014).

  91. 91.

    Taramasso, M., Pozzoli, A., Buzzatti, N. & Alfieri, O. Assessing operative risk and benefit in elderly patients with heart valve disease. Eur. Heart J. 34, 2788–2791 (2013).

  92. 92.

    Lee, R. et al. Fifteen-year outcome trends for valve surgery in North America. Ann. Thorac. Surg. 91, 677–684 (2011).

  93. 93.

    Healthcare Cost and Utilization Project (HCUP). Overview of the Nationwide Inpatient Sample (NIS). H.CUP (2018).

  94. 94.

    World Health Organization. ICD-11 (2019).

  95. 95.

    US National Library of Medicine. (2017).

  96. 96.

    McCarthy, P. M. et al. Tricuspid valve repair: durability and risk factors for failure. J. Thorac. Cardiovasc. Surg. 127, 674–685 (2004).

  97. 97.

    Navia, J. L. et al. Surgical management of secondary tricuspid valve regurgitation: annulus, commissure, or leaflet procedure? J. Thorac. Cardiovasc. Surg. 139, 1473–1482 (2010).

  98. 98.

    Parolari, A., Barili, F., Pilozzi, A. & Pacini, D. Ring or suture annuloplasty for tricuspid regurgitation? A meta-analysis review. Ann. Thorac. Surg. 98, 2255–2263 (2014).

  99. 99.

    Pagnesi, M. et al. Tricuspid annuloplasty versus a conservative approach in patients with functional tricuspid regurgitation undergoing left-sided heart valve surgery: a study-level meta-analysis. Int. J. Cardiol. 240, 138–144 (2017).

  100. 100.

    Dreyfus, G. D., Raja, S. G. & John Chan, K. M. Tricuspid leaflet augmentation to address severe tethering in functional tricuspid regurgitation. Eur. J. Cardiothorac. Surg. 34, 908–910 (2008).

  101. 101.

    Lapenna, E. et al. The clover technique for the treatment of complex tricuspid valve insufficiency: midterm clinical and echocardiographic results in 66 patients. Eur. J. Cardiothorac. Surg. 37, 1297–1303 (2010).

  102. 102.

    Hetzer, R., Javier, M. & Delmo Walter, E. M. The double-orifice valve technique to treat tricuspid valve incompetence. J. Heart Valve Dis. 25, 66–71 (2016).

  103. 103.

    Chang, B. C. et al. Long-term clinical results of tricuspid valve replacement. Ann. Thorac. Surg. 81, 1317–1323 (2006).

  104. 104.

    Songur, C. M., Simsek, E., Ozen, A., Kocabeyoglu, S. & Donmez, T. A. Long term results comparing mechanical and biological prostheses in the tricuspid valve position: which valve types are better—mechanical or biological prostheses? Heart Lung Circ. 23, 1175–1178 (2014).

  105. 105.

    Kaplan, M., Kut, M. S., Demirtas, M. M., Cimen, S. & Ozler, A. Prosthetic replacement of tricuspid valve: bioprosthetic or mechanical. Ann. Thorac. Surg. 73, 467–473 (2002).

  106. 106.

    Cho, W. C. et al. Mechanical valve replacement versus bioprosthetic valve replacement in the tricuspid valve position. J. Card. Surg. 28, 212–217 (2013).

  107. 107.

    Filsoufi, F. et al. Long-term outcomes of tricuspid valve replacement in the current era. Ann. Thorac. Surg. 80, 845–850 (2005).

  108. 108.

    Nickenig, G. et al. Transcatheter treatment of severe tricuspid regurgitation with the edge-to-edge MitraClip technique. Circulation 135, 1802–1814 (2017).

  109. 109.

    Besler, C. et al. Predictors of procedural and clinical outcomes in patients with symptomatic tricuspid regurgitation undergoing transcatheter edge-to-edge repair. JACC Cardiovasc. Interv. 11, 1119–1128 (2018).

  110. 110.

    Braun, D. et al. One-year results of transcatheter treatment of severe tricuspid regurgitation using the edge-to-edge repair technique. EuroIntervention 14, e413–e415 (2018).

  111. 111.

    US National Library of Medicine. (2018).

  112. 112.

    Campelo-Parada, F. et al. First-in-man experience of a novel transcatheter repair system for treating severe tricuspid regurgitation. J. Am. Coll. Cardiol. 66, 2475–2483 (2015).

  113. 113.

    Perlman, G. et al. Transcatheter tricuspid valve repair with a new transcatheter coaptation system for the treatment of severe tricuspid regurgitation: 1-year clinical and echocardiographic results. JACC Cardiovasc. Interv. 10, 1994–2003 (2017).

  114. 114.

    US National Library of Medicine. (2019).

  115. 115.

    Kodali, S. The FORMA early feasibility study: 30-day outcomes of transcatheter tricuspid valve therapy in patients with severe secondary tricuspid regurgitation. Presented at Transcatheter Cardiovascular Therapeutics (TCT), 2017.

  116. 116.

    Asmarats, L., Philippon, F., Bedard, E. & Rodes-Cabau, J. FORMA tricuspid repair system: device enhancements and initial experience. EuroIntervention 14, 1656–1657 (2019).

  117. 117.

    US National Library of Medicine. (2017).

  118. 118.

    Praz, F. et al. Compassionate use of the PASCAL transcatheter mitral valve repair system for patients with severe mitral regurgitation: a multicentre, prospective, observational, first-in-man study. Lancet 390, 773–780 (2017).

  119. 119.

    Fam, N. P., Ho, E. C., Zahrani, M., Samargandy, S. & Connelly, K. A. Transcatheter tricuspid valve repair with the PASCAL system. JACC Cardiovasc. Interv. 11, 407–408 (2018).

  120. 120.

    Kay, J. H., Maselli-Campagna, G. & Tsuji, K. K. Surgical treatment of tricuspid insufficiency. Ann. Surg. 162, 53–58 (1965).

  121. 121.

    Schofer, J. et al. First-in-human transcatheter tricuspid valve repair in a patient with severely regurgitant tricuspid valve. J. Am. Coll. Cardiol. 65, 1190–1195 (2015).

  122. 122.

    US National Library of Medicine. (2017).

  123. 123.

    Hahn, R. T. et al. Early feasibility study of a transcatheter tricuspid valve annuloplasty: SCOUT trial 30-day results. J. Am. Coll. Cardiol. 69, 1795–1806 (2017).

  124. 124.

    Hahn, R. T. SCOUT I 12-month data. Presented at Transcatheter Cardiovascular Therapeutics (TCT), 2017.

  125. 125.

    US National Library of Medicine. (2018).

  126. 126.

    Latib, A. et al. First-in-man implantation of a tricuspid annular remodeling device for functional tricuspid regurgitation. JACC Cardiovasc. Interv. 8, e211–e214 (2015).

  127. 127.

    US National Library of Medicine. (2018).

  128. 128.

    Denti, P. 4Tech – clinical outcomes and current challenges. Presented at PCR London Valves, 2017.

  129. 129.

    US National Library of Medicine. (2018).

  130. 130.

    Khan, J. M. et al. Transcatheter pledget-assisted suture tricuspid annuloplasty (PASTA) to create a double-orifice valve. Catheter. Cardiovasc. Interv. 92, E175–E184 (2018).

  131. 131.

    Greenbaum, A. B. Transcatheter tricuspid valve repair: available techniques and patient candidates criteria. Presented at the Cardiovascular Research Technologies (CRT) Annual Symposium, 2018.

  132. 132.

    US National Library of Medicine. (2016).

  133. 133.

    Maisano, F. Transcatheter tricuspid valve repair: up to six-month results from the muticentre trial. Presented at EuroPCR, 2018.

  134. 134.

    US National Library of Medicine. (2019).

  135. 135.

    Rogers, J. H. et al. Transcatheter annuloplasty for mitral regurgitation with an adjustable semi-rigid complete ring: initial experience with the Millipede IRIS device. Structural Heart 2, 45–50 (2018).

  136. 136.

    Rogers, T. et al. Transatrial intrapericardial tricuspid annuloplasty. JACC Cardiovasc. Interv. 8, 483–491 (2015).

  137. 137.

    Lauten, A. et al. Heterotopic transcatheter tricuspid valve implantation: first-in-man application of a novel approach to tricuspid regurgitation. Eur. Heart J. 32, 1207–1213 (2011).

  138. 138.

    Laule, M. et al. Percutaneous transfemoral management of severe secondary tricuspid regurgitation with Edwards Sapien XT bioprosthesis: first-in-man experience. J. Am. Coll. Cardiol. 61, 1929–1931 (2013).

  139. 139.

    Figulla, H. R., Kiss, K. & Lauten, A. Transcatheter interventions for tricuspid regurgitation - heterotopic technology: TricValve. EuroIntervention 12, Y116–Y118 (2016).

  140. 140.

    Toggweiler, S. et al. First-in-man implantation of the Tricento(R) transcatheter heart valve for the treatment of severe tricuspid regurgitation. EuroIntervention 14, 758–761 (2018).

  141. 141.

    Lauten, A. et al. Interventional treatment of severe tricuspid regurgitation: early clinical experience in a multicenter, observational, first-in-man study. Circ. Cardiovasc. Interv. 11, e006061 (2018).

  142. 142.

    US National Library of Medicine. (2018).

  143. 143.

    US National Library of Medicine. (2018).

  144. 144.

    Boudjemline, Y. et al. Steps toward the percutaneous replacement of atrioventricular valves an experimental study. J. Am. Coll. Cardiol. 46, 360–365 (2005).

  145. 145.

    Bai, Y. et al. An integrated pericardial valved stent special for percutaneous tricuspid implantation: an animal feasibility study. J. Surg. Res. 160, 215–221 (2010).

  146. 146.

    Kefer, J., Sluysmans, T. & Vanoverschelde, J. L. Transcatheter sapien valve implantation in a native tricuspid valve after failed surgical repair. Catheter. Cardiovasc. Interv. 83, 841–845 (2014).

  147. 147.

    Navia, J. L. et al. First-in-human implantations of the NaviGate bioprosthesis in a severely dilated tricuspid annulus and in a failed tricuspid annuloplasty ring. Circ. Cardiovasc. Interv. 10, e005840 (2017).

  148. 148.

    Asmarats, L. et al. Transcatheter tricuspid valve replacement for treating severe tricuspid regurgitation: initial experience with the NaviGate bioprosthesis. Can. J. Cardiol. 34, 1370.e5–1370.e7 (2018).

  149. 149.

    Hahn, R. T. NaviGate transcatheter tricuspid valve replacement: early findings – technology and clinical updates. Presented at the Structural Heart Disease Summit, 2018.

  150. 150.

    US National Library of Medicine. (2018).

  151. 151.

    Taramasso, M. et al. Outcomes after current transcatheter tricuspid valve intervention: mid-term results from the International TriValve Registry. JACC Cardiovasc. Interv. 12, 155–165 (2018).

  152. 152.

    Rogers, J. H. & Bolling, S. F. The tricuspid valve: current perspective and evolving management of tricuspid regurgitation. Circulation 119, 2718–2725 (2009).

  153. 153.

    van Rosendael, P. J. et al. Computed tomography for planning transcatheter tricuspid valve therapy. Eur. Heart J. 38, 665–674 (2017).

  154. 154.

    Chikwe, J. Y. & Castillo, J. G. in Hurst’s the Heart (eds Fuster, V., Harrington, R. A., Narula, J. & Eapen, Z. J.) 14th edn Ch. 51 (McGraw-Hill, New York, 2017)

  155. 155.

    Fam, N. P., Ho, E. C., Ahmed, N. & Connelly, K. A. Transcatheter edge-to-edge repair of lead-associated tricuspid regurgitation. EuroIntervention 13, 1166–1167 (2017).

  156. 156.

    Ancona, F. et al. Multimodality imaging of the tricuspid valve with implication for percutaneous repair approaches. Heart 103, 1073–1081 (2017).

  157. 157.

    Schueler, R., Hammerstingl, C., Werner, N. & Nickenig, G. Interventional direct annuloplasty for functional tricuspid regurgitation. JACC Cardiovasc. Interv 10, 415–416 (2017).

Download references


L.A. has received support from a grant from the Fundación Alfonso Martin Escudero. J.R.-C. holds the Canadian Research Chair ‘Fondation Famille Jacques Larivière’ for the Development of Structural Heart Disease Interventions.

Author information

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Competing interests

M.T. is a consultant for 4TECH, Abbott Vascular, Boston Scientific and CoreMedic and has received speaker honoraria from Edwards Lifesciences. J.R.-C. has received institutional research grants from Edwards Lifesciences. L.A. declares no competing interests.

Correspondence to Josep Rodés-Cabau.

Rights and permissions

Reprints and Permissions

About this article

Fig. 1: Surgical tricuspid valve annuloplasty using an incomplete semi-rigid prosthetic ring.
Fig. 2: Transcatheter tricuspid valve repair therapies: coaptation devices.
Fig. 3: Transcatheter tricuspid valve repair therapies: annuloplasty devices.
Fig. 4: Transcatheter tricuspid valve repair therapies: heterotopic CAVI.
Fig. 5: Transcatheter tricuspid valve replacement.