Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circular RNAs open a new chapter in cardiovascular biology

Abstract

Circular RNAs (circRNAs) are emerging as a new class of non-coding RNA molecules. This unusual class of RNA species is generated by a back-splicing event of one or two exons, resulting in a covalently closed circRNA molecule. Owing to their circular form, circRNAs are protected from degradation by exonucleases and have greater stability than linear RNA. Advances in computational analysis of RNA sequencing have revealed that thousands of different circRNAs are expressed in a wide range of mammalian tissues, including the cardiovascular system. Moreover, numerous circRNAs are expressed in a disease-specific manner. A great deal of progress has been made in understanding the biogenesis and function of these circRNAs. In this Review, we discuss the current understanding of circRNA biogenesis and function, with a particular emphasis on the cardiovascular system.

Key points

  • Circular RNAs (circRNAs) are a large class of non-coding RNA molecules that form a covalently closed loop (unlike linear RNAs).

  • circRNAs are produced from precursor mRNA back-splicing, a process catalysed by the spliceosome machinery.

  • High-throughput sequencing has identified thousands of circRNAs in the human body, a great number of which are expressed in a tissue-specific or disease-specific manner.

  • Although the biological functions of most circRNAs remain unknown, specific circRNAs have been shown to act as microRNA sponges, to interact with RNA-binding proteins, to regulate transcription or to be translated into proteins.

  • Preliminary studies have provided evidence that individual circRNAs have critical regulatory functions in the cardiovascular system.

  • Owing to their high stability and abundance in bodily fluids, circRNAs have potential as useful biomarkers for various diseases, including cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation showing the three mechanisms for circular RNA biogenesis.
Fig. 2: Computational strategies for circular RNA detection.
Fig. 3: Experimental approaches to detect and manipulate circular RNAs.
Fig. 4: Mechanisms of circular RNA functions.

Similar content being viewed by others

References

  1. Hsu, M.-T. & Coca-Prados, M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339–340 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J. & Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA 73, 3852–3856 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cocquerelle, C., Mascrez, B., Hétuin, D. & Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 7, 155–160 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L. & Brown, P. O. Cell-type specific features of circular RNA expression. PLOS Genet. 9, e1003777 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, P. L. et al. Circular RNA is expressed across the eukaryotic tree of life. PLOS ONE 9, e90859 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Jeck, W. R. & Sharpless, N. E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 32, 453–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, X. et al. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep. 6, 34985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Aufiero, S. et al. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA 24, 815–827 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng, Q. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple mi-RNAs. Nat. Commun. 7, 11215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLOS ONE 7, e30733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Bachmayr-Heyda, A. et al. Correlation of circular RNA abundance with proliferation—exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 5, 8057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maass, P. G. et al. A map of human circular RNAs in clinically relevant tissues. J. Mol. Med. 95, 1179–1189 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Guo, J. U., Agarwal, V., Guo, H. & Bartel, D. P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Haque, S. & Harries, L. W. Circular RNAs (circRNAs) in health and disease. Genes 8, E353 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Szabo, L. et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 16, 126 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. You, X. et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 18, 603–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Westholm, J. O. et al. Genomewide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966–1980 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siede, D. et al. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J. Mol. Cell. Cardiol. 109, 48–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Du, W. W. et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur. Heart J. 38, 1402–1412 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Starke, S. et al. Exon circularization requires canonical splice signals. Cell Rep. 10, 103–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Dubin, R. A., Kazmi, M. A. & Ostrer, H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene 167, 245–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Ivanov, A. et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, X.-O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233–2247 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Kramer, M. C. et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29, 2168–2182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, X. et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol. Cell 67, 214–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Zaphiropoulos, P. G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc. Natl Acad. Sci. USA 93, 6536–6541 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khan, M. A. F. et al. RBM20 regulates circular RNA production from the titin gene. Circ. Res. 119, 996–1003 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Zeng, X., Lin, W., Guo, M. & Zou, Q. A comprehensive overview and evaluation of circular RNA detection tools. PLOS Comput. Biol. 13, e1005420 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li, X., Chu, C., Pei, J., Mandoiu, I. & Wu, Y. CircMarker: a fast and accurate algorithm for circular RNA detection. BMC Genomics 19, 572 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gao, Y. & Zhao, F. Computational strategies for exploring circular RNAs. Trends Genet. 34, 389–400 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Hansen, T. B., Venø, M. T., Damgaard, C. K. & Kjems, J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 44, e58 (2016).

    Article  PubMed  Google Scholar 

  42. Szabo, L. & Salzman, J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat. Rev. Genet. 17, 679–692 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suzuki, H. et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34, e63 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. & Chen, L.-L. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 12, R16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boeckel, J.-N. et al. Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ. Res. 117, 884–890 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, K. et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J. 37, 2602–2611 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Holdt, L. M. et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 7, 12429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kamens, J. The Addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Res. 43, D1152–D1157 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347–359 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abdelmohsen, K. et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361–369 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Congrains, A., Kamide, K., Ohishi, M. & Rakugi, H. ANRIL: molecular mechanisms and implications in human health. Int. J. Mol. Sci. 14, 1278–1292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    Article  PubMed  CAS  Google Scholar 

  56. Liang, D. et al. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol. Cell 68, 940–954 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, C. Y. & Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415–417 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Perriman, R. & Ares, M. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. RNA 4, 1047–1054 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, Y. & Wang, Z. Efficient backsplicing produces translatable circular mRNAs. RNA 21, 172–179 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Pamudurti, N. R. et al. Translation of circRNAs. Mol. Cell 66, 9–21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jakobi, T., Czaja-Hasse, L. F., Reinhardt, R. & Dieterich, C. Profiling and validation of the circular RNA repertoire in adult murine hearts. Genomics Proteomics Bioinformatics 14, 216–223 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Werfel, S. et al. Characterization of circular RNAs in human, mouse and rat hearts. J. Mol. Cell. Cardiol. 98, 103–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Tan, W. L. W. et al. A landscape of circular RNA expression in the human heart. Cardiovasc. Res. 113, 298–309 (2017).

    CAS  PubMed  Google Scholar 

  65. Dong, R., Ma, X.-K., Chen, L.-L. & Yang, L. Increased complexity of circRNA expression during species evolution. RNA Biol. 14, 1064–1074 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li, X. F. & Lytton, J. A circularized sodium-calcium exchanger exon 2 transcript. J. Biol. Chem. 274, 8153–8160 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Anderson, B. R. & Granzier, H. L. Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations. Prog. Biophys. Mol. Biol. 110, 204–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Haas, J. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36, 1123–1135a (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766–773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maatz, H. et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J. Clin. Invest. 124, 3419–3430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gupta, S. K. et al. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ. Res. 122, 246–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Tang, C.-M. et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci. Rep. 7, 40342 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zeng, Y. et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7, 3842–3855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Memczak, S., Papavasileiou, P., Peters, O. & Rajewsky, N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLOS ONE 10, e0141214 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Li, Y. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 25, 981–984 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koh, W. et al. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc. Natl Acad. Sci. USA 111, 7361–7366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bahn, J. H. et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem. 61, 221–230 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Vausort, M. et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J. Am. Coll. Cardiol. 68, 1247–1248 (2016).

    Article  PubMed  Google Scholar 

  79. Zhang, J. et al. Plasma circular RNAs, Hsa_circRNA_025016, predict postoperative atrial fibrillation after isolated off-pump coronary artery bypass grafting. J. Am. Heart Assoc. 7, e006642 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  80. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jost, I. et al. Functional sequestration of microRNA-122 from hepatitis C virus by circular RNA sponges. RNA Biol. 15, 1032–1039 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Wang, K. et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ. 24, 1111–1120 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Geng, H.-H. et al. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLOS ONE 11, e0151753 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wang, Y. et al. A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p. Int. J. Biol. Macromol. 121, 1308–1313 (2018).

    Article  PubMed  CAS  Google Scholar 

  85. Zhou, B. & Yu, J.-W. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem. Biophys. Res. Commun. 487, 769–775 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Shan, K. et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136, 1629–1642 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, C. et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics 7, 2863–2877 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. He, Q. et al. circ-SHKBP1 regulates the angiogenesis of U87 glioma-exposed endothelial cells through miR-544a/FOXP1 and miR-379/FOXP2 pathways. Mol. Ther. Nucleic Acids 10, 331–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Sun, Y. et al. A novel regulatory mechanism of smooth muscle α-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ. Res. 121, 628–635 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Dang, R.-Y., Liu, F.-L. & Li, Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis. Biochem. Biophys. Res. Commun. 490, 104–110 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Li, C.-Y., Ma, L. & Yu, B. Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. Biomed. Pharmacother. 95, 1514–1519 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, J., Cui, L., Yuan, J., Zhang, Y. & Sang, H. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem. Biophys. Res. Commun. 494, 126–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, S.-J. et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Invest. Ophthalmol. Vis. Sci. 58, 6500–6509 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Pan, L. et al. Human circular RNA-0054633 regulates high glucose-induced vascular endothelial cell dysfunction through the microRNA-218/roundabout 1 and microRNA-218/heme oxygenase-1 axes. Int. J. Mol. Med. 42, 597–606 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Reviewer information

Nature Reviews Cardiology thanks G. Condorelli, C. Dieterich and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.A. and E.E.C. contributed to researching data for the article, discussion of content, writing, reviewing and editing the manuscript before submission. Y.J.R. contributed to researching data for the article, writing, reviewing and editing the manuscript before submission. Y.M.P. contributed to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Esther E. Creemers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

circBase: http://www.circbase.org

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aufiero, S., Reckman, Y.J., Pinto, Y.M. et al. Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol 16, 503–514 (2019). https://doi.org/10.1038/s41569-019-0185-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0185-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research