Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal models of arrhythmia: classic electrophysiology to genetically modified large animals

Abstract

Arrhythmias are common and contribute substantially to cardiovascular morbidity and mortality. The underlying pathophysiology of arrhythmias is complex and remains incompletely understood, which explains why mostly only symptomatic therapy is available. The evaluation of the complex interplay between various cell types in the heart, including cardiomyocytes from the conduction system and the working myocardium, fibroblasts and cardiac immune cells, remains a major challenge in arrhythmia research because it can be investigated only in vivo. Various animal species have been used, and several disease models have been developed to study arrhythmias. Although every species is useful and might be ideal to study a specific hypothesis, we suggest a practical trio of animal models for future use: mice for genetic investigations, mechanistic evaluations or early studies to identify potential drug targets; rabbits for studies on ion channel function, repolarization or re-entrant arrhythmias; and pigs for preclinical translational studies to validate previous findings. In this Review, we provide a comprehensive overview of different models and currently used species for arrhythmia research, discuss their advantages and disadvantages and provide guidance for researchers who are considering performing in vivo studies.

Key points

  • Millions of patients have arrhythmias and are at increased risk of morbidity and death, including atrial fibrillation and sudden cardiac death; however, insufficient therapies are currently available in clinical practice.

  • Understanding the complexity of electrophysiology and arrhythmogenesis is necessary to develop innovative treatment options and requires disease modelling in animals.

  • Despite marked differences in electrophysiology compared with humans, fundamental mechanisms can potentially be identified in rodents and translated into clinical practice; however, validation in larger animals is required.

  • Rabbits should be considered to study ion channel function, repolarization and re-entrant ventricular tachycardia.

  • Dogs have traditionally been widely used in arrhythmia research, but legal restrictions, societal considerations and the lack of genetically engineered models restrict their future use.

  • Pig models could close this translational gap because their use is more accepted in modern societies, pig cardiac anatomy and electrophysiology are similar to those of humans and pigs can be genetically modified.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Animal models for arrhythmia research.
Fig. 2: Cardiac action potentials in different species.
Fig. 3: A practical trio of animal models for translational research.
Fig. 4: Generation of genetically modified pigs by CRISPR–Cas.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129, 837–847 (2014).

    PubMed  Google Scholar 

  2. Krijthe, B. P. et al. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart J. 34, 2746–2751 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Schnabel, R. B. et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 386, 154–162 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Zoni-Berisso, M., Lercari, F., Carazza, T. & Domenicucci, S. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 6, 213–220 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Bogle, B. M., Ning, H., Mehrotra, S., Goldberger, J. J. & Lloyd-Jones, D. M. Lifetime risk for sudden cardiac death in the community. J. Am. Heart Assoc. 5, e002398 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Andersson, T. et al. All-cause mortality in 272,186 patients hospitalized with incident atrial fibrillation 1995-2008: a Swedish nationwide long-term case-control study. Eur. Heart J. 34, 1061–1067 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Benjamin, E. J. et al. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98, 946–952 (1998).

    CAS  PubMed  Google Scholar 

  8. Gillum, R. F. Geographic variation in sudden coronary death. Am. Heart J. 119, 380–389 (1990).

    CAS  PubMed  Google Scholar 

  9. Stewart, S., Hart, C. L., Hole, D. J. & McMurray, J. J. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am. J. Med. 113, 359–364 (2002).

    PubMed  Google Scholar 

  10. Kaab, S. Genetics of sudden cardiac death — an epidemiologic perspective. Int. J. Cardiol. 237, 42–44 (2017).

    PubMed  Google Scholar 

  11. Martens, E. et al. Incidence of sudden cardiac death in Germany: results from an emergency medical service registry in Lower Saxony. Europace 16, 1752–1758 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Kirchhof, P. et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016).

    PubMed  Google Scholar 

  13. Krahn, A. D., Manfreda, J., Tate, R. B., Mathewson, F. A. & Cuddy, T. E. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am. J. Med. 98, 476–484 (1995).

    CAS  PubMed  Google Scholar 

  14. Wang, T. J. et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation 107, 2920–2925 (2003).

    PubMed  Google Scholar 

  15. Wolf, P. A., Abbott, R. D. & Kannel, W. B. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22, 983–988 (1991).

    CAS  PubMed  Google Scholar 

  16. Priori, S. G. & Blomstrom-Lundqvist, C. 2015 European Society of Cardiology Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death summarized by co-chairs. Eur. Heart J. 36, 2757–2759 (2015).

    PubMed  Google Scholar 

  17. Cosedis Nielsen, J. et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N. Engl. J. Med. 367, 1587–1595 (2012).

    PubMed  Google Scholar 

  18. Mont, L. et al. Catheter ablation versus antiarrhythmic drug treatment of persistent atrial fibrillation: a multicentre, randomized, controlled trial (SARA study). Eur. Heart J. 35, 501–507 (2014).

    PubMed  Google Scholar 

  19. Roskell, N. S., Samuel, M., Noack, H. & Monz, B. U. Major bleeding in patients with atrial fibrillation receiving vitamin K antagonists: a systematic review of randomized and observational studies. Europace 15, 787–797 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Clauss, S., Sinner, M. F., Kaab, S. & Wakili, R. The role of microRNAs in antiarrhythmic therapy for atrial fibrillation. Arrhythm. Electrophysiol. Rev. 4, 146–155 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002).

    CAS  PubMed  Google Scholar 

  22. Wakili, R., Voigt, N., Kaab, S., Dobrev, D. & Nattel, S. Recent advances in the molecular pathophysiology of atrial fibrillation. J. Clin. Invest. 121, 2955–2968 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomaselli, G. F. et al. Sudden cardiac death in heart failure. The role of abnormal repolarization. Circulation 90, 2534 (1994).

    CAS  PubMed  Google Scholar 

  24. Qu, J. & Robinson, R. B. Cardiac ion channel expression and regulation: the role of innervation. J. Mol. Cell. Cardiol. 37, 439–448 (2004).

    CAS  PubMed  Google Scholar 

  25. Zhang, H. & Vassalle, M. Mechanisms of adrenergic control of sino-atrial node discharge. J. Biomed. Sci. 10, 179–192 (2003).

    CAS  PubMed  Google Scholar 

  26. Nattel, S., Burstein, B. & Dobrev, D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ. Arrhythm. Electrophysiol. 1, 62–73 (2008).

    PubMed  Google Scholar 

  27. Schotten, U., Verheule, S., Kirchhof, P. & Goette, A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol. Rev. 91, 265–325 (2011).

    PubMed  Google Scholar 

  28. Voigt, N. et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125, 2059–2070 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Landstrom, A. P., Dobrev, D. & Wehrens, X. H. T. Calcium signaling and cardiac arrhythmias. Circ. Res. 120, 1969–1993 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jalife, J. Ventricular fibrillation: mechanisms of initiation and maintenance. Annu. Rev. Physiol. 62, 25–50 (2000).

    CAS  PubMed  Google Scholar 

  31. Bossu, A. et al. Selective late sodium current inhibitor GS-458967 suppresses Torsades de Pointes by mostly affecting perpetuation but not initiation of the arrhythmia. Br. J. Pharmacol. 175, 2470–2482 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, W. et al. Mechanisms linking T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit models of long QT syndrome. J. Physiol. 596, 1341–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomaselli, G. F. & Marban, E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc. Res. 42, 270–283 (1999).

    CAS  PubMed  Google Scholar 

  34. Nabauer, M. & Kaab, S. Potassium channel down-regulation in heart failure. Cardiovasc. Res. 37, 324–334 (1998).

    CAS  PubMed  Google Scholar 

  35. Marionneau, C. et al. Distinct cellular and molecular mechanisms underlie functional remodeling of repolarizing K+ currents with left ventricular hypertrophy. Circ. Res. 102, 1406–1415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. De Jong, A. M. et al. Atrial remodeling is directly related to end-diastolic left ventricular pressure in a mouse model of ventricular pressure overload. PLOS ONE 8, e72651 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Zhang, C. et al. Blockade of angiotensin II type 1 receptor improves the arrhythmia morbidity in mice with left ventricular hypertrophy. Circ. J. 70, 335–341 (2006).

    CAS  PubMed  Google Scholar 

  38. Jin, H. et al. Mechanoelectrical remodeling and arrhythmias during progression of hypertrophy. FASEB J. 24, 451–463 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, T. et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ. Res. 115, 44–54 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y. et al. beta2 adrenergic receptor activation governs cardiac repolarization and arrhythmogenesis in a guinea pig model of heart failure. Sci. Rep. 5, 7681 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pogwizd, S. M., Qi, M., Yuan, W., Samarel, A. M. & Bers, D. M. Upregulation of Na+/Ca2+ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ. Res. 85, 1009–1019 (1999).

    CAS  PubMed  Google Scholar 

  42. Desantiago, J. et al. Arrhythmogenic effects of beta2-adrenergic stimulation in the failing heart are attributable to enhanced sarcoplasmic reticulum Ca load. Circ. Res. 102, 1389–1397 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pogwizd, S. M., Schlotthauer, K., Li, L., Yuan, W. & Bers, D. M. Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 88, 1159–1167 (2001).

    CAS  PubMed  Google Scholar 

  44. Yarbrough, W. M. et al. Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature. J. Thorac. Cardiovasc. Surg. 143, 215–223 (2012).

    PubMed  Google Scholar 

  45. Ishikawa, K. et al. Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. J. Am. Heart Assoc. 4, e001925 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Gyongyosi, M. et al. Porcine model of progressive cardiac hypertrophy and fibrosis with secondary postcapillary pulmonary hypertension. J. Transl Med. 15, 202 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Bossu, A. et al. Short-term variability of repolarization is superior to other repolarization parameters in the evaluation of diverse antiarrhythmic interventions in the chronic AV block dog. J. Cardiovasc. Pharmacol. 69, 398–407 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Oros, A., Beekman, J. D. & Vos, M. A. The canine model with chronic, complete atrio-ventricular block. Pharmacol. Ther. 119, 168–178 (2008).

    CAS  PubMed  Google Scholar 

  49. Volders, P. G. et al. Cellular basis of biventricular hypertrophy and arrhythmogenesis in dogs with chronic complete atrioventricular block and acquired torsade de pointes. Circulation 98, 1136–1147 (1998).

    CAS  PubMed  Google Scholar 

  50. Vos, M. A. et al. Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dog with chronic, complete AV block is related to cardiac hypertrophy and electrical remodeling. Circulation 98, 1125–1135 (1998).

    CAS  PubMed  Google Scholar 

  51. de Groot, S. H. et al. Contractile adaptations preserving cardiac output predispose the hypertrophied canine heart to delayed afterdepolarization-dependent ventricular arrhythmias. Circulation 102, 2145–2151 (2000).

    PubMed  Google Scholar 

  52. Sipido, K. R. et al. Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation 102, 2137–2144 (2000).

    CAS  PubMed  Google Scholar 

  53. Volders, P. G. et al. Downregulation of delayed rectifier K(+) currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation 100, 2455–2461 (1999).

    CAS  PubMed  Google Scholar 

  54. Vos, M. A., Verduyn, S. C., Gorgels, A. P., Lipcsei, G. C. & Wellens, H. J. Reproducible induction of early afterdepolarizations and torsade de pointes arrhythmias by d-sotalol and pacing in dogs with chronic atrioventricular block. Circulation 91, 864–872 (1995).

    CAS  PubMed  Google Scholar 

  55. van Opstal, J. M. et al. Electrophysiological parameters indicative of sudden cardiac death in the dog with chronic complete AV-block. Cardiovasc. Res. 50, 354–361 (2001).

    PubMed  Google Scholar 

  56. Neuberger, H.-R. et al. Development of a substrate of atrial fibrillation during chronic atrioventricular block in the goat. Circulation 111, 30 (2005).

    PubMed  Google Scholar 

  57. Tsuji, Y. et al. Ionic mechanisms of acquired QT prolongation and torsades de pointes in rabbits with chronic complete atrioventricular block. Circulation 106, 2012–2018 (2002).

    PubMed  Google Scholar 

  58. Bignolais, O. et al. Early ion-channel remodeling and arrhythmias precede hypertrophy in a mouse model of complete atrioventricular block. J. Mol. Cell. Cardiol. 51, 713–721 (2011).

    CAS  PubMed  Google Scholar 

  59. Remes, J. et al. Persistent atrial fibrillation in a goat model of chronic left atrial overload. J. Thorac. Cardiovasc. Surg. 136, 1005–1011 (2008).

    PubMed  Google Scholar 

  60. Benes, J. Jr et al. Myocardial morphological characteristics and proarrhythmic substrate in the rat model of heart failure due to chronic volume overload. Anat. Rec. 294, 102–111 (2011).

    Google Scholar 

  61. Scheuermann-Freestone, M. et al. A new model of congestive heart failure in the mouse due to chronic volume overload. Eur. J. Heart Fail. 3, 535–543 (2001).

    CAS  PubMed  Google Scholar 

  62. Boyden, P. A. & Hoffman, B. F. The effects on atrial electrophysiology and structure of surgically induced right atrial enlargement in dogs. Circ. Res. 49, 1319–1331 (1981).

    CAS  PubMed  Google Scholar 

  63. Mitchell, M. A., McRury, I. D. & Haines, D. E. Linear atrial ablations in a canine model of chronic atrial fibrillation: morphological and electrophysiological observations. Circulation 97, 1176–1185 (1998).

    CAS  PubMed  Google Scholar 

  64. Julian, F. J., Morgan, D. L., Moss, R. L., Gonzalez, M. & Dwivedi, P. Myocyte growth without physiological impairment in gradually induced rat cardiac hypertrophy. Circ. Res. 49, 1300–1310 (1981).

    CAS  PubMed  Google Scholar 

  65. Swynghedauw, B., Courtault, D. & Wanstok, F. Experimental cardiac hypertrophy in rats [French]. Pathol. Biol. 16, 691–694 (1968).

    CAS  PubMed  Google Scholar 

  66. Alderman, E. L. & Harrison, D. C. Myocardial hypertrophy resulting from low dosage isoproterenol administration in rats. Proc. Soc. Exp. Biol. Med. 136, 268–270 (1971).

    CAS  PubMed  Google Scholar 

  67. Hickson, R. C., Hammons, G. T. & Holoszy, J. O. Development and regression of exercise-induced cardiac hypertrophy in rats. Am. J. Physiol. 236, H268–H272 (1979).

    CAS  PubMed  Google Scholar 

  68. Doggrell, S. A. & Brown, L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc. Res. 39, 89–105 (1998).

    CAS  PubMed  Google Scholar 

  69. Dunnink, A. et al. Anesthesia and arrhythmogenesis in the chronic atrioventricular block dog model. J. Cardiovasc. Pharmacol. 55, 601–608 (2010).

    CAS  PubMed  Google Scholar 

  70. Beiert, T. et al. Chronic lower-dose relaxin administration protects from arrhythmia in experimental myocardial infarction due to anti-inflammatory and anti-fibrotic properties. Int. J. Cardiol. 250, 21–28 (2018).

    PubMed  Google Scholar 

  71. Boixel, C. et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J. Am. Coll. Cardiol. 42, 336–344 (2003).

    CAS  PubMed  Google Scholar 

  72. Curtis, M. J., Macleod, B. A. & Walker, M. J. Models for the study of arrhythmias in myocardial ischaemia and infarction: the use of the rat. J. Mol. Cell. Cardiol. 19, 399–419 (1987).

    CAS  PubMed  Google Scholar 

  73. Gehrmann, J. et al. Electrophysiological characterization of murine myocardial ischemia and infarction. Basic Res. Cardiol. 96, 237–250 (2001).

    CAS  PubMed  Google Scholar 

  74. Hundahl, L. A., Tfelt-Hansen, J. & Jespersen, T. Rat models of ventricular fibrillation following acute myocardial infarction. J. Cardiovasc. Pharmacol. Ther. 22, 514–528 (2017).

    PubMed  Google Scholar 

  75. Kolossov, E. et al. Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J. Exp. Med. 203, 2315–2327 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rucker-Martin, C. et al. Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts. Cardiovasc. Res. 72, 69–79 (2006).

    CAS  PubMed  Google Scholar 

  77. Zhang, Y. et al. Thyroid hormone replacement therapy attenuates atrial remodeling and reduces atrial fibrillation inducibility in a rat myocardial infarction-heart failure model. J. Card Fail. 20, 1012–1019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mertz, T. E. & Kaplan, H. R. Pirmenol hydrochloride (CI-845) and reference antiarrhythmic agents: effects on early ventricular arrhythmias after acute coronary artery ligation in anesthetized rats. J. Pharmacol. Exp. Ther. 223, 580–586 (1982).

    CAS  PubMed  Google Scholar 

  79. Spear, J. F. & Moore, E. N. The importance of the electrophysiologic substrates in the development of ventricular tachyarrhythmias. P. R. Health Sci. J. 4, 73–78 (1985).

    CAS  PubMed  Google Scholar 

  80. Tan, M. Y. et al. Development of a new model for acute myocardial infarction in rabbits. J. Vet. Med. Sci. 79, 467–473 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Miyauchi, Y. et al. Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: implications for atrial fibrillation. Circulation 108, 360–366 (2003).

    PubMed  Google Scholar 

  82. Ohara, K. et al. Downregulation of immunodetectable atrial connexin40 in a canine model of chronic left ventricular myocardial infarction: implications to atrial fibrillation. J. Cardiovasc. Pharmacol. Ther. 7, 89–94 (2002).

    CAS  PubMed  Google Scholar 

  83. Damiano, B. P. et al. Characterization of an anesthetized dog model of transient cardiac ischemia and rapid pacing: a pilot study for preclinical assessment of the potential for proarrhythmic risk of novel drug candidates. J. Pharmacol. Toxicol. Methods 72, 72–84 (2015).

    CAS  PubMed  Google Scholar 

  84. Aggarwal, R. & Boyden, P. A. Diminished Ca2+ and Ba2+ currents in myocytes surviving in the epicardial border zone of the 5-day infarcted canine heart. Circ. Res. 77, 1180–1191 (1995).

    CAS  PubMed  Google Scholar 

  85. Dun, W. & Boyden, P. A. Diverse phenotypes of outward currents in cells that have survived in the 5-day-infarcted heart. Am. J. Physiol. Heart Circ. Physiol. 289, H667–H673 (2005).

    CAS  PubMed  Google Scholar 

  86. Jiang, M., Cabo, C., Yao, J., Boyden, P. A. & Tseng, G. Delayed rectifier K currents have reduced amplitudes and altered kinetics in myocytes from infarcted canine ventricle. Cardiovasc. Res. 48, 34–43 (2000).

    CAS  PubMed  Google Scholar 

  87. Abriel, H., Rougier, J. S. & Jalife, J. Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ. Res. 116, 1971–1988 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaufman, E. S. Mechanisms and clinical management of inherited channelopathies: long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome. Heart Rhythm 6, S51–S55 (2009).

    PubMed  Google Scholar 

  89. Wagner, S., Maier, L. S. & Bers, D. M. Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ. Res. 116, 1956–1970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Echt, D. S. et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med. 324, 781–788 (1991).

    CAS  PubMed  Google Scholar 

  91. Fukuda, K. et al. Oxidative mediated lipid peroxidation recapitulates proarrhythmic effects on cardiac sodium channels. Circ. Res. 97, 1262–1269 (2005).

    CAS  PubMed  Google Scholar 

  92. Dun, W., Danilo, P. Jr., Mohler, P. J. & Boyden, P. A. Microtubular remodeling and decreased expression of Nav1.5 with enhanced EHD4 in cells from the infarcted heart. Life Sci. 201, 72–80 (2018).

    CAS  PubMed  Google Scholar 

  93. Vegh, A., Gonczi, M., Miskolczi, G. & Kovacs, M. Regulation of gap junctions by nitric oxide influences the generation of arrhythmias resulting from acute ischemia and reperfusion in vivo. Front. Pharmacol. 4, 76 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Adamson, P. B. & Vanoli, E. Early autonomic and repolarization abnormalities contribute to lethal arrhythmias in chronic ischemic heart failure: characteristics of a novel heart failure model in dogs with postmyocardial infarction left ventricular dysfunction. J. Am. Coll. Cardiol. 37, 1741–1748 (2001).

    CAS  PubMed  Google Scholar 

  95. Issa, Z. F., Rosenberger, J., Groh, W. J., Miller, J. M. & Zipes, D. P. Ischemic ventricular arrhythmias during heart failure: a canine model to replicate clinical events. Heart Rhythm 2, 979–983 (2005).

    PubMed  Google Scholar 

  96. Schwartz, P. J., Billman, G. E. & Stone, H. L. Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation 69, 790–800 (1984).

    CAS  PubMed  Google Scholar 

  97. Sridhar, A. et al. Repolarization abnormalities and afterdepolarizations in a canine model of sudden cardiac death. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1463–R1472 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Eldar, M. et al. A closed-chest pig model of sustained ventricular tachycardia. Pacing Clin. Electrophysiol. 17, 1603–1609 (1994).

    CAS  PubMed  Google Scholar 

  99. Biondi-Zoccai, G. et al. A novel closed-chest porcine model of chronic ischemic heart failure suitable for experimental research in cardiovascular disease. Biomed. Res. Int. 2013, 410631 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Lancaster, L. D., Kern, K. B., Morrison, D. A., Olajos, M. & Goldman, S. Changes in right ventricular relaxation during acute anterior myocardial infarction in pigs. Cardiovasc. Res. 23, 46–52 (1989).

    CAS  PubMed  Google Scholar 

  101. Indik, J. H. et al. Predictors of resuscitation in a swine model of ischemic and nonischemic ventricular fibrillation cardiac arrest: superiority of amplitude spectral area and slope to predict a return of spontaneous circulation when resuscitation efforts are prolonged. Crit. Care Med. 38, 2352–2357 (2010).

    PubMed  Google Scholar 

  102. Niemann, J. T., Rosborough, J. P., Youngquist, S. T. & Shah, A. P. Transthoracic defibrillation potential gradients in a closed chest porcine model of prolonged spontaneous and electrically induced ventricular fibrillation. Resuscitation 81, 477–480 (2010).

    PubMed  PubMed Central  Google Scholar 

  103. Cherry, B. H., Nguyen, A. Q., Hollrah, R. A., Olivencia-Yurvati, A. H. & Mallet, R. T. Modeling cardiac arrest and resuscitation in the domestic pig. World J. Crit. Care Med. 4, 1–12 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. Sasano, T., Kelemen, K., Greener, I. D. & Donahue, J. K. Ventricular tachycardia from the healed myocardial infarction scar: validation of an animal model and utility of gene therapy. Heart Rhythm 6, S91–S97 (2009).

    PubMed  PubMed Central  Google Scholar 

  105. Greener, I. D. et al. Connexin43 gene transfer reduces ventricular tachycardia susceptibility after myocardial infarction. J. Am. Coll. Cardiol. 60, 1103–1110 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Hegyi, B. et al. Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proc. Natl Acad. Sci. USA 115, E3036–E3044 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sinno, H. et al. Atrial ischemia promotes atrial fibrillation in dogs. Circulation 107, 1930–1936 (2003).

    PubMed  Google Scholar 

  108. Rivard, L. et al. The pharmacological response of ischemia-related atrial fibrillation in dogs: evidence for substrate-specific efficacy. Cardiovasc. Res. 74, 104–113 (2007).

    CAS  PubMed  Google Scholar 

  109. Nishida, K. et al. Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model. Circulation 123, 137–146 (2011).

    CAS  PubMed  Google Scholar 

  110. Li, Y. et al. Development of human-like advanced coronary plaques in low-density lipoprotein receptor knockout pigs and justification for statin treatment before formation of atherosclerotic plaques. J. Am. Heart Assoc. 5, e002779 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).

    CAS  PubMed  Google Scholar 

  112. Ausma, J. et al. Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am. J. Pathol. 151, 985–997 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Greiser, M. et al. Distinct contractile and molecular differences between two goat models of atrial dysfunction: AV block-induced atrial dilatation and atrial fibrillation. J. Mol. Cell. Cardiol. 46, 385–394 (2009).

    CAS  PubMed  Google Scholar 

  114. Allessie, M. A., Wijffels, M. C. & Dorland, R. Mechanisms of pharmacologic cardioversion of atrial fibrillation by class I drugs. J. Cardiovasc. Electrophysiol. 9, S69–S77 (1998).

    CAS  PubMed  Google Scholar 

  115. Morillo, C. A., Klein, G. J., Jones, D. L. & Guiraudon, C. M. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91, 1588–1595 (1995).

    CAS  PubMed  Google Scholar 

  116. Yamamoto, W. et al. Effects of the selective KACh channel blocker NTC-801 on atrial fibrillation in a canine model of atrial tachypacing: comparison with class Ic and III drugs. J. Cardiovasc. Pharmacol. 63, 421–427 (2014).

    CAS  PubMed  Google Scholar 

  117. Fareh, S., Villemaire, C. & Nattel, S. Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation 98, 2202–2209 (1998).

    CAS  PubMed  Google Scholar 

  118. Anne, W. et al. Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model. J. Mol. Cell. Cardiol. 43, 148–158 (2007).

    CAS  PubMed  Google Scholar 

  119. Filgueiras-Rama, D. et al. Long-term frequency gradients during persistent atrial fibrillation in sheep are associated with stable sources in the left atrium. Circ. Arrhythm. Electrophysiol. 5, 1160–1167 (2012).

    PubMed  PubMed Central  Google Scholar 

  120. Zhao, Y., Gu, T. X., Zhang, G. W., Liu, H. G. & Wang, C. Losartan affects the substrate for atrial fibrillation maintenance in a rabbit model. Cardiovasc. Pathol. 22, 383–388 (2013).

    CAS  PubMed  Google Scholar 

  121. Lin, J. L. et al. Electrophysiological mapping and histological examinations of the swine atrium with sustained (> or = 24 h) atrial fibrillation: a suitable animal model for studying human atrial fibrillation. Cardiology 99, 78–84 (2003).

    PubMed  Google Scholar 

  122. Bauer, A., McDonald, A. D. & Donahue, J. K. Pathophysiological findings in a model of persistent atrial fibrillation and severe congestive heart failure. Cardiovasc. Res. 61, 764–770 (2004).

    CAS  PubMed  Google Scholar 

  123. Bauer, A. et al. The new selective I(Ks)-blocking agent HMR 1556 restores sinus rhythm and prevents heart failure in pigs with persistent atrial fibrillation. Basic Res. Cardiol. 100, 270–278 (2005).

    CAS  PubMed  Google Scholar 

  124. Chen, C. L. et al. Upregulation of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases in rapid atrial pacing-induced atrial fibrillation. J. Mol. Cell. Cardiol. 45, 742–753 (2008).

    CAS  PubMed  Google Scholar 

  125. Bikou, O. et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc. Res. 92, 218–225 (2011).

    CAS  PubMed  Google Scholar 

  126. Igarashi, T. et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation 125, 216–225 (2012).

    CAS  PubMed  Google Scholar 

  127. Schmidt, C. et al. Cloning, functional characterization, and remodeling of K2P3.1 (TASK-1) potassium channels in a porcine model of atrial fibrillation and heart failure. Heart Rhythm 11, 1798–1805 (2014).

    PubMed  Google Scholar 

  128. Lugenbiel, P. et al. Atrial fibrillation complicated by heart failure induces distinct remodeling of calcium cycling proteins. PLOS ONE 10, e0116395 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Kazui, T. et al. The impact of 6 weeks of atrial fibrillation on left atrial and ventricular structure and function. J. Thorac. Cardiovasc. Surg. 150, 1602–1608 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Schwarzl, M. et al. A porcine model of early atrial fibrillation using a custom-built, radio transmission-controlled pacemaker. J. Electrocardiol. 49, 124–131 (2016).

    PubMed  Google Scholar 

  131. Spinale, F. G. et al. Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am. J. Physiol. 259, H218–H229 (1990).

    CAS  PubMed  Google Scholar 

  132. Yarbrough, W. M. & Spinale, F. G. Large animal models of congestive heart failure: a critical step in translating basic observations into clinical applications. J. Nucl. Cardiol. 10, 77–86 (2003).

    PubMed  Google Scholar 

  133. Jia, X. et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLOS ONE 8, e85639 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. Nuss, H. B. et al. Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Ther. 3, 900–912 (1996).

    CAS  PubMed  Google Scholar 

  135. Kaab, S. et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ. Res. 78, 262–273 (1996).

    CAS  PubMed  Google Scholar 

  136. Pak, P. H. et al. Repolarization abnormalities, arrhythmia and sudden death in canine tachycardia-induced cardiomyopathy. J. Am. Coll. Cardiol. 30, 576–584 (1997).

    CAS  PubMed  Google Scholar 

  137. Kaab, S. et al. Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98, 1383–1393 (1998).

    CAS  PubMed  Google Scholar 

  138. O’Rourke, B. et al. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ. Res. 84, 562–570 (1999).

    PubMed  Google Scholar 

  139. Nuss, H. B., Kaab, S., Kass, D. A., Tomaselli, G. F. & Marban, E. Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am. J. Physiol. 277, H80–H91 (1999).

    CAS  PubMed  Google Scholar 

  140. Balaji, S. et al. Inducible lethal ventricular arrhythmias in swine with pacing-induced heart failure. Basic Res. Cardiol. 94, 496–503 (1999).

    CAS  PubMed  Google Scholar 

  141. Chow, E., Woodard, J. C. & Farrar, D. J. Rapid ventricular pacing in pigs: an experimental model of congestive heart failure. Am. J. Physiol. 258, H1603–H1605 (1990).

    CAS  PubMed  Google Scholar 

  142. Lacroix, D. et al. Repolarization abnormalities and their arrhythmogenic consequences in porcine tachycardia-induced cardiomyopathy. Cardiovasc. Res. 54, 42–50 (2002).

    CAS  PubMed  Google Scholar 

  143. Finckh, M. et al. Enhanced cardiac angiotensinogen gene expression and angiotensin converting enzyme activity in tachypacing-induced heart failure in rats. Basic Res. Cardiol. 86, 303–316 (1991).

    CAS  PubMed  Google Scholar 

  144. Mulla, W. et al. Prominent differences in left ventricular performance and myocardial properties between right ventricular and left ventricular-based pacing modes in rats. Sci. Rep. 7, 5931 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Nishida, K., Michael, G., Dobrev, D. & Nattel, S. Animal models for atrial fibrillation: clinical insights and scientific opportunities. Europace 12, 160–172 (2010).

    PubMed  Google Scholar 

  146. Shinagawa, K., Shi, Y. F., Tardif, J. C., Leung, T. K. & Nattel, S. Dynamic nature of atrial fibrillation substrate during development and reversal of heart failure in dogs. Circulation 105, 2672–2678 (2002).

    PubMed  Google Scholar 

  147. Cha, T. J., Ehrlich, J. R., Zhang, L. & Nattel, S. Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation 110, 1520–1526 (2004).

    PubMed  Google Scholar 

  148. Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100, 87–95 (1999).

    CAS  PubMed  Google Scholar 

  149. Li, D. et al. Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation 101, 2631–2638 (2000).

    CAS  PubMed  Google Scholar 

  150. Burstein, B. et al. Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ. Res. 105, 1213–1222 (2009).

    CAS  PubMed  Google Scholar 

  151. Cardin, S. et al. Marked differences between atrial and ventricular gene-expression remodeling in dogs with experimental heart failure. J. Mol. Cell. Cardiol. 45, 821–831 (2008).

    CAS  PubMed  Google Scholar 

  152. Kaab, S. et al. Global gene expression in human myocardium-oligonucleotide microarray analysis of regional diversity and transcriptional regulation in heart failure. J. Mol. Med. 82, 308–316 (2004).

    PubMed  Google Scholar 

  153. Barth, A. S. et al. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: expression of a ventricular-like genomic signature. Circ. Res. 96, 1022–1029 (2005).

    CAS  PubMed  Google Scholar 

  154. Dawson, K. et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127, 1466–1475 (2013).

    CAS  PubMed  Google Scholar 

  155. Chen, Y. et al. Detailed characterization of microRNA changes in a canine heart failure model: relationship to arrhythmogenic structural remodeling. J. Mol. Cell. Cardiol. 77, 113–124 (2014).

    CAS  PubMed  Google Scholar 

  156. Luo, X. et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest. 123, 1939–1951 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bessissow, A., Khan, J., Devereaux, P. J., Alvarez-Garcia, J. & Alonso-Coello, P. Postoperative atrial fibrillation in non-cardiac and cardiac surgery: an overview. J. Thromb. Haemost. 13 (Suppl. 1), 304–312 (2015).

    Google Scholar 

  158. Bruins, P. et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation 96, 3542–3548 (1997).

    CAS  PubMed  Google Scholar 

  159. Chung, M. K. et al. C-Reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104, 2886–2891 (2001).

    CAS  PubMed  Google Scholar 

  160. Pagé, P. L., Plumb, V. J., Okumura, K. & Waldo, A. L. A new animal model of atrial flutter. J. Am. Coll. Cardiol. 8, 872–879 (1986).

    PubMed  Google Scholar 

  161. Tselentakis, E. V., Woodford, E., Chandy, J., Gaudette, G. R. & Saltman, A. E. Inflammation effects on the electrical properties of atrial tissue and inducibility of postoperative atrial fibrillation. J. Surg. Res. 135, 68–75 (2006).

    CAS  PubMed  Google Scholar 

  162. Zhang, Y. et al. Role of inflammation in the initiation and maintenance of atrial fibrillation and the protective effect of atorvastatin in a goat model of aseptic pericarditis. Mol. Med. Rep. 11, 2615–2623 (2015).

    CAS  PubMed  Google Scholar 

  163. Kumagai, K., Nakashima, H. & Saku, K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc. Res. 62, 105–111 (2004).

    CAS  PubMed  Google Scholar 

  164. Song, Y. B. et al. The effects of atorvastatin on the occurrence of postoperative atrial fibrillation after off-pump coronary artery bypass grafting surgery. Am. Heart J. 156, 373 (2008).

    CAS  PubMed  Google Scholar 

  165. Fu, X. X. et al. Interleukin-17A contributes to the development of post-operative atrial fibrillation by regulating inflammation and fibrosis in rats with sterile pericarditis. Int. J. Mol. Med. 36, 83–92 (2015).

    PubMed  PubMed Central  Google Scholar 

  166. Yu, G., Yu, Y., Li, Y. N. & Shu, R. Effect of periodontitis on susceptibility to atrial fibrillation in an animal model. J. Electrocardiol. 43, 359–366 (2010).

    PubMed  Google Scholar 

  167. Fung, G., Luo, H., Qiu, Y., Yang, D. & McManus, B. Myocarditis. Circ. Res. 118, 496–514 (2016).

    CAS  PubMed  Google Scholar 

  168. Grabmaier, U. et al. Soluble vascular cell adhesion molecule-1 (VCAM-1) as a biomarker in the mouse model of experimental autoimmune myocarditis (EAM). PLOS ONE 11, e0158299 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Tang, Q. et al. Antiarrhythmic effect of atorvastatin on autoimmune myocarditis is mediated by improving myocardial repolarization. Life Sci. 80, 601–608 (2007).

    CAS  PubMed  Google Scholar 

  170. Ohmae, M., Kishimoto, C. & Tomioka, N. Complete atrioventricular block in experimental murine myocarditis. J. Electrocardiol. 38, 230–234 (2005).

    PubMed  Google Scholar 

  171. Terasaki, F. et al. Arrhythmias in Coxsackie B3 virus myocarditis. Continuous electrocardiography in conscious mice and histopathology of the heart with special reference to the conduction system. Heart Vessels Suppl. 5, 45–50 (1990).

    CAS  PubMed  Google Scholar 

  172. Steinke, K. et al. Coxsackievirus B3 modulates cardiac ion channels. FASEB J. 27, 4108–4121 (2013).

    CAS  PubMed  Google Scholar 

  173. Izumi, T., Kodama, M. & Shibata, A. Experimental giant cell myocarditis induced by cardiac myosin immunization. Eur. Heart J. 12, D166–D168 (1991).

    Google Scholar 

  174. Radhakrishnan, V. V. Experimental myocarditis in the guinea-pig. Cardiovasc. Res. 31, 651–654 (1996).

    CAS  PubMed  Google Scholar 

  175. Gwathmey, J. K. et al. An experimental model of acute and subacute viral myocarditis in the pig. J. Am. Coll. Cardiol. 19, 864–869 (1992).

    CAS  PubMed  Google Scholar 

  176. Kamiyama, K. et al. Modulation of glucocorticoid receptor expression, inflammation, and cell apoptosis in septic guinea pig lungs using methylprednisolone. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L998–L1006 (2008).

    CAS  PubMed  Google Scholar 

  177. Aoki, Y. et al. Role of ion channels in sepsis-induced atrial tachyarrhythmias in guinea pigs. Br. J. Pharmacol. 166, 390–400 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Chen, P. S., Chen, L. S., Fishbein, M. C., Lin, S. F. & Nattel, S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ. Res. 114, 1500–1515 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Guasch, E. et al. Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model. J. Am. Coll. Cardiol. 62, 68–77 (2013).

    PubMed  Google Scholar 

  180. Allessie, M. A., Lammers, W. J., Bonke, I. M. & Hollen, J. Intra-atrial reentry as a mechanism for atrial flutter induced by acetylcholine and rapid pacing in the dog. Circulation 70, 123–135 (1984).

    CAS  PubMed  Google Scholar 

  181. Wang, Z., Page, P. & Nattel, S. Mechanism of flecainide’s antiarrhythmic action in experimental atrial fibrillation. Circ. Res. 71, 271–287 (1992).

    CAS  PubMed  Google Scholar 

  182. Hayashi, H., Fujiki, A., Tani, M., Usui, M. & Inoue, H. Different effects of class Ic and III antiarrhythmic drugs on vagotonic atrial fibrillation in the canine heart. J. Cardiovasc. Pharmacol. 31, 101–107 (1998).

    CAS  PubMed  Google Scholar 

  183. Aidonidis, I., Poyatzi, A., Stamatiou, G., Lymberi, M. & Molyvdas, P. A. Assessment of local atrial repolarization in a porcine acetylcholine model of atrial flutter and fibrillation. Acta Cardiol. 64, 59–64 (2009).

    PubMed  Google Scholar 

  184. Lee, A. M. et al. Importance of atrial surface area and refractory period in sustaining atrial fibrillation: testing the critical mass hypothesis. J. Thorac. Cardiovasc. Surg. 146, 593–598 (2013).

    PubMed  Google Scholar 

  185. Carneiro, J. S. et al. The selective cardiac late sodium current inhibitor GS-458967 suppresses autonomically triggered atrial fibrillation in an intact porcine model. J. Cardiovasc. Electrophysiol. 26, 1364–1369 (2015).

    PubMed  Google Scholar 

  186. Frame, L. H., Page, R. L. & Hoffman, B. F. Atrial reentry around an anatomic barrier with a partially refractory excitable gap. A canine model of atrial flutter. Circ. Res. 58, 495–511 (1986).

    CAS  PubMed  Google Scholar 

  187. Rosenblueth, A. & Garcia Ramos, J. Studies on flutter and fibrillation; the influence of artificial obstacles on experimental auricular flutter. Am. Heart J. 33, 677–684 (1947).

    CAS  PubMed  Google Scholar 

  188. Feld, G. K. & Shahandeh-Rad, F. Activation patterns in experimental canine atrial flutter produced by right atrial crush injury. J. Am. Coll. Cardiol. 20, 441–451 (1992).

    CAS  Google Scholar 

  189. Janse, M. J., Opthof, T. & Kléber, A. G. Animal models of cardiac arrhythmias. Cardiovasc. Res. 39, 165–177 (1997).

    Google Scholar 

  190. Brunner, S. et al. Alcohol consumption, sinus tachycardia, and cardiac arrhythmias at the Munich Octoberfest: results from the Munich Beer Related Electrocardiogram Workup Study (MunichBREW). Eur. Heart J. 38, 2100–2106 (2017).

    PubMed  PubMed Central  Google Scholar 

  191. Rich, E. C., Siebold, C. & Campion, B. Alcohol-related acute atrial fibrillation. A case-control study and review of 40 patients. Arch. Intern. Med. 145, 830–833 (1985).

    CAS  PubMed  Google Scholar 

  192. Anadon, M. J. et al. Alcohol concentration determines the type of atrial arrhythmia induced in a porcine model of acute alcoholic intoxication. Pacing Clin. Electrophysiol. 199, 1962–1967 (1996).

    Google Scholar 

  193. Bruner, L. H., Hilliker, K. S. & Roth, R. A. Pulmonary hypertension and ECG changes from monocrotaline pyrrole in the rat. Am. J. Physiol. 245, H300–H306 (1983).

    CAS  PubMed  Google Scholar 

  194. Rosenberg, H. C. & Rabinovitch, M. Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am. J. Physiol. 255, H1484–H1491 (1988).

    CAS  PubMed  Google Scholar 

  195. Guihaire, J. et al. Experimental models of right heart failure: a window for translational research in pulmonary hypertension. Semin. Respir. Crit. Care Med. 34, 689–699 (2013).

    PubMed  Google Scholar 

  196. Temple, I. P. et al. Atrioventricular node dysfunction and ion channel transcriptome in pulmonary hypertension. Circ. Arrhythm. Electrophysiol. 9, e003432 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Rocchetti, M. et al. Ranolazine prevents INaL enhancement and blunts myocardial remodelling in a model of pulmonary hypertension. Cardiovasc. Res. 104, 37–48 (2014).

    CAS  PubMed  Google Scholar 

  198. Gami, A. S. et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation 110, 364–367 (2004).

    PubMed  Google Scholar 

  199. Haugan, K., Lam, H. R., Knudsen, C. B. & Petersen, J. S. Atrial fibrillation in rats induced by rapid transesophageal atrial pacing during brief episodes of asphyxia: a new in vivo model. J. Cardiovasc. Pharmacol. 44, 125–135 (2004).

    CAS  PubMed  Google Scholar 

  200. Iwasaki, Y. K. et al. Determinants of atrial fibrillation in an animal model of obesity and acute obstructive sleep apnea. Heart Rhythm 9, 1409–1416 (2012).

    PubMed  Google Scholar 

  201. Iwasaki, Y. K. et al. Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. J. Am. Coll. Cardiol. 64, 2013–2023 (2014).

    PubMed  Google Scholar 

  202. Channaveerappa, D. et al. Atrial electrophysiological and molecular remodelling induced by obstructive sleep apnoea. J. Cell. Mol. Med. 21, 2223–2235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Linz, D. et al. Low-level but not high-level baroreceptor stimulation inhibits atrial fibrillation in a pig model of sleep apnea. J. Cardiovasc. Electrophysiol. 27, 1086–1092 (2016).

    PubMed  Google Scholar 

  204. Linz, D., Schotten, U., Neuberger, H. R., Bohm, M. & Wirth, K. Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm 8, 1436–1443 (2011).

    PubMed  Google Scholar 

  205. Linz, D. et al. Effect of renal denervation on neurohumoral activation triggering atrial fibrillation in obstructive sleep apnea. Hypertension 62, 767–774 (2013).

    CAS  PubMed  Google Scholar 

  206. Liu, Y. B. et al. Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ. Res. 92, 1145–1152 (2003).

    CAS  PubMed  Google Scholar 

  207. Wiegerinck, R. F. et al. Transmural dispersion of refractoriness and conduction velocity is associated with heterogeneously reduced connexin43 in a rabbit model of heart failure. Heart Rhythm 5, 1178–1185 (2008).

    PubMed  Google Scholar 

  208. Maruyama, M. et al. Hypokalemia promotes late phase 3 early afterdepolarization and recurrent ventricular fibrillation during isoproterenol infusion in Langendorff perfused rabbit ventricles. Heart Rhythm 11, 697–706 (2014).

    PubMed  Google Scholar 

  209. Gerhardy, A., Scholtysik, G., Schaad, A., Haltiner, R. & Hess, T. Generating and influencing Torsades de Pointes—like polymorphic ventricular tachycardia in isolated guinea pig hearts. Basic Res. Cardiol. 93, 285–294 (1998).

    CAS  PubMed  Google Scholar 

  210. Janse, M. J., van Capelle, F. J., Freud, G. E. & Durrer, D. Circus movement within the AV node as a basis for supraventricular tachycardia as shown by multiple microelectrode recording in the isolated rabbit heart. Circ. Res. 28, 403–414 (1971).

    CAS  PubMed  Google Scholar 

  211. Ravelli, F. & Allessie, M. Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation 96, 1686–1695 (1997).

    CAS  PubMed  Google Scholar 

  212. Choy, L., Yeo, J. M., Tse, V., Chan, S. P. & Tse, G. Cardiac disease and arrhythmogenesis: mechanistic insights from mouse models. Int. J. Cardiol. Heart Vasc. 12, 1–10 (2016).

    PubMed  PubMed Central  Google Scholar 

  213. Huang, C. L. Murine electrophysiological models of cardiac arrhythmogenesis. Physiol. Rev. 97, 283–409 (2017).

    PubMed  Google Scholar 

  214. Riley, G., Syeda, F., Kirchhof, P. & Fabritz, L. An introduction to murine models of atrial fibrillation. Front. Physiol. 3, 296 (2012).

    PubMed  PubMed Central  Google Scholar 

  215. Brunner, M. et al. Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J. Clin. Invest. 118, 2246–2259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Polejaeva, I. A. et al. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor-beta1. J. Cardiovasc. Electrophysiol. 27, 1220–1229 (2016).

    PubMed  PubMed Central  Google Scholar 

  217. Park, D. S. et al. Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J. Clin. Invest. 125, 403–412 (2015).

    PubMed  Google Scholar 

  218. Lumb, G. D. in Swine in Biochemical Research (eds Busiad, L. K. & McClellan, R. O.) (Frayn Prontong Co, Seattle, 1966).

  219. Chan, J. L. et al. Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation 24, e12330 (2017).

    Google Scholar 

  220. McGregor, C. G. A. & Byrne, G. W. Porcine to human heart transplantation: is clinical application now appropriate? J. Immunol. Res. 2017, 2534653 (2017).

    PubMed  PubMed Central  Google Scholar 

  221. Abicht, J. M. et al. Multiple genetically modified GTKO/hCD46/HLA-E/hbeta2-mg porcine hearts are protected from complement activation and natural killer cell infiltration during ex vivo perfusion with human blood. Xenotransplantation 25, e12390 (2018).

    PubMed  Google Scholar 

  222. Hill, A. J. & Iaizzo, P. A. in Handbook of Cardiac Anatomy, Physiology, and Devices (ed. Iaizzo, P. A.) 81–91 (Humana Press, Totowa, NJ, 2005).

  223. Sahni, D., Kaur, G. D., Jit, H. & Jit, I. Anatomy and distribution of coronary arteries in pig in comparison with man. Indian J. Med. Res. 127, 564–570 (2008).

    PubMed  Google Scholar 

  224. Hughes, G. C., Post, M. J., Simons, M. & Annex, B. H. Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J. Appl. Physiol. 94, 1689–1701 (2003).

    PubMed  Google Scholar 

  225. Hearse, D. J. The elusive coypu: the importance of collateral flow and the search for an alternative to the dog. Cardiovasc. Res. 45, 215–219 (2000).

    CAS  Google Scholar 

  226. Bode, G. et al. The utility of the minipig as an animal model in regulatory toxicology. J. Pharmacol. Toxicol. Methods 62, 196–220 (2010).

    CAS  PubMed  Google Scholar 

  227. Podesser, B. et al. Epicardial branches of the coronary arteries and their distribution in the rabbit heart: the rabbit heart as a model of regional ischemia. Anat. Rec. 247, 521–527 (1997).

    CAS  PubMed  Google Scholar 

  228. Kaese, S. et al. The ECG in cardiovascular-relevant animal models of electrophysiology. Herzschrittmacherther Elektrophysiol. 24, 84–91 (2013).

    PubMed  Google Scholar 

  229. Bharati, S. et al. The conduction system of the swine heart. Chest 100, 207–212 (1991).

    CAS  PubMed  Google Scholar 

  230. Lelovas, P. P., Kostomitsopoulos, N. G. & Xanthos, T. T. A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab. Anim. Sci. 53, 432–438 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Li, J. et al. Three-dimensional computer model of the right atrium including the sinoatrial and atrioventricular nodes predicts classical nodal behaviours. PLOS ONE 9, e112547 (2014).

    PubMed  PubMed Central  Google Scholar 

  232. Such, L. et al. Intrinsic changes on automatism, conduction, and refractoriness by exercise in isolated rabbit heart. J. Appl. Physiol. 92, 225–229 (2002).

    CAS  PubMed  Google Scholar 

  233. Bordas, R. et al. Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Prog. Biophys. Mol. Biol. 107, 90–100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Bowman, T. A. & Hughes, H. C. Swine as an in vivo model for electrophysiologic evaluation of cardiac pacing parameters. Pacing Clin. Electrophysiol. 7, 187–194 (1984).

    CAS  PubMed  Google Scholar 

  235. Santana, L. F., Cheng, E. P. & Lederer, W. J. How does the shape of the cardiac action potential control calcium signaling and contraction in the heart? J. Mol. Cell. Cardiol. 49, 901–903 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Varro, A., Lathrop, D. A., Hester, S. B., Nanasi, P. P. & Papp, J. G. Ionic currents and action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic Res. Cardiol. 88, 93–102 (1993).

    CAS  PubMed  Google Scholar 

  237. Mow, T., Arlock, P., Laursen, M. & Ganderup, N. Major ion currents except ito are present in the ventricle of the Göttingen minipig heart. J. Pharmacol. Toxicol. Methods 58, 165 (2008).

    Google Scholar 

  238. Li, G. R. et al. Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc. Res. 58, 89–98 (2003).

    CAS  PubMed  Google Scholar 

  239. Yue, L., Melnyk, P., Gaspo, R., Wang, Z. & Nattel, S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ. Res. 84, 776–784 (1999).

    CAS  PubMed  Google Scholar 

  240. Fedida, D., Shimoni, Y. & Giles, W. R. Alpha-adrenergic modulation of the transient outward current in rabbit atrial myocytes. J. Physiol. 423, 257–277 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Chang, K. et al. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol. 2, 5 (2002).

    PubMed  PubMed Central  Google Scholar 

  242. Kurome, M., Ueda, H., Tomii, R., Naruse, K. & Nagashima, H. Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer. Transgen. Res. 15, 229–240 (2006).

    CAS  Google Scholar 

  243. Nottle, M. B. et al. Effect of DNA concentration on transgenesis rates in mice and pigs. Transgen. Res. 10, 523–531 (2001).

    CAS  Google Scholar 

  244. Renner, S. et al. Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59, 1228–1238 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Wu, Z. et al. Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgen. Res. 22, 1107–1118 (2013).

    CAS  Google Scholar 

  246. Renner, S. et al. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes 62, 1505–1511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Hinkel, R. et al. Diabetes mellitus-induced microvascular destabilization in the myocardium. J. Am. Coll. Cardiol. 69, 131–143 (2017).

    CAS  PubMed  Google Scholar 

  248. Blutke, A. et al. The Munich MIDY Pig Biobank — a unique resource for studying organ crosstalk in diabetes. Mol. Metab. 6, 931–940 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Gaj, T., Gersbach, C. A. & Barbas, C. F. 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Carlson, D. F. et al. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl Acad. Sci. USA 109, 17382–17387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Fernandez, A., Josa, S. & Montoliu, L. A history of genome editing in mammals. Mamm. Genome 28, 237–246 (2017).

    CAS  PubMed  Google Scholar 

  253. Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Klymiuk, N. et al. Homologous recombination contributes to the repair of zinc-finger-nuclease induced double strand breaks in pig primary cells and facilitates recombination with exogenous DNA. J. Biotechnol. 177, 74–81 (2014).

    CAS  PubMed  Google Scholar 

  255. Motta, B. M., Pramstaller, P. P., Hicks, A. A. & Rossini, A. The impact of CRISPR/Cas9 technology on cardiac research: from disease modelling to therapeutic approaches. Stem Cells Int. 2017, 8960236 (2017).

    PubMed  PubMed Central  Google Scholar 

  256. Pattanayak, V., Guilinger, J. P. & Liu, D. R. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 546, 47–78 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Yang, D. et al. Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. 21, 979–982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Yao, J., Huang, J. & Zhao, J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum. Genet. 135, 1093–1105 (2016).

    CAS  PubMed  Google Scholar 

  259. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    CAS  PubMed  Google Scholar 

  261. Heigwer, F., Kerr, G. & Boutros, M. E-CRISP: fast CRISPR target site identification. Nat. Methods 11, 122–123 (2014).

    CAS  PubMed  Google Scholar 

  262. Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Whitworth, K. M. et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol. Reprod. 91, 78 (2014).

    PubMed  PubMed Central  Google Scholar 

  265. Huang, L. et al. CRISPR/Cas9-mediated ApoE−/− and LDLR−/− double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget 8, 37751–37760 (2017).

    PubMed  PubMed Central  Google Scholar 

  266. Niu, D. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303–1307 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Kaab, S. & Näbauer, M. Diversity of ion channel expression in health and disease. Eur. Heart J. Suppl. 3, K31–K40 (2001).

    CAS  Google Scholar 

  268. Macianskiene, R. et al. Action potential changes associated with a slowed inactivation of cardiac voltage-gated sodium channels by KB130015. Br. J. Pharmacol. 139, 1469–1479 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Tsuchida, K., Kaneko, K. & Aihara, H. Electrophysiological effects of CD-349, a dihydropyridine-type calcium antagonist, on goat cardiac Purkinje fibers. J. Cardiovasc. Pharmacol. 18, 769–776 (1991).

    CAS  PubMed  Google Scholar 

  270. Hume, J. R. & Uehara, A. Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes. J. Physiol. 368, 525–544 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Anumonwo, J. M., Tallini, Y. N., Vetter, F. J. & Jalife, J. Action potential characteristics and arrhythmogenic properties of the cardiac conduction system of the murine heart. Circ. Res. 89, 329–335 (2001).

    CAS  PubMed  Google Scholar 

  272. Freudig, D. Lexikon der Biologie (Spektrum Akademischer Verlag, Heidelberg, 1999).

  273. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS  PubMed  Google Scholar 

  274. Groenen, M. A. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Jones, R. D., Stuart, B. P., Greufe, N. P. & Landes, A. M. Electrophysiology and pathology evaluation of the Yucatan pig as a non-rodent animal model for regulatory and mechanistic toxicology studies. Lab Anim. 33, 356–365 (1999).

    CAS  PubMed  Google Scholar 

  276. Paslawska, U. et al. Normal electrocardiographic and echocardiographic (M-mode and two-dimensional) values in Polish Landrace pigs. Acta Vet. Scand. 56, 54 (2014).

    PubMed  PubMed Central  Google Scholar 

  277. Stubhan, M. et al. Evaluation of cardiovascular and ECG parameters in the normal, freely moving Gottingen Minipig. J. Pharmacol. Toxicol. Methods 57, 202–211 (2008).

    CAS  PubMed  Google Scholar 

  278. Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005).

    CAS  PubMed  Google Scholar 

  279. Macfarlane, P. et al. Comprehensive Electrocardiology (Springer Verlag London Ltd, London, 2010).

  280. Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Lord, B., Boswood, A. & Petrie, A. Electrocardiography of the normal domestic pet rabbit. Vet. Rec. 167, 961–965 (2010).

    CAS  PubMed  Google Scholar 

  282. Weiss, J., Becker, K., Bernsmann, E., Dietrich, H. & Nebendahl, K. Tierpflege in Forschung und Klinik (Enke, 2008).

  283. Wolfensohn, S. & Llyod, M. Handbook of Laboratory Animal Management and Welfare (Wiley, 2003).

  284. Dhein, S., Mohr, F. & Delmar, M. Practical Methods in Cardiovascular Research (Springer-Verlag Berlin Heidelberg, 2005).

  285. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513–1518 (2011).

    CAS  PubMed  Google Scholar 

  286. Knollmann, B. C., Schober, T., Petersen, A. O., Sirenko, S. G. & Franz, M. R. Action potential characterization in intact mouse heart: steady-state cycle length dependence and electrical restitution. Am. J. Physiol. Heart Circ. Physiol. 292, H614–H621 (2007).

    CAS  PubMed  Google Scholar 

  287. EMBL-EBI. Ensembl genome browser 95. http://www.ensembl.org (2019).

  288. Nerbonne, J. M. Mouse models of arrhythmogenic cardiovascular disease: challenges and opportunities. Curr. Opin. Pharmacol. 15, 107–114 (2014).

    CAS  PubMed  Google Scholar 

  289. Gussak, I., Chaitman, B. R., Kopecky, S. L. & Nerbonne, J. M. Rapid ventricular repolarization in rodents: electrocardiographic manifestations, molecular mechanisms, and clinical insights. J. Electrocardiol. 33, 159–170 (2000).

    CAS  PubMed  Google Scholar 

  290. Liu, G. et al. In vivo temporal and spatial distribution of depolarization and repolarization and the illusive murine T wave. J. Physiol. 555, 267–279 (2004).

    CAS  PubMed  Google Scholar 

  291. Mitchell, G. F., Jeron, A. & Koren, G. Measurement of heart rate and Q-T interval in the conscious mouse. Am. J. Physiol. 274, H747–H751 (1998).

    CAS  PubMed  Google Scholar 

  292. Bers, D. M., Lederer, W. J. & Berlin, J. R. Intracellular Ca transients in rat cardiac myocytes: role of Na-Ca exchange in excitation-contraction coupling. Am. J. Physiol. 258, C944–C954 (1990).

    CAS  PubMed  Google Scholar 

  293. De Carvalho, C. A. M. & Thomazini, J. A. Study of Wistar rats heart at different stages in the evolutionary cycle. Int. J. Morphol. 32, 614–617 (2014).

    Google Scholar 

  294. Busch, A. E. et al. The novel class III antiarrhythmics NE-10064 and NE-10133 inhibit IsK channels expressed in Xenopus oocytes and IKs in guinea pig cardiac myocytes. Biochem. Biophys. Res. Commun. 202, 265–270 (1994).

    CAS  PubMed  Google Scholar 

  295. Webster, S. H. & Liljegren, E. J. Organ:body weight ratios for certain organs of laboratory animals. II. Guinea pig. Am. J. Anat. 85, 199–230 (1949).

    CAS  PubMed  Google Scholar 

  296. Kijtawornrat, A., Sawangkoon, S., Simonetti, O. & Hamlin, R. Body surface potentials generated by the heart of normal guinea pigs. Thai J. Vet. Med. 41, 463–470 (2011).

    Google Scholar 

  297. Stengl, M. Experimental models of spontaneous ventricular arrhythmias and of sudden cardiac death. Physiol. Res. 59 (Suppl. 1), 25–31 (2010).

    Google Scholar 

  298. Farkas, A., Batey, A. J. & Coker, S. J. How to measure electrocardiographic QT interval in the anaesthetized rabbit. J. Pharmacol. Toxicol. Methods 50, 175–185 (2004).

    CAS  PubMed  Google Scholar 

  299. Dosdall, D. J. et al. Chronic atrial fibrillation causes left ventricular dysfunction in dogs but not goats: experience with dogs, goats, and pigs. Am. J. Physiol. Heart Circ. Physiol. 305, H725–H731 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Lipovetsky, G., Fenoglio, J. J., Gieger, M., Srinivasan, M. R. & Dobelle, W. H. Coronary artery anatomy of the goat. Artif. Organs 7, 238–245 (1983).

    CAS  PubMed  Google Scholar 

  301. Ahmed, J. A. & Sanyal, S. Electrocardiographic studies in Garol sheep and black Bengal goats. Res. J. Cardiol. 1, 1–8 (2008).

    Google Scholar 

  302. Upadhyay, R. C. & Sud, S. C. Electrocardiogram of the goat. Indian J. Exp. Biol. 15, 359–362 (1977).

    CAS  PubMed  Google Scholar 

  303. Donahue, J. K. in Clinical Cardiac Pacing, Defibrillation & Resynchronization Therapy 4th edn (eds Ellenbogen, K. A., Kay, G. N., Lau, C.-P. & Wilkoff, B. L.) 191–194 (Elsevier/Saunders, 2011).

  304. Hamlin, R. L., Smith, C. R. & Smetzer, D. L. Sinus arrhythmia in the dog. Am. J. Physiol. 210, 321–328 (1966).

    CAS  PubMed  Google Scholar 

  305. Lunney, J. K. Advances in swine biomedical model genomics. Int. J. Biol. Sci. 3, 179–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. Jr & Frazier, K. S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356 (2011).

    PubMed  Google Scholar 

  307. Wolf, E., Braun-Reichhart, C., Streckel, E. & Renner, S. Genetically engineered pig models for diabetes research. Transgen. Res. 23, 27–38 (2014).

    CAS  Google Scholar 

  308. Renner, S. et al. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 86, 406–421 (2016).

    CAS  PubMed  Google Scholar 

  309. Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).

    PubMed  Google Scholar 

  310. Aigner, B. et al. Transgenic pigs as models for translational biomedical research. J. Mol. Med. 88, 653–664 (2010).

    PubMed  Google Scholar 

  311. Rehbinder, C. et al. FELASA recommendations for the health monitoring of breeding colonies and experimental units of cats, dogs and pigs: Report of the Federation of European Laboratory Animal Science Associations (FELASA) Working Group on Animal Health. Lab. Anim. 32, 1–17 (1998).

    CAS  PubMed  Google Scholar 

  312. Wolf, E. et al. Transgenic technology in farm animals — progress and perspectives. Exp. Physiol. 85, 615–625 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors received support from the German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK); 81Z4600241, 81X3600208 and 81X2600249), the Förderprogramm für Forschung und Lehre (FöFoLe; 962; 29/2017), the German Centre for Diabetes Research (Deutsches Zentrum für Diabetes-Forschung (DZD)) and the German Research Council (DFG; TRR127, SFB1123 and SFB914).

Reviewer information

Nature Reviews Cardiology thanks M. A. Vos and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.C., C.B., D.S. and P.T. researched data for the article and wrote the manuscript. All the authors discussed its content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sebastian Clauss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clauss, S., Bleyer, C., Schüttler, D. et al. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 16, 457–475 (2019). https://doi.org/10.1038/s41569-019-0179-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0179-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing