Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Key components of a community response to out-of-hospital cardiac arrest

Abstract

Out-of-hospital cardiac arrest (OHCA) remains a leading cause of death worldwide, with substantial geographical, ethnic and socioeconomic disparities in outcome. Successful resuscitation efforts depend on the ‘chain of survival’, which includes immediate recognition of cardiac arrest and activation of the emergency response system, early bystander cardiopulmonary resuscitation (CPR) with an emphasis on chest compressions, rapid defibrillation, basic and advanced emergency medical services and integrated post-cardiac arrest care. Well-orchestrated telecommunicator CPR programmes can improve rates of bystander CPR — a critical link in the chain of survival. High-performance CPR by emergency medical service providers includes minimizing interruptions in chest compressions and ensuring adequate depth of compressions. Developing local, regional and statewide systems with dedicated high-performing cardiac resuscitation centres for post-resuscitation care can substantially improve survival after OHCA. Innovative digital tools for recognizing cardiac arrest where and when it occurs, notifying potential citizen rescuers and providing automated external defibrillators at the scene hold the promise of improving survival after OHCA. Improved implementation of the chain of survival can save thousands of lives each year.

Key points

  • Out-of-hospital cardiac arrest (OHCA) remains a major public health problem with substantial socioeconomic and ethnic disparities in outcome.

  • Improved implementation of the ‘chain of survival’, including immediate recognition of cardiac arrest and activation of the emergency response system, early high-quality cardiopulmonary resuscitation (CPR) and integrated post-cardiac arrest care, can save thousands of lives each year.

  • Well-orchestrated telecommunicator CPR programmes can substantially increase rates of bystander CPR, which can lead to higher overall survival after OHCA.

  • High-performance CPR by emergency medical service providers relies on minimizing interruptions in chest compressions and ensuring adequate depth of compressions.

  • Implementing local, regional and statewide systems with dedicated cardiac resuscitation centres for post-resuscitation care can substantially improve survival after OHCA.

  • Exciting, innovative technologies for recognizing cardiac arrest where and when it occurs, notifying potential citizen rescuers and providing automated external defibrillators at the scene are promising.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Out-of-hospital chain of survival.

Similar content being viewed by others

References

  1. Benjamin, E. J. et al. Heart disease and stroke statistics — 2017 update: a report from the American Heart Association. Circulation 135, e146–e603 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. Girotra, S. et al. Regional variation in out-of-hospital cardiac arrest survival in the United States. Circulation 133, 2159–2168 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. Nichol, G. et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 300, 1423–1431 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Grasner, J. T. et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: a prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation 105, 188–195 (2016).

    PubMed  Google Scholar 

  5. Kim, Y. T. et al. Effect of national implementation of utstein recommendation from the global resuscitation alliance on ten steps to improve outcomes from out-of-hospital cardiac arrest: a ten-year observational study in Korea. BMJ Open 7, e016925 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Wang, C. Y. et al. The secular trends in the incidence rate and outcomes of out-of-hospital cardiac arrest in Taiwan — a nationwide population-based study. PLOS ONE 10, e0122675 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Okubo, M., Kiyohara, K., Iwami, T., Callaway, C. W. & Kitamura, T. Nationwide and regional trends in survival from out-of-hospital cardiac arrest in Japan: a 10-year cohort study from 2005 to 2014. Resuscitation 115, 120–128 (2017).

    PubMed  Google Scholar 

  8. Berdowski, J., Berg, R. A., Tijssen, J. G. & Koster, R. W. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 81, 1479–1487 (2010).

    PubMed  Google Scholar 

  9. Ong, M. E. et al. Outcomes for out-of-hospital cardiac arrests across 7 countries in Asia: the Pan Asian Resuscitation Outcomes Study (PAROS). Resuscitation 96, 100–108 (2015).

    PubMed  Google Scholar 

  10. Wissenberg, M. et al. Association of national initiatives to improve cardiac arrest management with rates of bystander intervention and patient survival after out-of-hospital cardiac arrest. JAMA 310, 1377–1384 (2013).

    CAS  PubMed  Google Scholar 

  11. Sasson, C. et al. Association of neighborhood characteristics with bystander-initiated CPR. N. Engl. J. Med. 367, 1607–1615 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Starks, M. A. et al. Association of neighborhood demographics with out-of-hospital cardiac arrest treatment and outcomes: where you live may matter. JAMA Cardiol. 2, 1110–1118 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Blewer, A. L. et al. Cardiopulmonary resuscitation training disparities in the United States. J. Am. Heart Assoc. 6, e006124 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Nuno, T. et al. Disparities in telephone CPR access and timing during out-of-hospital cardiac arrest. Resuscitation 115, 11–16 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Lee, S. Y. et al. A disparity in outcomes of out-of-hospital cardiac arrest by community socioeconomic status: a ten-year observational study. Resuscitation 126, 130–136 (2018).

    PubMed  Google Scholar 

  16. Lee, S. Y. et al. Interaction effects between highly-educated neighborhoods and dispatcher-provided instructions on provision of bystander cardiopulmonary resuscitation. Resuscitation 99, 84–91 (2016).

    PubMed  Google Scholar 

  17. Dahan, B. et al. Impact of neighbourhood socio-economic status on bystander cardiopulmonary resuscitation in Paris. Resuscitation 110, 107–113 (2017).

    PubMed  Google Scholar 

  18. Deakin, C. D., Fothergill, R., Moore, F., Watson, L. & Whitbread, M. Level of consciousness on admission to a heart attack centre is a predictor of survival from out-of-hospital cardiac arrest. Resuscitation 85, 905–909 (2014).

    PubMed  Google Scholar 

  19. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 138, e272–e391 (2018).

    PubMed  Google Scholar 

  20. Kutyifa, V. et al. Use of the wearable cardioverter defibrillator in high-risk cardiac patients: data from the Prospective Registry of Patients Using the Wearable Cardioverter Defibrillator (WEARIT-II Registry). Circulation 132, 1613–1619 (2015).

    PubMed  Google Scholar 

  21. Wassnig, N. K. et al. Experience with the wearable cardioverter-defibrillator in patients at high risk for sudden cardiac death. Circulation 134, 635–643 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Piccini, J. P. Sr et al. Wearable cardioverter-defibrillator therapy for the prevention of sudden cardiac death: a science advisory from the American Heart Association. Circulation 133, 1715–1727 (2016).

    PubMed  Google Scholar 

  23. Olgin, J. E. et al. Wearable cardioverter-defibrillator after myocardial infarction. N. Engl. J. Med. 379, 1205–1215 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Field, M. E. & Page, R. L. Another shock for sudden death prevention after myocardial infarction. N. Engl. J. Med. 379, 1274–1275 (2018).

    PubMed  Google Scholar 

  25. Eberle, B. et al. Checking the carotid pulse check: diagnostic accuracy of first responders in patients with and without a pulse. Resuscitation 33, 107–116 (1996).

    CAS  PubMed  Google Scholar 

  26. Bobrow, B. J. et al. Gasping during cardiac arrest in humans is frequent and associated with improved survival. Circulation 118, 2550–2554 (2008).

    PubMed  PubMed Central  Google Scholar 

  27. Clark, J. J., Larsen, M. P., Culley, L. L., Graves, J. R. & Eisenberg, M. S. Incidence of agonal respirations in sudden cardiac arrest. Ann. Emerg. Med. 21, 1464–1467 (1992).

    CAS  PubMed  Google Scholar 

  28. Bang, A., Herlitz, J. & Martinell, S. Interaction between emergency medical dispatcher and caller in suspected out-of-hospital cardiac arrest calls with focus on agonal breathing. A review of 100 tape recordings of true cardiac arrest cases. Resuscitation 56, 25–34 (2003).

    PubMed  Google Scholar 

  29. Fukushima, H. et al. Description of abnormal breathing is associated with improved outcomes and delayed telephone cardiopulmonary resuscitation instructions. J. Am. Heart Assoc. 6, e005058 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Kleinman, M. E. et al. 2017 American Heart Association focused update on adult basic life support and cardiopulmonary resuscitation quality: an update to the American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 137, e7–e13 (2018).

    PubMed  Google Scholar 

  31. Olasveengen, T. M. et al. 2017 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations summary. Circulation 136, e424–e440 (2017).

    PubMed  Google Scholar 

  32. Bobrow, B. J., Panczyk, M. & Subido, C. Dispatch-assisted cardiopulmonary resuscitation: the anchor link in the chain of survival. Curr. Opin. Crit. Care 18, 228–233 (2012).

    PubMed  Google Scholar 

  33. Deakin, C. D. The chain of survival: not all links are equal. Resuscitation 126, 80–82 (2018).

    PubMed  Google Scholar 

  34. Waalewijn, R. A., Nijpels, M. A., Tijssen, J. G. & Koster, R. W. Prevention of deterioration of ventricular fibrillation by basic life support during out-of-hospital cardiac arrest. Resuscitation 54, 31–36 (2002).

    PubMed  Google Scholar 

  35. Hasselqvist-Ax, I. et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N. Engl. J. Med. 372, 2307–2315 (2015).

    CAS  PubMed  Google Scholar 

  36. Rajan, S. et al. Association of Bystander Cardiopulmonary Resuscitation and survival according to ambulance response times after out-of-hospital cardiac arrest. Circulation 134, 2095–2104 (2016).

    PubMed  Google Scholar 

  37. Eisenberg, M. S., Bergner, L. & Hallstrom, A. Cardiac resuscitation in the community. Importance of rapid provision and implications for program planning. JAMA 241, 1905–1907 (1979).

    CAS  PubMed  Google Scholar 

  38. Valenzuela, T. D., Roe, D. J., Cretin, S., Spaite, D. W. & Larsen, M. P. Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation 96, 3308–3313 (1997).

    CAS  PubMed  Google Scholar 

  39. Sayre, M. R. et al. Hands-only (compression-only) cardiopulmonary resuscitation: a call to action for bystander response to adults who experience out-of-hospital sudden cardiac arrest: a science advisory for the public from the American Heart Association Emergency Cardiovascular Care Committee. Circulation 117, 2162–2167 (2008).

    PubMed  Google Scholar 

  40. Lerner, E. B. et al. Emergency medical service dispatch cardiopulmonary resuscitation prearrival instructions to improve survival from out-of-hospital cardiac arrest: a scientific statement from the American Heart Association. Circulation 125, 648–655 (2012).

    PubMed  Google Scholar 

  41. Dami, F., Carron, P. N., Praz, L., Fuchs, V. & Yersin, B. Why bystanders decline telephone cardiac resuscitation advice. Acad. Emerg. Med. 17, 1012–1015 (2010).

    PubMed  Google Scholar 

  42. Berg, R. A. et al. Bystander cardiopulmonary resuscitation. Is ventilation necessary? Circulation 88, 1907–1915 (1993).

    CAS  PubMed  Google Scholar 

  43. Chandra, N. C. et al. Observations of ventilation during resuscitation in a canine model. Circulation 90, 3070–3075 (1994).

    CAS  PubMed  Google Scholar 

  44. Noc, M., Weil, M. H., Tang, W., Turner, T. & Fukui, M. Mechanical ventilation may not be essential for initial cardiopulmonary resuscitation. Chest 108, 821–827 (1995).

    CAS  PubMed  Google Scholar 

  45. Berg, R. A. et al. Assisted ventilation does not improve outcome in a porcine model of single-rescuer bystander cardiopulmonary resuscitation. Circulation 95, 1635–1641 (1997).

    CAS  PubMed  Google Scholar 

  46. Berg, R. A., Kern, K. B., Hilwig, R. W. & Ewy, G. A. Assisted ventilation during ‘bystander’ CPR in a swine acute myocardial infarction model does not improve outcome. Circulation 96, 4364–4371 (1997).

    CAS  PubMed  Google Scholar 

  47. Berg, R. A. et al. The need for ventilatory support during bystander CPR. Ann. Emerg. Med. 26, 342–350 (1995).

    CAS  PubMed  Google Scholar 

  48. Ewy, G. A. et al. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest. Circulation 116, 2525–2530 (2007).

    PubMed  Google Scholar 

  49. Heidenreich, J. W. et al. Uninterrupted chest compression CPR is easier to perform and remember than standard CPR. Resuscitation 63, 123–130 (2004).

    PubMed  Google Scholar 

  50. SOS-KANTO study group. Cardiopulmonary resuscitation by bystanders with chest compression only (SOS-KANTO): an observational study. Lancet 369, 920–926 (2007).

    Google Scholar 

  51. Iwami, T. et al. Effectiveness of bystander-initiated cardiac-only resuscitation for patients with out-of-hospital cardiac arrest. Circulation 116, 2900–2907 (2007).

    PubMed  Google Scholar 

  52. Bohm, K., Rosenqvist, M., Herlitz, J., Hollenberg, J. & Svensson, L. Survival is similar after standard treatment and chest compression only in out-of-hospital bystander cardiopulmonary resuscitation. Circulation 116, 2908–2912 (2007).

    PubMed  Google Scholar 

  53. Ong, M. E. et al. Comparison of chest compression only and standard cardiopulmonary resuscitation for out-of-hospital cardiac arrest in Singapore. Resuscitation 78, 119–126 (2008).

    PubMed  Google Scholar 

  54. Bobrow, B. J. et al. Chest compression-only CPR by lay rescuers and survival from out-of-hospital cardiac arrest. JAMA 304, 1447–1454 (2010).

    CAS  PubMed  Google Scholar 

  55. Iwami, T. et al. Chest compression-only cardiopulmonary resuscitation for out-of-hospital cardiac arrest with public-access defibrillation: a nationwide cohort study. Circulation 126, 2844–2851 (2012).

    PubMed  Google Scholar 

  56. Kitamura, T. et al. Chest compression-only versus conventional cardiopulmonary resuscitation for bystander-witnessed out-of-hospital cardiac arrest of medical origin: a propensity score-matched cohort from 143,500 patients. Resuscitation 126, 29–35 (2018).

    PubMed  Google Scholar 

  57. Iwami, T., Kitamura, T., Kiyohara, K. & Kawamura, T. Dissemination of chest compression-only cardiopulmonary resuscitation and survival after out-of-hospital cardiac arrest. Circulation 132, 415–422 (2015).

    PubMed  Google Scholar 

  58. Kitamura, T. et al. Bystander-initiated rescue breathing for out-of-hospital cardiac arrests of noncardiac origin. Circulation 122, 293–299 (2010).

    PubMed  Google Scholar 

  59. Ogawa, T. et al. Outcomes of chest compression only CPR versus conventional CPR conducted by lay people in patients with out of hospital cardiopulmonary arrest witnessed by bystanders: nationwide population based observational study. BMJ 342, c7106 (2011).

    PubMed  Google Scholar 

  60. Kitamura, T. et al. Nationwide improvements in survival from out-of-hospital cardiac arrest in Japan. Circulation 126, 2834–2843 (2012).

    PubMed  Google Scholar 

  61. Kitamura, T. et al. Time-dependent effectiveness of chest compression-only and conventional cardiopulmonary resuscitation for out-of-hospital cardiac arrest of cardiac origin. Resuscitation 82, 3–9 (2011).

    PubMed  Google Scholar 

  62. Kitamura, T. et al. Conventional and chest-compression-only cardiopulmonary resuscitation by bystanders for children who have out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study. Lancet 375, 1347–1354 (2010).

    PubMed  Google Scholar 

  63. Fukuda, T. et al. Conventional versus compression-only versus no-bystander cardiopulmonary resuscitation for pediatric out-of-hospital cardiac arrest. Circulation 134, 2060–2070 (2016).

    PubMed  Google Scholar 

  64. Naim, M. Y. et al. Association of Bystander Cardiopulmonary Resuscitation with overall and neurologically favorable survival after pediatric out-of-hospital cardiac arrest in the United States: a report from the Cardiac Arrest Registry to Enhance Survival Surveillance Registry. JAMA Pediatr. 171, 133–141 (2017).

    PubMed  Google Scholar 

  65. Bobrow, B. J. et al. Implementation of a regional telephone cardiopulmonary resuscitation program and outcomes after out-of-hospital cardiac arrest. JAMA Cardiol. 1, 294–302 (2016).

    PubMed  Google Scholar 

  66. Harjanto, S. et al. A before-after interventional trial of dispatcher-assisted cardio-pulmonary resuscitation for out-of-hospital cardiac arrests in Singapore. Resuscitation 102, 85–93 (2016).

    PubMed  Google Scholar 

  67. Rea, T. D., Eisenberg, M. S., Culley, L. L. & Becker, L. Dispatcher-assisted cardiopulmonary resuscitation and survival in cardiac arrest. Circulation 104, 2513–2516 (2001).

    CAS  PubMed  Google Scholar 

  68. Wu, Z. et al. Telephone cardiopulmonary resuscitation is independently associated with improved survival and improved functional outcome after out-of-hospital cardiac arrest. Resuscitation 122, 135–140 (2018).

    PubMed  Google Scholar 

  69. Ro, Y. S. et al. Effect of dispatcher-assisted cardiopulmonary resuscitation program and location of out-of-hospital cardiac arrest on survival and neurologic outcome. Ann. Emerg. Med. 69, 52–61 (2017).

    PubMed  Google Scholar 

  70. White, L. et al. Dispatcher-assisted cardiopulmonary resuscitation: risks for patients not in cardiac arrest. Circulation 121, 91–97 (2010).

    PubMed  Google Scholar 

  71. Hallstrom, A., Cobb, L., Johnson, E. & Copass, M. Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N. Engl. J. Med. 342, 1546–1553 (2000).

    CAS  PubMed  Google Scholar 

  72. Rea, T. D. et al. CPR with chest compression alone or with rescue breathing. N. Engl. J. Med. 363, 423–433 (2010).

    CAS  PubMed  Google Scholar 

  73. Svensson, L. et al. Compression-only CPR or standard CPR in out-of-hospital cardiac arrest. N. Engl. J. Med. 363, 434–442 (2010).

    CAS  PubMed  Google Scholar 

  74. Hauff, S. R. et al. Factors impeding dispatcher-assisted telephone cardiopulmonary resuscitation. Ann. Emerg. Med. 42, 731–737 (2003).

    PubMed  Google Scholar 

  75. Hupfl, M., Selig, H. F. & Nagele, P. Chest-compression-only versus standard cardiopulmonary resuscitation: a meta-analysis. Lancet 376, 1552–1557 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. Zhan, L., Yang, L. J., Huang, Y., He, Q. & Liu, G. J. Continuous chest compression versus interrupted chest compression for cardiopulmonary resuscitation of non-asphyxial out-of-hospital cardiac arrest. Cochrane Database Syst. Rev. 3, CD010134 (2017).

    PubMed  Google Scholar 

  77. Tanaka, Y., Taniguchi, J., Wato, Y., Yoshida, Y. & Inaba, H. The continuous quality improvement project for telephone-assisted instruction of cardiopulmonary resuscitation increased the incidence of bystander CPR and improved the outcomes of out-of-hospital cardiac arrests. Resuscitation 83, 1235–1241 (2012).

    PubMed  Google Scholar 

  78. Hardeland, C. et al. Targeted simulation and education to improve cardiac arrest recognition and telephone assisted CPR in an emergency medical communication centre. Resuscitation 114, 21–26 (2017).

    PubMed  Google Scholar 

  79. Meaney, P. A. et al. Cardiopulmonary resuscitation quality: [corrected] improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. Circulation 128, 417–435 (2013).

    PubMed  Google Scholar 

  80. Wik, L. et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293, 299–304 (2005).

    CAS  PubMed  Google Scholar 

  81. Cheskes, S. et al. Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation 124, 58–66 (2011).

    PubMed  PubMed Central  Google Scholar 

  82. Christenson, J. et al. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation 120, 1241–1247 (2009).

    PubMed  PubMed Central  Google Scholar 

  83. Vadeboncoeur, T. et al. Chest compression depth and survival in out-of-hospital cardiac arrest. Resuscitation 85, 182–188 (2014).

    PubMed  Google Scholar 

  84. Berg, R. A. et al. Association between diastolic blood pressure during pediatric in-hospital cardiopulmonary resuscitation and survival. Circulation 137, 1784–1795 (2018).

    PubMed  Google Scholar 

  85. Neumar, R. W. et al. Part 1: executive summary: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132, S315–S367 (2015).

    PubMed  Google Scholar 

  86. The National Academies Collection: Reports funded by National Institutes of Health. Strategies to Improve Cardiac Arrest Survival: A Time to Act (eds Graham, R. McCoy, M. A. & Schultz, A. M.) (National Academies Press, Washington DC, 2015).

  87. Olasveengen, T. M. et al. Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial. JAMA 302, 2222–2229 (2009).

    PubMed  Google Scholar 

  88. Jacobs, I. G., Finn, J. C., Jelinek, G. A., Oxer, H. F. & Thompson, P. L. Effect of adrenaline on survival in out-of-hospital cardiac arrest: a randomised double-blind placebo-controlled trial. Resuscitation 82, 1138–1143 (2011).

    CAS  PubMed  Google Scholar 

  89. Perkins, G. D. et al. A randomized trial of epinephrine in out-of-hospital cardiac arrest. N. Engl. J. Med. 379, 711–721 (2018).

    CAS  PubMed  Google Scholar 

  90. Andersen, L. W. et al. Time to epinephrine and survival after pediatric in-hospital cardiac arrest. JAMA 314, 802–810 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tanaka, H. et al. Favorable neurological outcomes by early epinephrine administration within 19 minutes after EMS call for out-of-hospital cardiac arrest patients. Am. J. Emerg. Med. 34, 2284–2290 (2016).

    CAS  PubMed  Google Scholar 

  92. Kudenchuk, P. J. et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N. Engl. J. Med. 341, 871–878 (1999).

    CAS  PubMed  Google Scholar 

  93. Dorian, P. et al. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N. Engl. J. Med. 346, 884–890 (2002).

    CAS  PubMed  Google Scholar 

  94. Kudenchuk, P. J., Daya, M. & Dorian, P. & Resuscitation Outcomes Consortium Investigators. Amiodarone, lidocaine, or placebo in out-of-hospital cardiac arrest. N. Engl. J. Med. 375, 802–803 (2016).

    PubMed  Google Scholar 

  95. Panchal, A. R. et al. 2018 American Heart Association Focused update on advanced cardiovascular life support use of antiarrhythmic drugs during and immediately after cardiac arrest: an update to the American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 138, 740–749 (2018).

    Google Scholar 

  96. Link, M. S. et al. Part 7: Adult advanced cardiovascular life support: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132, S444–S464 (2015).

    PubMed  Google Scholar 

  97. McCarthy, J. J. et al. Out-of-hospital cardiac arrest resuscitation systems of care: a scientific statement from the American Heart Association. Circulation 137, e645–e660 (2018).

    PubMed  Google Scholar 

  98. Nichol, G. et al. Regional systems of care for out-of-hospital cardiac arrest: a policy statement from the American Heart Association. Circulation 121, 709–729 (2010).

    PubMed  Google Scholar 

  99. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 (2002).

    Google Scholar 

  100. Bernard, S. A. et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563 (2002).

    PubMed  Google Scholar 

  101. Nielsen, N. et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N. Engl. J. Med. 369, 2197–2206 (2013).

    CAS  PubMed  Google Scholar 

  102. Callaway, C. W. et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132, S465–S482 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Donnino, M. W. et al. Temperature management after cardiac arrest: an advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation 132, 2448–2456 (2015).

    CAS  PubMed  Google Scholar 

  104. Spaulding, C. M. et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N. Engl. J. Med. 336, 1629–1633 (1997).

    CAS  PubMed  Google Scholar 

  105. Nikolaou, N. I. et al. Part 5: acute coronary syndromes: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 95, e121–e146 (2015).

    PubMed  Google Scholar 

  106. Wadhera, R. K., Joynt Maddox, K. E., Yeh, R. W. & Bhatt, D. L. Public reporting of percutaneous coronary intervention outcomes: moving beyond the status quo. JAMA Cardiol. 3, 635–640 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Elmer, J. et al. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation 102, 127–135 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. Sandroni, C. et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 1: patients not treated with therapeutic hypothermia. Resuscitation 84, 1310–1323 (2013).

    PubMed  Google Scholar 

  109. Sandroni, C. et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: patients treated with therapeutic hypothermia. Resuscitation 84, 1324–1338 (2013).

    PubMed  Google Scholar 

  110. Carr, B. G. et al. A national analysis of the relationship between hospital factors and post-cardiac arrest mortality. Intensive Care Med. 35, 505–511 (2009).

    PubMed  Google Scholar 

  111. Carr, B. G., Kahn, J. M., Merchant, R. M., Kramer, A. A. & Neumar, R. W. Inter-hospital variability in post-cardiac arrest mortality. Resuscitation 80, 30–34 (2009).

    PubMed  Google Scholar 

  112. Schober, A. et al. Admission of out-of-hospital cardiac arrest victims to a high volume cardiac arrest center is linked to improved outcome. Resuscitation 106, 42–48 (2016).

    PubMed  Google Scholar 

  113. Tranberg, T. et al. Distance to invasive heart centre, performance of acute coronary angiography, and angioplasty and associated outcome in out-of-hospital cardiac arrest: a nationwide study. Eur. Heart J. 38, 1645–1652 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Wnent, J. et al. Choice of hospital after out-of-hospital cardiac arrest—a decision with far-reaching consequences: a study in a large German city. Crit. Care 16, R164 (2012).

    PubMed  PubMed Central  Google Scholar 

  115. Spaite, D. W. et al. Statewide regionalization of postarrest care for out-of-hospital cardiac arrest: association with survival and neurologic outcome. Ann. Emerg. Med. 64, 496–506 (2014).

    PubMed  Google Scholar 

  116. Bosson, N. et al. Survival and neurologic outcome after out-of-hospital cardiac arrest: results one year after regionalization of post-cardiac arrest care in a large metropolitan area. Prehosp. Emerg. Care 18, 217–223 (2014).

    PubMed  Google Scholar 

  117. Zijlstra, J. A. et al. Local lay rescuers with AEDs, alerted by text messages, contribute to early defibrillation in a Dutch out-of-hospital cardiac arrest dispatch system. Resuscitation 85, 1444–1449 (2014).

    PubMed  Google Scholar 

  118. Ringh, M. et al. Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest. N. Engl. J. Med. 372, 2316–2325 (2015).

    CAS  PubMed  Google Scholar 

  119. Smith, C. M. et al. The use of trained volunteers in the response to out-of-hospital cardiac arrest - the GoodSAM experience. Resuscitation 121, 123–126 (2017).

    PubMed  Google Scholar 

  120. Pulver, A., Wei, R. & Mann, C. Locating AED enabled medical drones to enhance cardiac arrest response times. Prehosp. Emerg. Care 20, 378–389 (2016).

    PubMed  Google Scholar 

  121. Boutilier, J. J. et al. Optimizing a drone network to deliver automated external defibrillators. Circulation 135, 2454–2465 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Claesson, A. et al. Time to delivery of an automated external defibrillator using a drone for simulated out-of-hospital cardiac arrests versus emergency medical services. JAMA 317, 2332–2334 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Kinoshi, T. et al. Mobile automated external defibrillator response system during road races. N. Engl. J. Med. 379, 488–489 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

D.D.B. is supported by a T32 postdoctoral training grant from the National Heart, Lung, and Blood Institute (T32 HL007604).

Reviewer information

Nature Reviews Cardiology thanks J. Soar and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Robert A. Berg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, D.D., Bobrow, B.J. & Berg, R.A. Key components of a community response to out-of-hospital cardiac arrest. Nat Rev Cardiol 16, 407–416 (2019). https://doi.org/10.1038/s41569-019-0175-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0175-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing