Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Circadian rhythms and the molecular clock in cardiovascular biology and disease


The Earth turns on its axis every 24 h; almost all life on the planet has a mechanism — circadian rhythmicity — to anticipate the daily changes caused by this rotation. The molecular clocks that control circadian rhythms are being revealed as important regulators of physiology and disease. In humans, circadian rhythms have been studied extensively in the cardiovascular system. Many cardiovascular functions, such as endothelial function, thrombus formation, blood pressure and heart rate, are now known to be regulated by the circadian clock. Additionally, the onset of acute myocardial infarction, stroke, arrhythmias and other adverse cardiovascular events show circadian rhythmicity. In this Review, we summarize the role of the circadian clock in all major cardiovascular cell types and organs. Second, we discuss the role of circadian rhythms in cardiovascular physiology and disease. Finally, we postulate how circadian rhythms can serve as a therapeutic target by exploiting or altering molecular time to improve existing therapies and develop novel ones.

Key points

  • Molecular clocks are found in all cardiovascular cell types.

  • Various cardiovascular functions, including endothelial function, thrombus formation, blood pressure and heart rate, are regulated by the circadian clock.

  • Disruption of 24-h rhythms leads to cardiovascular disease, including heart failure, myocardial infarction and arrhythmias.

  • 24-h rhythms are present in the development, risk factors, incidence and outcome of cardiovascular disease.

  • Cardiovascular disease leads to disrupted circadian rhythm and sleep problems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of the core molecular clockwork within the cardiovascular system.


  1. 1.

    Bargiello, T. A., Jackson, F. R. & Young, M. W. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312, 752–754 (1984).

    CAS  PubMed  Google Scholar 

  2. 2.

    Hardin, P. E., Hall, J. C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990).

    CAS  PubMed  Google Scholar 

  3. 3.

    Siwicki, K. K., Eastman, C., Petersen, G., Rosbash, M. & Hall, J. C. Antibodies to the period gene product of drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1, 141–150 (1988).

    CAS  PubMed  Google Scholar 

  4. 4.

    Zehring, W. A. et al. P-Element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39, 369–376 (1984).

    CAS  PubMed  Google Scholar 

  5. 5.

    Brown, T. M. & Piggins, H. D. Electrophysiology of the suprachiasmatic circadian clock. Prog. Neurobiol. 82, 229–255 (2007).

    CAS  PubMed  Google Scholar 

  6. 6.

    Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    CAS  PubMed  Google Scholar 

  7. 7.

    Cajochen, C., Kräuchi, K. & Wirz-Justice, A. Role of melatonin in the regulation of human circadian rhythms and sleep. J. Neuroendocrinol. 15, 432–437 (2003).

    CAS  PubMed  Google Scholar 

  8. 8.

    Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493 (2001).

    CAS  PubMed  Google Scholar 

  9. 9.

    Mistlberger, R. E. & Skene, D. J. Social influences on mammalian circadian rhythms: animal and human studies. Biol. Rev. Camb. Philos. Soc. 79, 533–556 (2004).

    PubMed  Google Scholar 

  10. 10.

    Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Vitaterna, M. H., Takahashi, J. S. & Turek, F. W. Overview of circadian rhythms. Alcohol Res. Health 25, 85–93 (2001).

    CAS  PubMed  Google Scholar 

  12. 12.

    Beesley, S., Noguchi, T. & Welsh, D. K. Cardiomyocyte circadian oscillations are cell-autonomous, amplified by β-adrenergic signaling, and synchronized in cardiac ventricle tissue. PLOS ONE 11, e0159618 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Takeda, N. et al. Thrombomodulin is a clock-controlled gene in vascular endothelial cells. J. Biol. Chem. 282, 32561–32567 (2007).

    CAS  PubMed  Google Scholar 

  14. 14.

    Du Pré, B. C. et al. SCA1+ cells from the heart possess a molecular circadian clock and display circadian oscillations in cellular functions. Stem Cell Rep. 9, 762–769 (2017).

    Google Scholar 

  15. 15.

    Lin, C. et al. The rhythmic expression of clock genes attenuated in human plaque-derived vascular smooth muscle cells. Lipids Health Dis. 13, 14 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    CAS  PubMed  Google Scholar 

  17. 17.

    Kollias, G. E. et al. Diurnal variation of endothelial function and arterial stiffness in hypertension. J. Hum. Hypertens. 23, 597 (2009).

    CAS  PubMed  Google Scholar 

  18. 18.

    Degaute, J. P., van de Borne, P., Linkowski, P. & Van Cauter, E. Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men. Hypertension 18, 199–210 (1991).

    CAS  PubMed  Google Scholar 

  19. 19.

    Portaluppi, F. & Hermida, R. C. Circadian rhythms in cardiac arrhythmias and opportunities for their chronotherapy. Adv. Drug Deliv. Rev. 59, 940–951 (2007).

    CAS  PubMed  Google Scholar 

  20. 20.

    Bulluck, H. et al. Circadian variation in acute myocardial infarct size assessed by cardiovascular magnetic resonance in reperfused STEMI patients. Int. J. Cardiol. 230, 149–154 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Manfredini, R. et al. Twenty-four-hour patterns in occurrence and pathophysiology of acute cardiovascular events and ischemic heart disease. Chronobiol. Int. 30, 6–16 (2013).

    PubMed  Google Scholar 

  22. 22.

    Bozek, K. et al. Regulation of clock-controlled genes in mammals. PLOS ONE 4, e4882 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    CAS  PubMed  Google Scholar 

  24. 24.

    Storch, K.-F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    CAS  PubMed  Google Scholar 

  25. 25.

    Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).

    CAS  PubMed  Google Scholar 

  26. 26.

    Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    CAS  PubMed  Google Scholar 

  27. 27.

    Solt, L. A., Kojetin, D. J. & Burris, T. P. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem. 3, 623–638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Akashi, M. & Takumi, T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441–448 (2005).

    CAS  PubMed  Google Scholar 

  29. 29.

    Dierickx, P. et al. in Stem Cells and Cardiac Regeneration (ed. Madonna, R.) 57–78 (Springer International Publishing, 2016).

  30. 30.

    Mendoza-Viveros, L. et al. Molecular modulators of the circadian clock: lessons from flies and mice. Cell. Mol. Life Sci. 74, 1035–1059 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Du Pré, B. C. et al. Circadian rhythms in cell maturation. Physiology 29, 72–83 (2014).

    PubMed  Google Scholar 

  32. 32.

    Dierickx, P. et al. Circadian networks in human embryonic stem cell-derived cardiomyocytes. EMBO Rep. 18, 1199–1212 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kowalska, E., Moriggi, E., Bauer, C., Dibner, C. & Brown, S. A. The circadian clock starts ticking at a developmentally early stage. J. Biol. Rhythms 25, 442–449 (2010).

    PubMed  Google Scholar 

  34. 34.

    Yagita, K. et al. Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc. Natl Acad. Sci. USA 107, 3846–3851 (2010).

    CAS  PubMed  Google Scholar 

  35. 35.

    Weger, M., Diotel, N., Dorsemans, A.-C., Dickmeis, T. & Weger, B. D. Stem cells and the circadian clock. Dev. Biol. 431, 111–123 (2017).

    CAS  PubMed  Google Scholar 

  36. 36.

    Davidson, A. J., London, B., Block, G. D. & Menaker, M. Cardiovascular tissues contain independent circadian clocks. Clin. Exp. Hypertens. 27, 307–311 (2005).

    CAS  PubMed  Google Scholar 

  37. 37.

    McNamara, P. et al. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105, 877–889 (2001).

    CAS  PubMed  Google Scholar 

  38. 38.

    Nonaka, H. et al. Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells. Circulation 104, 1746–1748 (2001).

    CAS  PubMed  Google Scholar 

  39. 39.

    Chalmers, J. A. et al. Vascular circadian rhythms in a mouse vascular smooth muscle cell line (Movas-1). Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1529–R1538 (2008).

    CAS  PubMed  Google Scholar 

  40. 40.

    Welsh, D. K., Yoo, S.-H., Liu, A. C., Takahashi, J. S. & Kay, S. A. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene rxpression. Curr. Biol. 14, 2289–2295 (2004).

  41. 41.

    Durgan, D. J. The intrinsic circadian clock within the cardiomyocyte. Am. J. Physiol. Heart Circ. Physiol. 289, H1530–H1541 (2005).

    CAS  PubMed  Google Scholar 

  42. 42.

    Sato, F. et al. Smad3 and Bmal1 regulate p21 and S100A4 expression in myocardial stromal fibroblasts via TNF-α. Histochem. Cell Biol. 148, 617–624 (2017).

    CAS  PubMed  Google Scholar 

  43. 43.

    Panza, J. A., Epstein, S. E. & Quyyumi, A. A. Circadian variation in vascular tone and its relation to α-sympathetic vasoconstrictor activity. N. Engl. J. Med. 325, 986–990 (1991).

    CAS  PubMed  Google Scholar 

  44. 44.

    Millar-Craig, M. W., Bishop, C. N. & Raftery, E. B. Circadian variation of blood-pressure. Lancet 311, 795–797 (1978).

    Google Scholar 

  45. 45.

    Bastianini, S., Silvani, A., Berteotti, C., Lo Martire, V. & Zoccoli, G. Mice show circadian rhythms of blood pressure during each wake-sleep state. Chronobiol. Int. 29, 82–86 (2012).

    PubMed  Google Scholar 

  46. 46.

    Sei, H. et al. Diurnal amplitudes of arterial pressure and heart rate are dampened in Clock mutant mice and adrenalectomized mice. Endocrinology 149, 3576–3580 (2008).

    CAS  PubMed  Google Scholar 

  47. 47.

    Viswambharan, H. et al. Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 115, 2188–2195 (2007).

    CAS  PubMed  Google Scholar 

  48. 48.

    Curtis, A. M. et al. Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc. Natl Acad. Sci. USA 104, 3450–3455 (2007).

    CAS  PubMed  Google Scholar 

  49. 49.

    Martino, T. et al. Day/night rhythms in gene expression of the normal murine heart. J. Mol. Med. 82, 256–264 (2004).

    CAS  PubMed  Google Scholar 

  50. 50.

    Leibetseder, V. et al. Clock genes display rhythmic expression in human hearts. Chronobiol. Int. 26, 621–636 (2009).

    CAS  PubMed  Google Scholar 

  51. 51.

    Martino, T. A. & Young, M. E. Influence of the cardiomyocyte circadian clock on cardiac physiology and pathophysiology. J. Biol. Rhythms 30, 183–205 (2015).

    CAS  PubMed  Google Scholar 

  52. 52.

    Young, M. E. The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function. Am. J. Physiol. Heart Circ. Physiol. 290, H1–H16 (2006).

    CAS  PubMed  Google Scholar 

  53. 53.

    Paschos, G. K. & FitzGerald, G. A. Circadian clocks and vascular function. Circ. Res. 106, 833–841 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Bray, M. S. et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am. J. Physiol. Heart Circ. Physiol. 294, H1036–H1047 (2008).

    CAS  PubMed  Google Scholar 

  55. 55.

    Durgan, D. J. & Young, M. E. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ. Res. 106, 647–658 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Shostak, A. Circadian clock, cell division, and cancer: from molecules to organism. Int. J. Mol. Sci. 18, E873 (2017).

    PubMed  Google Scholar 

  57. 57.

    Scheiermann, C., Gibbs, J., Ince, L. & Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 18, 423–437 (2018).

    CAS  PubMed  Google Scholar 

  58. 58.

    Kondratova, A. A. & Kondratov, R. V. The circadian clock and pathology of the ageing brain. Nat. Rev. Neurosci. 13, 325–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Penev, P. D., Kolker, D. E., Zee, P. C. & Turek, F. W. Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am. J. Physiol. 275, H2334–H2337 (1998).

    CAS  PubMed  Google Scholar 

  60. 60.

    Martino, T. A. et al. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1675–R1683 (2008).

    CAS  PubMed  Google Scholar 

  61. 61.

    Martino, T. A. et al. Disturbed diurnal rhythm alters gene expression and exacerbates cardiovascular disease with rescue by resynchronization. Hypertension 49, 1104–1113 (2007).

    CAS  PubMed  Google Scholar 

  62. 62.

    Lefta, M., Campbell, K. S., Feng, H.-Z., Jin, J.-P. & Esser, K. A. Development of dilated cardiomyopathy in Bmal1-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 303, H475–H485 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Jeyaraj, D. et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483, 96–99 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Young, M. E. et al. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J. Biol. Rhythms 29, 257–276 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Cheng, B. et al. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis. Proc. Natl Acad. Sci. USA 108, 17147–17152 (2011).

    CAS  PubMed  Google Scholar 

  66. 66.

    Rüger, M. & Scheer, F. A. J. L. Effects of circadian disruption on the cardiometabolic system. Rev. Endocr. Metab. Disord. 10, 245–260 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Thosar, S. S., Butler, M. P. & Shea, S. A. Role of the circadian system in cardiovascular disease. J. Clin. Invest. 128, 2157–2167 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Portaluppi, F. et al. Circadian rhythms and cardiovascular health. Sleep Med. Rev. 16, 151–166 (2012).

    PubMed  Google Scholar 

  69. 69.

    Reutrakul, S. & Knutson, K. L. Consequences of circadian disruption on cardiometabolic health. Sleep Med. Clin. 10, 455–468 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    CAS  PubMed  Google Scholar 

  71. 71.

    Zeggini, E. et al. Multiple type 2 diabetes susceptibility genes following genome-wide association scan in UK samples. Science 316, 1336–1341 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Woon, P. Y. et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl Acad. Sci. USA 104, 14412–14417 (2007).

    CAS  PubMed  Google Scholar 

  73. 73.

    Scott, E. M., Carter, A. M. & Grant, P. J. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int. J. Obes. 32, 658–662 (2008).

    CAS  Google Scholar 

  74. 74.

    Fabbian, F. et al. Chronotype, gender and general health. Chronobiol. Int. 33, 863–882 (2016).

    CAS  PubMed  Google Scholar 

  75. 75.

    Laugsand, L. E., Strand, L. B., Platou, C., Vatten, L. J. & Janszky, I. Insomnia and the risk of incident heart failure: a population study. Eur. Heart J. 35, 1382–1393 (2014).

    PubMed  Google Scholar 

  76. 76.

    Laugsand, L. E., Vatten, L. J., Platou, C. & Janszky, I. Insomnia and the risk of acute myocardial infarction: A population study. Circulation 124, 2073–2081 (2011).

    PubMed  Google Scholar 

  77. 77.

    Vyas, M. V. et al. Shift work and vascular events: systematic review and meta-analysis. BMJ 345, e4800 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Esquirol, Y. et al. Shift work and cardiovascular risk factors: new knowledge from the past decade. Arch. Cardiovasc. Dis. 104, 636–668 (2011).

    PubMed  Google Scholar 

  79. 79.

    Kawachi, I. et al. Prospective study of shift work and risk of coronary heart disease in women. Circulation 92, 3178–3182 (1995).

    CAS  PubMed  Google Scholar 

  80. 80.

    Tepas, D. I. Do eating and drinking habits interact with work schedule variables? Work Stress 4, 203–211 (1990).

    Google Scholar 

  81. 81.

    Lo, S. H. et al. Working the night shift causes increased vascular stress and delayed recovery in young women. Chronobiol. Int. 27, 1454–1468 (2010).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Pan, A., Schernhammer, E. S., Sun, Q. & Hu, F. B. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLOS Med. 8, e1001141 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    St-Onge, M.-P. et al. Sleep duration and quality: impact on lifestyle behaviors and cardiometabolic health: a Scientific Statement from the American Heart Association. Circulation 134, e367–e386 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Knutsson, A., Jonsson, B. G., Akerstedt, T. & Orth-Gomer, K. Increased risk of ischaemic heart disease in shift workers. Lancet 328, 89–92 (1986).

    Google Scholar 

  85. 85.

    Paul, T. & Lemmer, B. Disturbance of circadian rhythms in analgosedated intensive care unit patients with and without craniocerebral injury. Chronobiol. Int. 24, 45–61 (2007).

    CAS  PubMed  Google Scholar 

  86. 86.

    Dessap, A. M. et al. Delirium and circadian rhythm of melatonin during weaning from mechanical ventilation an ancillary study of a weaning trial. Chest 148, 1231–1241 (2015).

    PubMed  Google Scholar 

  87. 87.

    Buchman, T. G., Stein, P. K. & Goldstein, B. Heart rate variability in critical illness and critical care. Curr. Opin. Crit. Care 8, 311–315 (2002).

    PubMed  Google Scholar 

  88. 88.

    Cornélissen, G., Halberg, F., Otsuka, K., Singh, R. B. & Chen, C.-H. Chronobiology predicts actual and proxy outcomes when dipping fails. Hypertension 49, 237–239 (2007).

    PubMed  Google Scholar 

  89. 89.

    Muller, J. E. et al. Circadian variation in the frequency of sudden cardiac death. Circulation 75, 131–138 (1987).

    CAS  PubMed  Google Scholar 

  90. 90.

    Viskin, S. et al. Circadian variation of symptomatic paroxysmal atrial fibrillation: data from almost 10000 episodes. Eur. Heart J. 20, 1429–1434 (1999).

    CAS  PubMed  Google Scholar 

  91. 91.

    Matsuo, K. et al. The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur. Heart J. 20, 465–470 (1999).

    CAS  PubMed  Google Scholar 

  92. 92.

    Manfredini, R. et al. Chronobiology of rupture and dissection of aortic aneurysms. J. Vasc. Surg. 40, 382–388 (2004).

    CAS  PubMed  Google Scholar 

  93. 93.

    Muller, J. E. et al. Circadian variation in the frequency of onset of acute myocardial infarction. N. Engl. J. Med. 313, 1315–1322 (1985).

    CAS  PubMed  Google Scholar 

  94. 94.

    Shen, M. J. & Zipes, D. P. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 114, 1004–1021 (2014).

    CAS  PubMed  Google Scholar 

  95. 95.

    Manfredini, R., Gallerani, M., Portaluppi, F. & Fersini, C. Relationships of the circadian rhythms of thrombotic, ischemic, hemorrhagic, and arrhythmic events to blood pressure rhythms. Ann. NY Acad. Sci. 783, 141–158 (1996).

    CAS  PubMed  Google Scholar 

  96. 96.

    Shea, S. A., Hilton, M. F., Hu, K. & Scheer, F. A. J. L. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ. Res. 108, 980–984 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Dashti, H. S. et al. Clock genes explain a large proportion of phenotypic variance in systolic blood pressure and this control is not modified by environmental temperature. Am. J. Hypertens. 29, 132–140 (2016).

    PubMed  Google Scholar 

  98. 98.

    Scheer, F. A. J. L. & Shea, S. A. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. Blood 123, 590–593 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Eckle, T. et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat. Med. 18, 774–782 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Reiter, R., Swingen, C., Moore, L., Henry, T. D. & Traverse, J. H. Circadian dependence of infarct size and left ventricular function after ST elevation myocardial infarction. Circ. Res. 110, 105–110 (2012).

    CAS  PubMed  Google Scholar 

  101. 101.

    Fournier, S. et al. Circadian variations of ischemic burden among patients with myocardial infarction undergoing primary percutaneous coronary intervention. Am. Heart J. 163, 208–213 (2012).

    PubMed  Google Scholar 

  102. 102.

    Ammirati, E., Maseri, A. & Cannistraci, C. V. Still need for compelling evidence to support the circadian dependence of infarct size after ST-elevation myocardial infarction. Circ. Res. 113, e43–e44 (2013).

    CAS  PubMed  Google Scholar 

  103. 103.

    Durgan, D. J. et al. Short communication: Ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ. Res. 106, 546–550 (2010).

    CAS  PubMed  Google Scholar 

  104. 104.

    Bennardo, M. et al. Day-night dependence of gene expression and inflammatory responses in the remodeling murine heart post-myocardial infarction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R1243–R1254 (2016).

    PubMed  Google Scholar 

  105. 105.

    Alibhai, F. J. et al. Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ. Res. 114, 1713–1722 (2014).

    CAS  PubMed  Google Scholar 

  106. 106.

    Kung, T. A. et al. Rapid attenuation of circadian clock gene oscillations in the rat heart following ischemia-reperfusion. J. Mol. Cell. Cardiol. 43, 744–753 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Mohri, T. et al. Alterations of circadian expressions of clock genes in Dahl salt-sensitive rats fed a high-salt diet. Hypertension 42, 189–194 (2003).

    CAS  PubMed  Google Scholar 

  108. 108.

    Young, M. E., Razeghi, P. & Taegtmeyer, H. Clock genes in the heart: characterization and attenuation with hypertrophy. Circ. Res. 88, 1142–1150 (2001).

    CAS  PubMed  Google Scholar 

  109. 109.

    Maruo, T. et al. Circadian variation of endothelial function in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 97, 699–702 (2006).

    CAS  PubMed  Google Scholar 

  110. 110.

    Dhaun, N. et al. Diurnal variation in blood pressure and arterial stiffness in chronic kidney disease: the role of endothelin-1. Hypertension 64, 296–304 (2014).

    CAS  PubMed  Google Scholar 

  111. 111.

    Floras, J. S. Sleep apnea and cardiovascular risk. J. Cardiol. 63, 3–8 (2014).

    PubMed  Google Scholar 

  112. 112.

    Kaneko, Y. et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N. Engl. J. Med. 348, 1233–1241 (2003).

    PubMed  Google Scholar 

  113. 113.

    Vacas, S. et al. The feasibility and utility of continuous sleep monitoring in critically ill patients using a portable electroencephalography monitor. Anesth. Analg. 123, 206–212 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Tsimakouridze, E. V. et al. Chronomics of pressure overloadinduced cardiac hypertrophy in mice reveals altered day night gene expression and biomarkers of heart disease. Chronobiol. Int. 29, 810–821 (2012).

    CAS  PubMed  Google Scholar 

  115. 115.

    Tsimakouridze, E. V., Alibhai, F. J. & Martino, T. A. Therapeutic applications of circadian rhythms for the cardiovascular system. Front. Pharmacol. 6, 77 (2015).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Podobed, P. et al. The day/night proteome in the murine heart. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R121–R137 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Dominguez-Rodriguez, A., Abreu-Gonzalez, P., Garcia-Gonzalez, M. & Reiter, R. J. Prognostic value of nocturnal melatonin levels as a novel marker in patients with ST-segment elevation myocardial infarction. Am. J. Cardiol. 97, 1162–1164 (2006).

    CAS  PubMed  Google Scholar 

  118. 118.

    Cornelissen, G. et al. Chronobiologically interpreted ambulatory blood pressure monitoring: past, present, and future. Biol. Rhythm Res. 50, 46–62 (2019).

    Google Scholar 

  119. 119.

    Fournier, S. et al. Circadian rhythm of blood cardiac troponin T concentration. Clin. Res. Cardiol. 106, 1026–1032 (2017).

    CAS  PubMed  Google Scholar 

  120. 120.

    du Pre, B. C. et al. Analysis of 24-h rhythm in ventricular repolarization identifies QT diurnality as a novel clinical parameter associated with previous ventricular arrhythmias in heart failure patients. Front. Physiol. 8, 590 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Oldham, M. A., Lee, H. B. & Desan, P. H. Circadian rhythm disruption in the critically ill: an opportunity for improving outcomes. Crit. Care Med. 44, 207–217 (2016).

    PubMed  Google Scholar 

  122. 122.

    Van Rompaey, B. et al. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit. Care 13, R77 (2009).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Perras, B., Meier, M. & Dodt, C. Light and darkness fail to regulate melatonin release in critically ill humans. Intensive Care Med. 33, 1954–1958 (2007).

    CAS  PubMed  Google Scholar 

  124. 124.

    Carden, S. M. Entrainment of free-running circadian rhythms by melatonin in blind people: melatonin, circadian rhythms and sleep (Editorial). Surv. Ophthalmol. 46, 299–300 (2001).

    Google Scholar 

  125. 125.

    Al-Aama, T. et al. Melatonin decreases delirium in elderly patients: a randomized, placebo-controlled trial. Int. J. Geriatr. Psychiatry 26, 687–694 (2011).

    PubMed  Google Scholar 

  126. 126.

    de Jonghe, A. et al. Effect of melatonin on incidence of delirium among patients with hip fracture: a multicentre, double-blind randomized controlled trial. Can. Med. Assoc. J. 186, E547–E556 (2014).

    Google Scholar 

  127. 127.

    Purnell, M. T., Feyer, A. M. & Herbison, G. P. The impact of a nap opportunity during the night shift on the performance and alertness of 12-h shift workers. J. Sleep Res. 11, 219–227 (2002).

    CAS  PubMed  Google Scholar 

  128. 128.

    Neil-Sztramko, S. E., Pahwa, M., Demers, P. A. & Gotay, C. C. Health-related interventions among night shift workers: a critical review of the literature. Scand. J. Work Environ. Health 40, 543–556 (2014).

    PubMed  Google Scholar 

  129. 129.

    Sarafidis, P. et al. Prevalence and control of hypertension by 48-h ambulatory blood pressure monitoring in haemodialysis patients: a study by the European Cardiovascular and Renal Medicine (EURECA-m) working group of the ERA-EDTA. Nephrol. Dial. Transplant. 33, 1872 (2018).

    PubMed  Google Scholar 

  130. 130.

    Culleton, B. et al. Effect of frequent nocturnal hemodialysis versus conventional hemodialysis. J. Am. Med. Assoc. 298, 1291–1299 (2007).

    CAS  Google Scholar 

  131. 131.

    Boggia, J. et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet 370, 1219–1229 (2007).

    PubMed  Google Scholar 

  132. 132.

    Svensson, P., de Faire, U., Sleight, P., Yusuf, S. & Ostergren, J. Comparative effects of ramipril on ambulatory and office blood pressures: a HOPE substudy. Hypertension 38, E28–E32 (2001).

    CAS  PubMed  Google Scholar 

  133. 133.

    Hermida, R. C. & Ayala, D. E. Chronotherapy with the angiotensin-converting enzyme inhibitor ramipril in essential hypertension: improved blood pressure control with bedtime dosing. Hypertension 54, 40–46 (2009).

    CAS  PubMed  Google Scholar 

  134. 134.

    Hermida, R. C., Ayala, D. E., Mojón, A. & Fernández, J. R. Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J. Am. Coll. Cardiol. 58, 1165–1173 (2011).

    CAS  PubMed  Google Scholar 

  135. 135.

    De Giorgi, A., Mallozzi Menegatti, A., Fabbian, F., Portaluppi, F. & Manfredini, R. Circadian rhythms and medical diseases: does it matter when drugs are taken? Eur. J. Intern. Med. 24, 698–706 (2013).

    PubMed  Google Scholar 

  136. 136.

    Manfredini, R., Gallerani, M., Salmi, R. & Fersini, C. Circadian rhythms and the heart: Implications for chronotherapy of cardiovascular diseases. Clin. Pharmacol. Ther. 56, 244–247 (1994).

    CAS  PubMed  Google Scholar 

  137. 137.

    Zhao, P., Xu, P., Wan, C. & Wang, Z. Evening versus morning dosing regimen drug therapy for hypertension. Cochrane Database Syst. Rev. 10, CD004184 (2011).

    Google Scholar 

  138. 138.

    Scheer, F. A. J. L. et al. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLOS ONE 6, e24549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Bonten, T. N. et al. Time-dependent effects of aspirin on blood pressure and morning platelet reactivity: a randomized cross-over trial. Hypertension 65, 743–750 (2015).

    CAS  PubMed  Google Scholar 

  140. 140.

    Watanabe, Y., Halberg, F., Otsuka, K. & Cornelissen, G. Toward a personalized chronotherapy of high blood pressure and a circadian overswing. Clin. Exp. Hypertens. 35, 257–266 (2013).

    CAS  PubMed  Google Scholar 

  141. 141.

    Shinagawa, M. et al. Impact of circadian amplitude and chronotherapy: relevance to prevention and treatment of stroke. Biomed. Pharmacother. 55, 125s–132s (2001).

    CAS  PubMed  Google Scholar 

  142. 142.

    Montaigne, D. et al. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet 391, 59–69 (2017).

    PubMed  Google Scholar 

  143. 143.

    Madonna, R. et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur. Heart J. 37, 1789–1798 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Van Laake, L. W., Passier, R., Doevendans, P. A. & Mummery, C. L. Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ. Res. 102, 1008–1010 (2008).

    PubMed  Google Scholar 

  145. 145.

    Woldt, E. et al. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med. 19, 1039–1046 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Chen, Z., Yoo, S. H. & Takahashi, J. S. Small molecule modifiers of circadian clocks. Cell. Mol. Life Sci. 70, 2985–2998 (2013).

    CAS  PubMed  Google Scholar 

  147. 147.

    Eastman, C. I., Suh, C., Tomaka, V. A. & Crowley, S. J. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans. Sci. Rep. 5, 8381 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Chen, X. et al. Racial/ethnic differences in sleep disturbances: the Multi-Ethnic Study of Atherosclerosis (MESA). Sleep 38, 877–888 (2015).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Santhi, N. et al. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc. Natl Acad. Sci. USA 113, E2730–E2739 (2016).

    CAS  PubMed  Google Scholar 

  150. 150.

    Jarczok, M. N. et al. The heart’s rhythm ‘n’ blues: sex differences in circadian variation patterns of vagal activity vary by depressive symptoms in predominantly healthy employees. Chronobiol. Int. 35, 896–909 (2018).

    CAS  PubMed  Google Scholar 

  151. 151.

    Hood, S. & Amir, S. The aging clock: circadian rhythms and later life. J. Clin. Invest. 127, 437–446 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    López, F. et al. Are there ethnic differences in the circadian variation in onset of acute myocardial infarction? A comparison of 3 ethnic groups in Birmingham, UK and Alicante. Spain. Int. J. Cardiol. 100, 151–154 (2005).

    PubMed  Google Scholar 

  153. 153.

    Donat, M. et al. Linking sleep duration and obesity among black and white US adults. Clin. Pract. (2013).

    Article  Google Scholar 

  154. 154.

    Yamasaki, F., Schwartz, J. E., Gerber, L. M., Warren, K. & Pickering, T. G. Impact of shift work and race/ethnicity on the diurnal rhythm of blood pressure and catecholamines. Hypertension 32, 417–423 (1998).

    CAS  PubMed  Google Scholar 

  155. 155.

    Manfredini, R. et al. Sex and circadian periodicity of cardiovascular diseases: are women sufficiently represented in chronobiological studies? Heart Fail. Clin. 13, 719–738 (2017).

    PubMed  Google Scholar 

  156. 156.

    Berry, J. D. et al. Lifetime risks of cardiovascular disease. N. Engl. J. Med. 366, 321–329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Forman, D. E., Cittadini, A., Azhar, G., Douglas, P. S. & Wei, J. Y. Cardiac morphology and function in senescent rats: gender-related differences. J. Am. Coll. Cardiol. 30, 1872–1877 (1997).

    CAS  PubMed  Google Scholar 

  158. 158.

    Alibhai, F. J. et al. Female ClockΔ19/Δ19 mice are protected from the development of age-dependent cardiomyopathy. Cardiovasc. Res. 114, 259–271 (2018).

    CAS  PubMed  Google Scholar 

  159. 159.

    Halberg, F. et al. Diagnosing vascular variability anomalies, not only MESOR-hypertension. Am. J. Physiol. Heart Circ. Physiol. 305, H279–H294 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Smolensky, M. H., Hermida, R. C., Ayala, D. E., Tiseo, R. & Portaluppi, F. Administration-time-dependent effects of blood pressure-lowering medications: basis for the chronotherapy of hypertension. Blood Press. Monit. 15, 173–180 (2010).

    PubMed  Google Scholar 

  161. 161.

    Racca, C. et al. Aspirin intake in the morning is associated with suboptimal platelet inhibition, as measured by serum thromboxane B2, during infarct-prone early-morning hours. Platelets (2018).

    Article  PubMed  Google Scholar 

  162. 162.

    Smolensky, M. H. et al. Diurnal and twenty-four hour patterning of human diseases: acute and chronic common and uncommon medical conditions. Sleep Med. Rev. 21, 12–22 (2015).

    PubMed  Google Scholar 

  163. 163.

    Bruguerolle, B. & Labrecque, G. Rhythmic pattern in pain and their chronotherapy. Adv. Drug Deliv. Rev. 59, 883–895 (2007).

    CAS  PubMed  Google Scholar 

  164. 164.

    Lévi, F., Altinok, A., Clairambault, J. & Goldbeter, A. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Phil. Trans. R. Soc. A 366, 3575–3598 (2008).

    PubMed  Google Scholar 

  165. 165.

    de Mairan, J.-J. Observation botanique [French]. Hist. Acad. R. Sci. 1729, 35 (1729).

    Google Scholar 

  166. 166.

    Konopka, R. J. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).

    CAS  PubMed  Google Scholar 

  167. 167.

    Sehgal, A. et al. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science 270, 808–810 (1995).

    CAS  PubMed  Google Scholar 

  168. 168.

    Price, J. L. et al. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 83–95 (1998).

    CAS  PubMed  Google Scholar 

  169. 169.

    Stujanna, E. N. et al. Rev-erb agonist improves adverse cardiac remodeling and survival in myocardial infarction through an anti-inflammatory mechanism. PLOS ONE 12, e0189330 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. 170.

    Van Beek, M. H. C. T. et al. The prognostic effect of physical health complaints with new cardiac events and mortality in patients with a myocardial infarction. Psychosomatics 58, 121–131 (2017).

    PubMed  Google Scholar 

  171. 171.

    Anea, C. B. et al. Vascular disease in mice with a dysfunctional circadian clock. Circulation 119, 1510–1517 (2009).

    PubMed  PubMed Central  Google Scholar 

  172. 172.

    Wang, Q., Maillard, M., Schibler, U., Burnier, M. & Gachon, F. Cardiac hypertrophy, low blood pressure, and low aldosterone levels in mice devoid of the three circadian PAR bZip transcription factors DBP, HLF, and TEF. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1013–R1019 (2010).

    CAS  PubMed  Google Scholar 

  173. 173.

    Durgan, D. J. et al. Evidence suggesting that the cardiomyocyte circadian clock modulates responsiveness of the heart to hypertrophic stimuli in mice. Chronobiol. Int. 28, 187–203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Schroder, E. A. et al. The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility. Am. J. Physiol. Cell Physiol. 304, C954–C965 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Xie, Z. et al. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J. Clin. Invest. 125, 324–336 (2015).

    PubMed  Google Scholar 

Download references


The authors acknowledge support from Innovation and the Netherlands CardioVascular Research Initiative (CVON): the Dutch Heart Foundation, the Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Science. S.C. receives support from the Jacob Jongbloed Talent Society Grant (Circulatory Health, University Medical Centre Utrecht). J.P.G.S. receives support from Horizon2020 ERC-2016-COG EVICARE (725229).

Reviewer information

Nature Reviews Cardiology thanks G. Cornelissen, R. Manfredini and K. Otsuka for their contribution to the peer review of this work.

Author information




All the authors researched data for the article, discussed its content, wrote the manuscript and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Linda W. Van Laake.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Circadian rhythms

Endogenous biorhythms with a period of approximately 24 h; self-sustainable but can be entrained.


Duration of one circadian cycle.

Central or primary clock

Group of neurons in the suprachiasmatic nucleus (part of the hypothalamus) of the brain, which orchestrates rhythmicity within the body.

Peripheral clocks

Molecular mechanism within individual cells that regulates circadian rhythm.


External or environmental cue (such as light, food intake or exercise) that synchronizes or entrains circadian rhythms; also known as Zeitgeber (‘time giver’).

24-h rhythms

Patterns re-occurring every 24 h.


Scheduling of treatment in relation to 24-h rhythms to increase effectiveness of the therapy and/or reduce adverse effects.

Clock-controlled genes

Genes whose transcription is controlled by the molecular circadian clock.

Core clock genes

Genes that form a basis for generation and regulation of circadian rhythms by encoding BMAL1, CLOCK, CRY and PER proteins.


Difference between mesor and peak of the sinusoidal-shaped circadian rhythm.


Mean value of a (circadian) cycle or rhythm.

Serum shock

Acute exposure to a high concentration of serum (50% fetal bovine serum for 2 h) to align desynchronized circadian phases in a multicellular system.


Propensity to be active, inactive or asleep at a specific time during a 24-h cycle.


Time at which the peak of the rhythm occurs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crnko, S., Du Pré, B.C., Sluijter, J.P.G. et al. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol 16, 437–447 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing