Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Postoperative atrial fibrillation: mechanisms, manifestations and management

Abstract

Postoperative atrial fibrillation (POAF) complicates 20–40% of cardiac surgical procedures and 10–20% of non-cardiac thoracic operations. Typical features include onset at 2–4 days postoperatively, episodes that are often fleeting and a self-limited time course. Associated adverse consequences of POAF include haemodynamic instability, increased risk of stroke, lengthened hospital and intensive care unit stays and greater costs. Underlying mechanisms are incompletely defined but include intraoperative and postoperative phenomena, such as inflammation, sympathetic activation and cardiac ischaemia, that combine to trigger atrial fibrillation, often in the presence of pre-existing factors, making the atria vulnerable to atrial fibrillation induction and maintenance. A better understanding of the underlying mechanisms might enable the identification of new therapeutic targets. POAF can be prevented by targeting autonomic alterations and inflammation. β-Blocker prophylaxis is the best-established preventive therapy and should be started or continued before cardiac surgery, unless contraindicated. When POAF occurs, rate control usually suffices, and routine rhythm control is unnecessary; rhythm control should be reserved for patients who develop haemodynamic instability or show other indications that rate control alone will be insufficient. In this Review, we summarize the epidemiological and clinical features of POAF, the available pathophysiological evidence from clinical and experimental investigations, the results of prophylactic and therapeutic approaches and the consensus recommendations of various national and international societies.

Key points

  • Atrial fibrillation (AF) is a very common complication after cardiac surgery and also often occurs after non-cardiac thoracic surgery, increasing duration of hospital stay and costs.

  • Postoperative AF episodes are usually transient and follow a typical time course, peaking at 2–4 days after surgery.

  • Underlying mechanisms are specific and complex, including inflammation, myocardial ischaemia and adrenergic activation, in many cases superimposed on an underlying atrial substrate vulnerable to the induction and maintenance of AF.

  • Prophylactic therapy with β-blockers or amiodarone is often indicated to prevent postoperative AF, but if AF nevertheless occurs, control of ventricular rate is usually sufficient because postoperative AF tends to be self-limited.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual model of postoperative atrial fibrillation.
Fig. 2: Time course of the components of a vulnerable substrate for postoperative atrial fibrillation.
Fig. 3: Major components of atrial remodelling in postoperative atrial fibrillation.
Fig. 4: Principles of postoperative atrial fibrillation management in cardiac surgery.

Similar content being viewed by others

References

  1. Lubitz, S. A. et al. Long-term outcomes of secondary atrial fibrillation in the community: the Framingham Heart Study. Circulation 131, 1648–1655 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Greenberg, J. W., Lancaster, T. S., Schuessler, R. B. & Melby, S. J. Postoperative atrial fibrillation following cardiac surgery: a persistent complication. Eur. J. Cardiothorac. Surg. 52, 665–672 (2017).

    PubMed  Google Scholar 

  3. Aranki, S. F. et al. Predictors of atrial fibrillation after coronary artery surgery. Current trends and impact on hospital resources. Circulation 94, 390–397 (1996).

    PubMed  CAS  Google Scholar 

  4. Mathew, J. P. et al. Atrial fibrillation following coronary artery bypass graft surgery: predictors, outcomes, and resource utilization. MultiCenter Study of Perioperative Ischemia Research Group. JAMA 276, 300–306 (1996).

    PubMed  CAS  Google Scholar 

  5. Almassi, G. H. et al. Atrial fibrillation after cardiac surgery: a major morbid event? Ann. Surg. 226, 501–511 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Kowey, P. R. et al. Clinical outcome of patients who develop PAF after CABG surgery. Pacing Clin. Electrophysiol. 24, 191–193 (2001).

    PubMed  CAS  Google Scholar 

  7. Soucier, R. J. et al. Predictors of conversion of atrial fibrillation after cardiac operation in the absence of class I or III antiarrhythmic medications. Ann. Thorac. Surg. 72, 694–697 (2001).

    PubMed  CAS  Google Scholar 

  8. Hravnak, M., Hoffman, L. A., Saul, M. I., Zullo, T. G. & Whitman, G. R. Resource utilization related to atrial fibrillation after coronary artery bypass grafting. Am. J. Crit. Care 11, 228–238 (2002).

    PubMed  PubMed Central  Google Scholar 

  9. Mathew, J. P. et al. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA 291, 1720–1729 (2004).

    PubMed  CAS  Google Scholar 

  10. Izhar, U. et al. When should we discontinue antiarrhythmic therapy for atrial fibrillation after coronary artery bypass grafting? A prospective randomized study. J. Thorac. Cardiovasc. Surg. 129, 401–406 (2005).

    PubMed  CAS  Google Scholar 

  11. Ahlsson, A., Fengsrud, E., Bodin, L. & Englund, A. Postoperative atrial fibrillation in patients undergoing aortocoronary bypass surgery carries an eightfold risk of future atrial fibrillation and a doubled cardiovascular mortality. Eur. J. Cardiothorac. Surg. 37, 1353–1359 (2010).

    PubMed  Google Scholar 

  12. Steinberg, B. A. et al. Management of postoperative atrial fibrillation and subsequent outcomes in contemporary patients undergoing cardiac surgery: insights from the Society of Thoracic Surgeons CAPS-Care Atrial Fibrillation Registry. Clin. Cardiol. 37, 7–13 (2014).

    PubMed  Google Scholar 

  13. Melduni, R. M. et al. Implications of new-onset atrial fibrillation after cardiac surgery on long-term prognosis: a community-based study. Am. Heart J. 170, 659–668 (2015).

    PubMed  Google Scholar 

  14. Funk, M., Richards, S. B., Desjardins, J., Bebon, C. & Wilcox, H. Incidence, timing, symptoms, and risk factors for atrial fibrillation after cardiac surgery. Am. J. Crit. Care 12, 424–433; quiz 434–435 (2003).

    PubMed  Google Scholar 

  15. Lee, J. K. et al. Rate-control versus conversion strategy in postoperative atrial fibrillation: a prospective, randomized pilot study. Am. Heart J. 140, 871–877 (2000).

    PubMed  CAS  Google Scholar 

  16. Gillinov, A. M. et al. Rate control versus rhythm control for atrial fibrillation after cardiac surgery. N. Engl. J. Med. 374, 1911–1921 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Hogue, C. W. Jr. et al. RR interval dynamics before atrial fibrillation in patients after coronary artery bypass graft surgery. Circulation 98, 429–434 (1998).

    PubMed  Google Scholar 

  18. Echahidi, N., Pibarot, P., O’Hara, G. & Mathieu, P. Mechanisms, prevention, and treatment of atrial fibrillation after cardiac surgery. J. Am. Coll. Cardiol. 51, 793–801 (2008).

    PubMed  CAS  Google Scholar 

  19. Shantsila, E., Watson, T. & Lip, G. Y. Atrial fibrillation post-cardiac surgery: changing perspectives. Curr. Med. Res. Opin. 22, 1437–1441 (2006).

    PubMed  CAS  Google Scholar 

  20. Ishii, Y. et al. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation 111, 2881–2888 (2005).

    PubMed  CAS  Google Scholar 

  21. Gaudino, M. et al. The -174G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation 108, (Suppl. 1) II195–II199 (2003).

    PubMed  Google Scholar 

  22. Hak, L. et al. Interleukin-2 as a predictor of early postoperative atrial fibrillation after cardiopulmonary bypass graft (CABG). J. Interferon Cytokine Res. 29, 327–332 (2009).

    PubMed  CAS  Google Scholar 

  23. Bruins, P. et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation 96, 3542–3548 (1997).

    PubMed  CAS  Google Scholar 

  24. Abdelhadi, R. H., Gurm, H. S., Van Wagoner, D. R. & Chung, M. K. Relation of an exaggerated rise in white blood cells after coronary bypass or cardiac valve surgery to development of atrial fibrillation postoperatively. Am. J. Cardiol. 93, 1176–1178 (2004).

    PubMed  Google Scholar 

  25. Jongnarangsin, K. et al. Body mass index, obstructive sleep apnea, and outcomes of catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 19, 668–672 (2008).

    PubMed  Google Scholar 

  26. Enc, Y. et al. Atrial fibrillation after surgical revascularization: is there any difference between on-pump and off-pump? Eur. J. Cardiothorac. Surg. 26, 1129–1133 (2004).

    PubMed  Google Scholar 

  27. Legare, J. F. et al. Coronary bypass surgery performed off pump does not result in lower in-hospital morbidity than coronary artery bypass grafting performed on pump. Circulation 109, 887–892 (2004).

    PubMed  Google Scholar 

  28. Lee, S. H. et al. New-onset atrial fibrillation predicts long-term newly developed atrial fibrillation after coronary artery bypass graft. Am. Heart J. 167, 593–600 (2014).

    PubMed  Google Scholar 

  29. Miller, J. M. et al. Initial independent outcomes from focal impulse and rotor modulation ablation for atrial fibrillation: multicenter FIRM registry. J. Cardiovasc. Electrophysiol. 25, 921–929 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Body, S. C. et al. Variation in the 4q25 chromosomal locus predicts atrial fibrillation after coronary artery bypass graft surgery. Circ. Cardiovasc. Genet. 2, 499–506 (2009).

    PubMed  CAS  Google Scholar 

  31. Fuller, J. A., Adams, G. G. & Buxton, B. Atrial fibrillation after coronary artery bypass grafting. Is it a disorder of the elderly? J. Thorac. Cardiovasc. Surg. 97, 821–825 (1989).

    PubMed  CAS  Google Scholar 

  32. Lahtinen, J. et al. Postoperative atrial fibrillation is a major cause of stroke after on-pump coronary artery bypass surgery. Ann. Thorac. Surg. 77, 1241–1244 (2004).

    PubMed  Google Scholar 

  33. Likosky, D. S. et al. Intraoperative and postoperative variables associated with strokes following cardiac surgery. Heart Surg. Forum 7, E271–E276 (2004).

    PubMed  Google Scholar 

  34. Gialdini, G. et al. Perioperative atrial fibrillation and the long-term risk of ischemic stroke. JAMA 312, 616–622 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Amar, D. et al. Clinical and echocardiographic correlates of symptomatic tachydysrhythmias after noncardiac thoracic surgery. Chest 108, 349–354 (1995).

    PubMed  CAS  Google Scholar 

  36. Vaporciyan, A. A. et al. Risk factors associated with atrial fibrillation after noncardiac thoracic surgery: analysis of 2588 patients. J. Thorac. Cardiovasc. Surg. 127, 779–786 (2004).

    PubMed  Google Scholar 

  37. Passman, R. S. et al. Prediction rule for atrial fibrillation after major noncardiac thoracic surgery. Ann. Thorac. Surg. 79, 1698–1703 (2005).

    PubMed  Google Scholar 

  38. Merritt, R. E. & Shrager, J. B. Prophylaxis and management of atrial fibrillation after general thoracic surgery. Thorac. Surg. Clin. 22, 13–23 (2012).

    PubMed  Google Scholar 

  39. Polanczyk, C. A., Goldman, L., Marcantonio, E. R., Orav, E. J. & Lee, T. H. Supraventricular arrhythmia in patients having noncardiac surgery: clinical correlates and effect on length of stay. Ann. Intern. Med. 129, 279–285 (1998).

    PubMed  CAS  Google Scholar 

  40. Batra, G. S., Molyneux, J. & Scott, N. A. Colorectal patients and cardiac arrhythmias detected on the surgical high dependency unit. Ann. R. Coll. Surg. Engl. 83, 174–176 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Christians, K. K., Wu, B., Quebbeman, E. J. & Brasel, K. J. Postoperative atrial fibrillation in noncardiothoracic surgical patients. Am. J. Surg. 182, 713–715 (2001).

    PubMed  CAS  Google Scholar 

  42. Walsh, S. R. et al. Postoperative arrhythmias in general surgical patients. Ann. R. Coll. Surg. Engl. 89, 91–95 (2007).

    PubMed  PubMed Central  Google Scholar 

  43. Sohn, G. H. et al. The incidence and predictors of postoperative atrial fibrillation after noncardiothoracic surgery. Korean Circ. J. 39, 100–104 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Bhave, P. D., Goldman, L. E., Vittinghoff, E., Maselli, J. & Auerbach, A. Incidence, predictors, and outcomes associated with postoperative atrial fibrillation after major noncardiac surgery. Am. Heart J. 164, 918–924 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002).

    PubMed  CAS  Google Scholar 

  46. Andrade, J., Khairy, P., Dobrev, D. & Nattel, S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114, 1453–1468 (2014).

    PubMed  CAS  Google Scholar 

  47. Heijman, J., Guichard, J. B., Dobrev, D. & Nattel, S. Translational challenges in atrial fibrillation. Circ. Res. 122, 752–773 (2018).

    PubMed  CAS  Google Scholar 

  48. Heijman, J., Voigt, N., Nattel, S. & Dobrev, D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 114, 1483–1499 (2014).

    PubMed  CAS  Google Scholar 

  49. Nattel, S. Paroxysmal atrial fibrillation and pulmonary veins: relationships between clinical forms and automatic versus re-entrant mechanisms. Can. J. Cardiol. 29, 1147–1149 (2013).

    PubMed  Google Scholar 

  50. Maesen, B., Nijs, J., Maessen, J., Allessie, M. & Schotten, U. Post-operative atrial fibrillation: a maze of mechanisms. Europace 14, 159–174 (2012).

    PubMed  Google Scholar 

  51. Dimmer, C. et al. Variations of autonomic tone preceding onset of atrial fibrillation after coronary artery bypass grafting. Am. J. Cardiol. 82, 22–25 (1998).

    PubMed  CAS  Google Scholar 

  52. Chen, P. S., Chen, L. S., Fishbein, M. C., Lin, S. F. & Nattel, S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ. Res. 114, 1500–1515 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Kalman, J. M. et al. Atrial fibrillation after coronary artery bypass grafting is associated with sympathetic activation. Ann. Thorac. Surg. 60, 1709–1715 (1995).

    PubMed  CAS  Google Scholar 

  54. Feneck, R. O., Sherry, K. M., Withington, P. S. & Oduro-Dominah, A. The European Milrinone Multicenter Trial Group. Comparison of the hemodynamic effects of milrinone with dobutamine in patients after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 15, 306–315 (2001).

    PubMed  CAS  Google Scholar 

  55. Argalious, M. et al. “Renal dose” dopamine is associated with the risk of new-onset atrial fibrillation after cardiac surgery. Crit. Care Med. 33, 1327–1332 (2005).

    PubMed  CAS  Google Scholar 

  56. White, H. D. et al. Efficacy and safety of timolol for prevention of supraventricular tachyarrhythmias after coronary artery bypass surgery. Circulation 70, 479–484 (1984).

    PubMed  CAS  Google Scholar 

  57. Lamb, R. K. et al. The use of atenolol in the prevention of supraventricular arrhythmias following coronary artery surgery. Eur. Heart J. 9, 32–36 (1988).

    PubMed  CAS  Google Scholar 

  58. Shen, M. J. et al. Simultaneous recordings of intrinsic cardiac nerve activity and skin sympathetic nerve activity from human patients during the postoperative period. Heart Rhythm 14, 1587–1593 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. Amar, D., Zhang, H., Miodownik, S. & Kadish, A. H. Competing autonomic mechanisms precede the onset of postoperative atrial fibrillation. J. Am. Coll. Cardiol. 42, 1262–1268 (2003).

    PubMed  Google Scholar 

  60. Pokushalov, E. et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: one-year follow-up of a randomized pilot study. Circ. Arrhythm. Electrophysiol. 8, 1334–1341 (2015).

    PubMed  CAS  Google Scholar 

  61. Alexandre, J. et al. Preoperative plasma aldosterone and the risk of atrial fibrillation after coronary artery bypass surgery: a prospective cohort study. J. Hypertens. 34, 2449–2457 (2016).

    PubMed  CAS  Google Scholar 

  62. Chequel, M. et al. Preoperative plasma aldosterone levels and postoperative atrial fibrillation occurrence following cardiac surgery: a review of literature and design of the ALDO-POAF study (ALDOsterone for Prediction of Post-Operative Atrial Fibrillation). CurrClin. Pharmacol. 11, 150–158 (2016).

    CAS  Google Scholar 

  63. Fontes, M. L. et al. Atrial fibrillation after cardiac surgery/cardiopulmonary bypass is associated with monocyte activation. Anesth. Analg. 101, 17–23 (2005).

    PubMed  Google Scholar 

  64. Amar, D., Goenka, A., Zhang, H., Park, B. & Thaler, H. T. Leukocytosis and increased risk of atrial fibrillation after general thoracic surgery. Ann. Thorac. Surg. 82, 1057–1061 (2006).

    PubMed  Google Scholar 

  65. Lamm, G. et al. Postoperative white blood cell count predicts atrial fibrillation after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 20, 51–56 (2006).

    PubMed  Google Scholar 

  66. Gibson, P. H. et al. Usefulness of neutrophil/lymphocyte ratio as predictor of new-onset atrial fibrillation after coronary artery bypass grafting. Am. J. Cardiol. 105, 186–191 (2010).

    PubMed  Google Scholar 

  67. Ucar, H. I. et al. Predictive significance of plasma levels of interleukin-6 and high-sensitivity C-reactive protein in atrial fibrillation after coronary artery bypass surgery. Heart Surg. Forum 10, E131–E135 (2007).

    PubMed  Google Scholar 

  68. Pretorius, M. et al. Plasminogen activator inhibitor-1 as a predictor of postoperative atrial fibrillation after cardiopulmonary bypass. Circulation 116, I1–I7 (2007).

    PubMed  CAS  Google Scholar 

  69. Canbaz, S., Erbas, H., Huseyin, S. & Duran, E. The role of inflammation in atrial fibrillation following open heart surgery. J. Int. Med. Res. 36, 1070–1076 (2008).

    PubMed  CAS  Google Scholar 

  70. Girerd, N. et al. Middle-aged men with increased waist circumference and elevated C-reactive protein level are at higher risk for postoperative atrial fibrillation following coronary artery bypass grafting surgery. Eur. Heart J. 30, 1270–1278 (2009).

    PubMed  CAS  Google Scholar 

  71. Kaireviciute, D. et al. Characterisation and validity of inflammatory biomarkers in the prediction of post-operative atrial fibrillation in coronary artery disease patients. Thromb. Haemost. 104, 122–127 (2010).

    PubMed  CAS  Google Scholar 

  72. Sandler, N. et al. Mitochondrial DAMPs are released during cardiopulmonary bypass surgery and are associated with postoperative atrial fibrillation. Heart Lung Circ. 27, 122–129 (2018).

    PubMed  Google Scholar 

  73. Wu, Z. K. et al. High postoperative interleukin-8 levels related to atrial fibrillation in patients undergoing coronary artery bypass surgery. World J. Surg. 32, 2643–2649 (2008).

    PubMed  Google Scholar 

  74. Kourliouros, A. et al. Substrate modifications precede the development of atrial fibrillation after cardiac surgery: a proteomic study. Ann. Thorac. Surg. 92, 104–110 (2011).

    PubMed  Google Scholar 

  75. Jacob, K. A. et al. Inflammation in new-onset atrial fibrillation after cardiac surgery: a systematic review. Eur. J. Clin. Invest. 44, 402–428 (2014).

    PubMed  Google Scholar 

  76. Goette, A. et al. Determinants and consequences of atrial fibrosis in patients undergoing open heart surgery. Cardiovasc. Res. 54, 390–396 (2002).

    PubMed  CAS  Google Scholar 

  77. Del Campo, A. et al. Increased C-reactive protein plasma levels are not involved in the onset of post-operative atrial fibrillation. J. Cardiol. 70, 578–583 (2017).

    PubMed  Google Scholar 

  78. Ho, K. M. & Tan, J. A. Benefits and risks of corticosteroid prophylaxis in adult cardiac surgery: a dose-response meta-analysis. Circulation 119, 1853–1866 (2009).

    PubMed  CAS  Google Scholar 

  79. Ryu, K. et al. Effects of sterile pericarditis on connexins 40 and 43 in the atria: correlation with abnormal conduction and atrial arrhythmias. Am. J. Physiol. Heart Circ. Physiol. 293, H1231–H1241 (2007).

    PubMed  CAS  Google Scholar 

  80. Veleva, T. et al. Abstract: the role of the NLRP3 inflammasome in postoperative atrial fibrillation. Heart Rhythm 15, S189 (2018).

    Google Scholar 

  81. Yao, C. et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation 138, 2227–2242 (2018).

    PubMed  CAS  Google Scholar 

  82. Scott, L. Jr., Li, N. & Dobrev, D. Role of inflammatory signaling in atrial fibrillation. Int. J. Cardiol. https://doi.org/10.1016/j.ijcard.2018.10.020 (2018).

    Article  PubMed  Google Scholar 

  83. Mommersteeg, M. T., Christoffels, V. M., Anderson, R. H. & Moorman, A. F. Atrial fibrillation: a developmental point of view. Heart Rhythm 6, 1818–1824 (2009).

    PubMed  Google Scholar 

  84. Voigt, N. et al. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129, 145–156 (2014).

    PubMed  CAS  Google Scholar 

  85. Voigt, N. et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125, 2059–2070 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Van Wagoner, D. R. et al. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ. Res. 85, 428–436 (1999).

    PubMed  Google Scholar 

  87. Workman, A. J. et al. Post-operative atrial fibrillation is influenced by beta-blocker therapy but not by pre-operative atrial cellular electrophysiology. J. Cardiovasc. Electrophysiol. 17, 1230–1238 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. Lezoualc’h, F. et al. Quantitative mRNA analysis of serotonin 5-HT4 receptor isoforms, calcium handling proteins and ion channels in human atrial fibrillation. Biochem. Biophys. Res. Commun. 357, 218–224 (2007).

    PubMed  Google Scholar 

  89. Swartz, M. F. et al. Left versus right atrial difference in dominant frequency, K+ channel transcripts, and fibrosis in patients developing atrial fibrillation after cardiac surgery. Heart Rhythm 6, 1415–1422 (2009).

    PubMed  PubMed Central  Google Scholar 

  90. Zaman, J. A. et al. Post-operative atrial fibrillation is associated with a pre-existing structural and electrical substrate in human right atrial myocardium. Int. J. Cardiol. 220, 580–588 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Dobrev, D. et al. Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc. Res. 54, 397–404 (2002).

    PubMed  CAS  Google Scholar 

  92. Wang, G. D. et al. Relationship between integrated backscatter and atrial fibrosis in patients with and without atrial fibrillation who are undergoing coronary bypass surgery. Clin. Cardiol. 32, E56–E61 (2009).

    PubMed  Google Scholar 

  93. Swartz, M. F. et al. Elevated pre-operative serum peptides for collagen I and III synthesis result in post-surgical atrial fibrillation. J. Am. Coll. Cardiol. 60, 1799–1806 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Li, J. Y. et al. Atrial gap junctions, NF-kappaB and fibrosis in patients undergoing coronary artery bypass surgery: the relationship with postoperative atrial fibrillation. Cardiology 112, 81–88 (2009).

    PubMed  CAS  Google Scholar 

  95. Muller, P. et al. Correlation between total atrial conduction time estimated via tissue Doppler imaging (PA-TDI Interval), structural atrial remodeling and new-onset of atrial fibrillation after cardiac surgery. J. Cardiovasc. Electrophysiol. 24, 626–631 (2013).

    PubMed  Google Scholar 

  96. Tinica, G., Mocanu, V., Zugun-Eloae, F. & Butcovan, D. Clinical and histological predictive risk factors of atrial fibrillation in patients undergoing open-heart surgery. Exp. Ther. Med. 10, 2299–2304 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Ozben, B. et al. Postoperative atrial fibrillation after coronary artery bypass grafting surgery: a two-dimensional speckle tracking echocardiography study. Heart Lung Circ. 25, 993–999 (2016).

    PubMed  Google Scholar 

  98. Grammer, J. B. et al. Atrial fibrosis in heart surgery patients Decreased collagen III/I ratio in postoperative atrial fibrillation. Basic Res. Cardiol. 100, 288–294 (2005).

    PubMed  CAS  Google Scholar 

  99. Cosgrave, J. et al. Preoperative atrial histological changes are not associated with postoperative atrial fibrillation. Cardiovasc. Pathol. 15, 213–217 (2006).

    PubMed  Google Scholar 

  100. Garcia, L. et al. Impaired cardiac autophagy in patients developing postoperative atrial fibrillation. J. Thorac. Cardiovasc. Surg. 143, 451–459 (2012).

    PubMed  Google Scholar 

  101. Muller, P. et al. Increased preoperative serum apoptosis marker fas ligand correlates with histopathology and new-onset of atrial fibrillation in patients after cardiac surgery. J. Cardiovasc. Electrophysiol. 24, 1110–1115 (2013).

    PubMed  Google Scholar 

  102. Barallobre-Barreiro, J. et al. Glycoproteomics reveals decorin peptides with anti-myostatin activity in human atrial fibrillation. Circulation 134, 817–832 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Simon, J. N., Ziberna, K. & Casadei, B. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation. Cardiovasc. Res. 109, 510–518 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Anderson, E. J. et al. Monoamine oxidase is a major determinant of redox balance in human atrial myocardium and is associated with postoperative atrial fibrillation. J. Am. Heart Assoc. 3, e000713 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Reilly, S. N. et al. Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation 124, 1107–1117 (2011).

    PubMed  CAS  Google Scholar 

  106. Antoniades, C. et al. Myocardial redox state predicts in-hospital clinical outcome after cardiac surgery effects of short-term pre-operative statin treatment. J. Am. Coll. Cardiol. 59, 60–70 (2012).

    PubMed  CAS  Google Scholar 

  107. Ad, N., Schneider, A., Khaliulin, I., Borman, J. B. & Schwalb, H. Impaired mitochondrial response to simulated ischemic injury as a predictor of the development of atrial fibrillation after cardiac surgery: in vitro study in human myocardium. J. Thorac. Cardiovasc. Surg. 129, 41–45 (2005).

    PubMed  Google Scholar 

  108. Guler, N. et al. Do cardiac neuropeptides play a role in the occurrence of atrial fibrillation after coronary bypass surgery? Ann. Thorac. Surg. 83, 532–537 (2007).

    PubMed  Google Scholar 

  109. Willeford, A. et al. CaMKIIδ-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis. JCI Insight 3, 97054 (2018).

    PubMed  Google Scholar 

  110. Burashnikov, A. & Antzelevitch, C. Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation 107, 2355–2360 (2003).

    PubMed  Google Scholar 

  111. Sigurdsson, M. I. et al. Post-operative atrial fibrillation examined using whole-genome RNA sequencing in human left atrial tissue. BMC Med. Genom. 10, 25 (2017).

    Google Scholar 

  112. Slagsvold, K. H., Rognmo, O., Hoydal, M., Wisloff, U. & Wahba, A. Remote ischemic preconditioning preserves mitochondrial function and influences myocardial microRNA expression in atrial myocardium during coronary bypass surgery. Circ. Res. 114, 851–859 (2014).

    PubMed  CAS  Google Scholar 

  113. Jayaram, R. et al. Molecular mechanisms of myocardial nitroso-redox imbalance during on-pump cardiac surgery. Lancet 385 (Suppl. 1), S49 (2015).

    PubMed  Google Scholar 

  114. Jeganathan, J. et al. Mitochondrial dysfunction in atrial tissue of patients developing postoperative atrial fibrillation. Ann. Thorac. Surg. 104, 1547–1555 (2017).

    PubMed  Google Scholar 

  115. Tsoporis, J. N. et al. Increased right atrial appendage apoptosis is associated with differential regulation of candidate MicroRNAs 1 and 133A in patients who developed atrial fibrillation after cardiac surgery. J. Mol. Cell. Cardiol. 121, 25–32 (2018).

    PubMed  CAS  Google Scholar 

  116. Jeong, E. M. et al. Metabolic stress, reactive oxygen species, and arrhythmia. J. Mol. Cell. Cardiol. 52, 454–463 (2012).

    PubMed  CAS  Google Scholar 

  117. Schuessler, R. B. et al. The effects of inflammation on heart rate and rhythm in a canine model of cardiac surgery. Heart Rhythm 9, 432–439 (2012).

    PubMed  Google Scholar 

  118. Kumagai, K., Nakashima, H. & Saku, K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc. Res. 62, 105–111 (2004).

    PubMed  CAS  Google Scholar 

  119. Tselentakis, E. V., Woodford, E., Chandy, J., Gaudette, G. R. & Saltman, A. E. Inflammation effects on the electrical properties of atrial tissue and inducibility of postoperative atrial fibrillation. J. Surg. Res. 135, 68–75 (2006).

    PubMed  CAS  Google Scholar 

  120. Zhang, Z. et al. n-3 polyunsaturated fatty acids prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Int. J. Cardiol. 153, 14–20 (2011).

    PubMed  Google Scholar 

  121. Zhang, Y. et al. Role of inflammation in the initiation and maintenance of atrial fibrillation and the protective effect of atorvastatin in a goat model of aseptic pericarditis. Mol. Med. Rep. 11, 2615–2623 (2015).

    PubMed  CAS  Google Scholar 

  122. Fu, X. X. et al. Interleukin-17A contributes to the development of post-operative atrial fibrillation by regulating inflammation and fibrosis in rats with sterile pericarditis. Int. J. Mol. Med. 36, 83–92 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Huang, Z. et al. Signal transducer and activator of transcription 3/microRNA-21 feedback loop contributes to atrial fibrillation by promoting atrial fibrosis in a rat sterile pericarditis model. Circ. Arrhythm. Electrophysiol. 9, e003396 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Goldstein, R. N., Ryu, K., Khrestian, C., van Wagoner, D. R. & Waldo, A. L. Prednisone prevents inducible atrial flutter in the canine sterile pericarditis model. J. Cardiovasc. Electrophysiol. 19, 74–81 (2008).

    PubMed  Google Scholar 

  125. Yoo, D. et al. Adhesive epicardial corticosteroids prevent postoperative atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 505–510 (2010).

    PubMed  CAS  Google Scholar 

  126. Rossman, E. I. et al. The gap junction modifier, GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], improves conduction and reduces atrial fibrillation/flutter in the canine sterile pericarditis model. J. Pharmacol. Exp. Ther. 329, 1127–1133 (2009).

    PubMed  CAS  Google Scholar 

  127. Kumagai, K., Nakashima, H., Gondo, N. & Saku, K. Antiarrhythmic effects of JTV-519, a novel cardioprotective drug, on atrial fibrillation/flutter in a canine sterile pericarditis model. J. Cardiovasc. Electrophysiol. 14, 880–884 (2003).

    PubMed  Google Scholar 

  128. Sadrpour, S. A. et al. Termination of atrial flutter and fibrillation by K201’s metabolite M-II: studies in the canine sterile pericarditis model. J. Cardiovasc. Pharmacol. 65, 494–499 (2015).

    PubMed  CAS  Google Scholar 

  129. Bhimani, A. A. et al. Ranolazine terminates atrial flutter and fibrillation in a canine model. Heart Rhythm 11, 1592–1599 (2014).

    PubMed  Google Scholar 

  130. Goldstein, R. N., Khrestian, C., Carlsson, L. & Waldo, A. L. Azd7009: a new antiarrhythmic drug with predominant effects on the atria effectively terminates and prevents reinduction of atrial fibrillation and flutter in the sterile pericarditis model. J. Cardiovasc. Electrophysiol. 15, 1444–1450 (2004).

    PubMed  Google Scholar 

  131. Shimizu, A. et al. Electrophysiologic effects of a new class III antiarrhythmic agent, E-4031, on atrial flutter, atrial refractoriness, and conduction delay in a canine sterile pericarditis model. J. Cardiovasc. Pharmacol. 21, 656–662 (1993).

    PubMed  CAS  Google Scholar 

  132. Becker, R. et al. Suppression of atrial fibrillation by multisite and septal pacing in a novel experimental model. Cardiovasc. Res. 54, 476–481 (2002).

    PubMed  CAS  Google Scholar 

  133. Matsumoto, N. et al. Vanoxerine, a new drug for terminating atrial fibrillation and flutter. J. Cardiovasc. Electrophysiol. 21, 311–319 (2010).

    PubMed  Google Scholar 

  134. Cakulev, I. et al. Oral vanoxerine prevents reinduction of atrial tachyarrhythmias: preliminary results. J. Cardiovasc. Electrophysiol. 22, 1266–1273 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. Arsenault, K. A. et al. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane Database Syst. Rev. 1, CD003611 (2013).

    Google Scholar 

  136. Burgess, D. C., Kilborn, M. J. & Keech, A. C. Interventions for prevention of post-operative atrial fibrillation and its complications after cardiac surgery: a meta-analysis. Eur. Heart J. 27, 2846–2857 (2006).

    PubMed  Google Scholar 

  137. Al-Khatib, S. M. et al. Patterns of management of atrial fibrillation complicating coronary artery bypass grafting: results from the PRoject of Ex-vivo Vein graft ENgineering via Transfection IV (PREVENT-IV) Trial. Am. Heart J. 158, 792–798 (2009).

    PubMed  Google Scholar 

  138. Zhao, B. C. et al. Prophylaxis against atrial fibrillation after general thoracic surgery: trial sequential analysis and network meta-analysis. Chest 151, 149–159 (2017).

    PubMed  Google Scholar 

  139. Group, P. S. et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371, 1839–1847 (2008).

    Google Scholar 

  140. Mitchell, L. B. et al. Prophylactic oral amiodarone for the prevention of arrhythmias that begin early after revascularization, valve replacement, or repair: PAPABEAR: a randomized controlled trial. JAMA 294, 3093–3100 (2005).

    PubMed  CAS  Google Scholar 

  141. Chatterjee, S., Sardar, P., Mukherjee, D., Lichstein, E. & Aikat, S. Timing and route of amiodarone for prevention of postoperative atrial fibrillation after cardiac surgery: a network regression meta-analysis. Pacing Clin. Electrophysiol. 36, 1017–1023 (2013).

    PubMed  Google Scholar 

  142. Buckley, M. S. et al. Amiodarone prophylaxis for atrial fibrillation after cardiac surgery: meta-analysis of dose response and timing of initiation. Pharmacotherapy 27, 360–368 (2007).

    PubMed  CAS  Google Scholar 

  143. Zhu, J. et al. Meta-analysis of amiodarone versus beta-blocker as a prophylactic therapy against atrial fibrillation following cardiac surgery. Intern. Med. J. 42, 1078–1087 (2012).

    PubMed  CAS  Google Scholar 

  144. Auer, J. et al. A comparison between oral antiarrhythmic drugs in the prevention of atrial fibrillation after cardiac surgery: the pilot study of prevention of postoperative atrial fibrillation (SPPAF), a randomized, placebo-controlled trial. Am. Heart J. 147, 636–643 (2004).

    PubMed  CAS  Google Scholar 

  145. Nattel, S. The molecular and ionic specificity of antiarrhythmic drug actions. J. Cardiovasc. Electrophysiol. 10, 272–282 (1999).

    PubMed  CAS  Google Scholar 

  146. Van Mieghem, W. et al. Amiodarone and the development of ARDS after lung surgery. Chest 105, 1642–1645 (1994).

    PubMed  Google Scholar 

  147. Tisdale, J. E. et al. A randomized trial evaluating amiodarone for prevention of atrial fibrillation after pulmonary resection. Ann. Thorac. Surg. 88, 886–893 (2009).

    PubMed  Google Scholar 

  148. Riber, L. P., Christensen, T. D., Jensen, H. K., Hoejsgaard, A. & Pilegaard, H. K. Amiodarone significantly decreases atrial fibrillation in patients undergoing surgery for lung cancer. Ann. Thorac. Surg. 94, 339–344 (2012).

    PubMed  Google Scholar 

  149. Khalil, M. A., Al-Agaty, A. E., Ali, W. G. & Abdel Azeem, M. S. A comparative study between amiodarone and magnesium sulfate as antiarrhythmic agents for prophylaxis against atrial fibrillation following lobectomy. J. Anesth. 27, 56–61 (2013).

  150. Mooss, A. N. et al. Amiodarone versus sotalol for the treatment of atrial fibrillation after open heart surgery: the Reduction in Postoperative Cardiovascular Arrhythmic Events (REDUCE) trial. Am. Heart J. 148, 641–648 (2004).

    PubMed  CAS  Google Scholar 

  151. Wijeysundera, D. N., Beattie, W. S., Rao, V. & Karski, J. Calcium antagonists reduce cardiovascular complications after cardiac surgery: a meta-analysis. J. Am. Coll. Cardiol. 41, 1496–1505 (2003).

    PubMed  CAS  Google Scholar 

  152. Van Mieghem, W. et al. Verapamil as prophylactic treatment for atrial fibrillation after lung operations. Ann. Thorac. Surg. 61, 1083–1085 (1996).

    PubMed  Google Scholar 

  153. Amar, D. et al. Effects of diltiazem prophylaxis on the incidence and clinical outcome of atrial arrhythmias after thoracic surgery. J. Thorac. Cardiovasc. Surg. 120, 790–798 (2000).

    PubMed  CAS  Google Scholar 

  154. Ritchie, A. J., Bowe, P. & Gibbons, J. R. Prophylactic digitalization for thoracotomy: a reassessment. Ann. Thorac. Surg. 50, 86–88 (1990).

    PubMed  CAS  Google Scholar 

  155. Kowey, P. R., Taylor, J. E., Rials, S. J. & Marinchak, R. A. Meta-analysis of the effectiveness of prophylactic drug therapy in preventing supraventricular arrhythmia early after coronary artery bypass grafting. Am. J. Cardiol. 69, 963–965 (1992).

    PubMed  CAS  Google Scholar 

  156. Aguilar, M. & Nattel, S. Taking the pulse of atrial fibrillation: a practical approach to rate control. Can. J. Cardiol. 34, 1526–1530 (2018).

    PubMed  Google Scholar 

  157. Ito, N. et al. Efficacy of propafenone hydrochloride in preventing postoperative atrial fibrillation after coronary artery bypass grafting. Heart Surg. Forum 13, E223–E227 (2010).

    PubMed  Google Scholar 

  158. Morike, K. et al. Propafenone for the prevention of atrial tachyarrhythmias after cardiac surgery: a randomized, double-blind placebo-controlled trial. Clin. Pharmacol. Ther. 84, 104–110 (2008).

    PubMed  CAS  Google Scholar 

  159. Kowey, P. R., Yannicelli, D., Amsterdam, E. & Investigators, C.-I. Effectiveness of oral propafenone for the prevention of atrial fibrillation after coronary artery bypass grafting. Am. J. Cardiol. 94, 663–665 (2004).

    PubMed  CAS  Google Scholar 

  160. Gold, M. R., O’Gara, P. T., Buckley, M. J. & DeSanctis, R. W. Efficacy and safety of procainamide in preventing arrhythmias after coronary artery bypass surgery. Am. J. Cardiol. 78, 975–979 (1996).

    PubMed  CAS  Google Scholar 

  161. Laub, G. W. et al. Prophylactic procainamide for prevention of atrial fibrillation after coronary artery bypass grafting: a prospective, double-blind, randomized, placebo-controlled pilot study. Crit. Care Med. 21, 1474–1478 (1993).

    PubMed  CAS  Google Scholar 

  162. Borgeat, A. et al. Prevention of arrhythmias by flecainide after noncardiac thoracic surgery. Ann. Thorac. Surg. 48, 232–234 (1989).

    PubMed  CAS  Google Scholar 

  163. Borgeat, A. et al. Prevention of arrhythmias after noncardiac thoracic operations: flecainide versus digoxin. Ann. Thorac. Surg. 51, 964–967; discussion 967–968 (1991).

    PubMed  CAS  Google Scholar 

  164. Dobrev, D. & Nattel, S. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet 375, 1212–1223 (2010).

    PubMed  CAS  Google Scholar 

  165. Serafimovski, N., Burke, P., Khawaja, O., Sekulic, M. & Machado, C. Usefulness of dofetilide for the prevention of atrial tachyarrhythmias (atrial fibrillation or flutter) after coronary artery bypass grafting. Am. J. Cardiol. 101, 1574–1579 (2008).

    PubMed  CAS  Google Scholar 

  166. Nattel, S. Ionic determinants of atrial fibrillation and Ca2+ channel abnormalities: cause, consequence, or innocent bystander? Circ. Res. 85, 473–476 (1999).

    PubMed  CAS  Google Scholar 

  167. Trivedi, C., Upadhyay, A. & Solanki, K. Efficacy of ranolazine in preventing atrial fibrillation following cardiac surgery: results from a meta-analysis. J. Arrhythm. 33, 161–166 (2017).

    PubMed  Google Scholar 

  168. Burashnikov, A. & Antzelevitch, C. Ranolazine versus amiodarone for prevention of postoperative atrial fibrillation. Future Cardiol. 7, 733–737 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  169. Cook, R. C. et al. Prophylactic magnesium does not prevent atrial fibrillation after cardiac surgery: a meta-analysis. Ann. Thorac. Surg. 95, 533–541 (2013).

    PubMed  Google Scholar 

  170. Cook, R. C. et al. Prophylactic intravenous magnesium sulphate in addition to oral {beta}-blockade does not prevent atrial arrhythmias after coronary artery or valvular heart surgery: a randomized, controlled trial. Circulation 120, S163–S169 (2009).

    PubMed  CAS  Google Scholar 

  171. Terzi, A. et al. Prevention of atrial tachyarrhythmias after non-cardiac thoracic surgery by infusion of magnesium sulfate. Thorac. Cardiovasc. Surg. 44, 300–303 (1996).

    PubMed  CAS  Google Scholar 

  172. Lennerz, C., Barman, M., Tantawy, M., Sopher, M. & Whittaker, P. Colchicine for primary prevention of atrial fibrillation after open-heart surgery: systematic review and meta-analysis. Int. J. Cardiol. 249, 127–137 (2017).

    PubMed  Google Scholar 

  173. Imazio, M. et al. Colchicine for prevention of postpericardiotomy syndrome and postoperative atrial fibrillation: the COPPS-2 randomized clinical trial. JAMA 312, 1016–1023 (2014).

    PubMed  CAS  Google Scholar 

  174. Verma, S. et al. Colchicine in cardiac disease: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 15, 96 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Viviano, A., Kanagasabay, R. & Zakkar, M. Is perioperative corticosteroid administration associated with a reduced incidence of postoperative atrial fibrillation in adult cardiac surgery? Interact. Cardiovasc. Thorac. Surg. 18, 225–229 (2014).

    PubMed  Google Scholar 

  176. Dieleman, J. M. et al. Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial. JAMA 308, 1761–1767 (2012).

    PubMed  Google Scholar 

  177. Whitlock, R. P. et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet 386, 1243–1253 (2015).

    PubMed  CAS  Google Scholar 

  178. Zhen-Han, L. et al. Perioperative statin administration with decreased risk of postoperative atrial fibrillation, but not acute kidney injury or myocardial infarction: a meta-analysis. Sci. Rep. 7, 10091 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. Amar, D. et al. Beneficial effects of perioperative statins for major pulmonary resection. J. Thorac. Cardiovasc. Surg. 149, 1532–1538 (2015).

    PubMed  CAS  Google Scholar 

  180. Zheng, Z. et al. Perioperative rosuvastatin in cardiac surgery. N. Engl. J. Med. 374, 1744–1753 (2016).

    PubMed  CAS  Google Scholar 

  181. Zhang, B., Zhen, Y., Tao, A., Bao, Z. & Zhang, G. Polyunsaturated fatty acids for the prevention of atrial fibrillation after cardiac surgery: an updated meta-analysis of randomized controlled trials. J. Cardiol. 63, 53–59 (2014).

    PubMed  Google Scholar 

  182. Maisel, W. H., Epstein, A. E. & The American College of Chest Physicians. The role of cardiac pacing: American College of Chest Physicians guidelines for the prevention and management of postoperative atrial fibrillation after cardiac surgery. Chest 128, 36S–38S (2005).

    PubMed  Google Scholar 

  183. Maaroos, M., Halonen, J., Kiviniemi, V., Hartikainen, J. & Hakala, T. Intravenous metoprolol versus biatrial pacing in the prevention of atrial fibrillation after coronary artery bypass surgery: a prospective randomized open trial. Scand. J. Surg. 101, 292–296 (2012).

    PubMed  CAS  Google Scholar 

  184. Akbarzadeh, F., Kazemi-Arbat, B., Golmohammadi, A. & Pourafkari, L. Biatrial pacing versus intravenous amiodarone in prevention of atrial fibrillation after coronary artery bypass surgery. Pak. J. Biol. Sci. 12, 1325–1329 (2009).

    PubMed  CAS  Google Scholar 

  185. Ali-Hasan-Al-Saegh, S. et al. Posterior pericardiotomy in cardiac surgery: systematic review and meta-analysis. Asian Cardiovasc. Thorac. Ann. 23, 354–362 (2015).

    PubMed  Google Scholar 

  186. Hu, X. L. et al. Posterior pericardiotomy for the prevention of atrial fibrillation after coronary artery bypass grafting: A meta-analysis of randomized controlled trials. Int. J. Cardiol. 215, 252–256 (2016).

    PubMed  Google Scholar 

  187. Kuralay, E., Ozal, E., Demirkili, U. & Tatar, H. Effect of posterior pericardiotomy on postoperative supraventricular arrhythmias and late pericardial effusion (posterior pericardiotomy). J. Thorac. Cardiovasc. Surg. 118, 492–495 (1999).

    PubMed  CAS  Google Scholar 

  188. Farsak, B. et al. Posterior pericardiotomy reduces the incidence of supra-ventricular arrhythmias and pericardial effusion after coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 22, 278–281 (2002).

    PubMed  Google Scholar 

  189. Asimakopoulos, G., Della Santa, R. & Taggart, D. P. Effects of posterior pericardiotomy on the incidence of atrial fibrillation and chest drainage after coronary revascularization: a prospective randomized trial. J. Thorac. Cardiovasc. Surg. 113, 797–799 (1997).

    PubMed  CAS  Google Scholar 

  190. Calkins, H. Is less more for the treatment of atrial fibrillation after cardiac surgery? N. Engl. J. Med. 374, 1977–1978 (2016).

    PubMed  Google Scholar 

  191. Butt, J. H. et al. Long-term thromboembolic risk in patients with postoperative atrial fibrillation after coronary artery bypass graft surgery and patients with nonvalvular atrial fibrillation. JAMA Cardiol. 3, 417–424 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Dunning, J. et al. Guidelines on the prevention and management of de novo atrial fibrillation after cardiac and thoracic surgery. Eur. J. Cardiothorac. Surg. 30, 852–872 (2006).

    PubMed  Google Scholar 

  193. Andrade, J. G. et al. 2018 focused update of the Canadian Cardiovascular Society guidelines for the management of atrial fibrillation. Can. J. Cardiol. 34, 1371–1392 (2018).

    PubMed  Google Scholar 

  194. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 64, e1–e76 (2014).

    PubMed  Google Scholar 

  195. Kirchhof, P. et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016).

    PubMed  Google Scholar 

  196. Fernando, H. C. et al. The Society of Thoracic Surgeons practice guideline on the prophylaxis and management of atrial fibrillation associated with general thoracic surgery: executive summary. Ann. Thorac. Surg. 92, 1144–1152 (2011).

    PubMed  Google Scholar 

  197. Frendl, G. et al. 2014 AATS guidelines for the prevention and management of perioperative atrial fibrillation and flutter for thoracic surgical procedures. J. Thorac. Cardiovasc. Surg. 148, e153–e193 (2014).

    PubMed  PubMed Central  Google Scholar 

  198. Zaman, A. G. et al. Atrial fibrillation after coronary artery bypass surgery: a model for preoperative risk stratification. Circulation 101, 1403–1408 (2000).

    PubMed  CAS  Google Scholar 

  199. Zacharias, A. et al. Obesity and risk of new-onset atrial fibrillation after cardiac surgery. Circulation 112, 3247–3255 (2005).

    PubMed  Google Scholar 

  200. Banach, M. et al. Risk factors of atrial fibrillation following coronary artery bypass grafting: a preliminary report. Circ. J. 70, 438–441 (2006).

    PubMed  Google Scholar 

  201. Shen, J. et al. The persistent problem of new-onset postoperative atrial fibrillation: a single-institution experience over two decades. J. Thorac. Cardiovasc. Surg. 141, 559–570 (2011).

    PubMed  PubMed Central  Google Scholar 

  202. Brandt, M. C., Priebe, L., Bohle, T., Sudkamp, M. & Beuckelmann, D. J. The ultrarapid and the transient outward K+ current in human atrial fibrillation. Their possible role in postoperative atrial fibrillation. J. Mol. Cell. Cardiol. 32, 1885–1896 (2000).

    PubMed  CAS  Google Scholar 

  203. Dupont, E. et al. The gap-junctional protein connexin40 is elevated in patients susceptible to postoperative atrial fibrillation. Circulation 103, 842–849 (2001).

    PubMed  CAS  Google Scholar 

  204. Wilhelm, M. et al. Atrial distribution of connexin 40 and 43 in patients with intermittent, persistent, and postoperative atrial fibrillation. Heart Lung Circ. 15, 30–37 (2006).

    PubMed  CAS  Google Scholar 

  205. Kaireviciute, D. et al. Intracardiac expression of markers of endothelial damage/dysfunction, inflammation, thrombosis, and tissue remodeling, and the development of postoperative atrial fibrillation. J. Thromb. Haemost. 9, 2345–2352 (2011).

    PubMed  CAS  Google Scholar 

  206. Yamac, A. H. et al. Altered expression of micro-RNA 199a and increased levels of cardiac SIRT1 protein are associated with the occurrence of atrial fibrillation after coronary artery bypass graft surgery. Cardiovasc. Pathol. 25, 232–236 (2016).

    PubMed  CAS  Google Scholar 

  207. Kertai, M. D. et al. Gene signatures of postoperative atrial fibrillation in atrial tissue after coronary artery bypass grafting surgery in patients receiving beta-blockers. J. Mol. Cell. Cardiol. 92, 109–115 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the German Research Foundation (Do 769/4-1; D.D.), German Center for Cardiovascular Research (D.D.), US NIH (R01-HL131517 and R01-HL136389; D.D.), Canadian Institutes of Health Research (S.N.) and Quebec Heart and Stroke Foundation (S.N.).

Reviewer information

Nature Reviews Cardiology thanks H. Calkins, A. Gillinov and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article and discussed its content. D.D., M.A., J.-B.G. and S.N. wrote the manuscript, and D.D., M.A. and J.H. reviewed and edited it before submission.

Corresponding author

Correspondence to Stanley Nattel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrev, D., Aguilar, M., Heijman, J. et al. Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol 16, 417–436 (2019). https://doi.org/10.1038/s41569-019-0166-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0166-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing