Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational models in cardiology

Abstract

The treatment of individual patients in cardiology practice increasingly relies on advanced imaging, genetic screening and devices. As the amount of imaging and other diagnostic data increases, paralleled by the greater capacity to personalize treatment, the difficulty of using the full array of measurements of a patient to determine an optimal treatment seems also to be paradoxically increasing. Computational models are progressively addressing this issue by providing a common framework for integrating multiple data sets from individual patients. These models, which are based on physiology and physics rather than on population statistics, enable computational simulations to reveal diagnostic information that would have otherwise remained concealed and to predict treatment outcomes for individual patients. The inherent need for patient-specific models in cardiology is clear and is driving the rapid development of tools and techniques for creating personalized methods to guide pharmaceutical therapy, deployment of devices and surgical interventions.

Key points

  • Computational models of the heart have an important and growing role in cardiology, enabling patients to be diagnosed and treated on the basis of their specific pathophysiology.

  • Simulations provide the link between the effects of genetic mutations, physiological regulations or drugs on protein function and emergent cellular and tissue function or clinical phenotypes.

  • Models representing an individual patient or a specific pathology are now used to identify the mechanisms underpinning a disease, improve patient selection and predict clinical outcomes.

  • Predictive modelling also contributes to the development of new diagnostics and devices and to the tailoring of therapies for individual patients.

  • Translational barriers remain regarding model personalization, speed and detail of the simulations and how to communicate model predictions to cardiologists within a clinical environment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: How can computational models improve current cardiology care?
Fig. 2: Modelling cardiac cells, channel mutations and drug response.
Fig. 3: Linking clinical data to computer models of the heart with increasing levels of anatomical detail.

References

  1. 1.

    Antman, E. M. & Loscalzo, J. Precision medicine in cardiology. Nat. Rev. Cardiol. 13, 591–602 (2016).

    PubMed  Google Scholar 

  2. 2.

    Loscalzo, J., Kohane, I. & Barabasi, A. L. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol. Syst. Biol. 3, 124 (2007).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lyon, A. et al. Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers. Front. Physiol. 9, 213 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Horiuchi, Y. et al. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables. Int. J. Cardiol. 262, 57–63 (2018).

    PubMed  Google Scholar 

  5. 5.

    Stanley, K. Design of randomized controlled trials. Circulation 115, 1164–1169 (2007).

    PubMed  Google Scholar 

  6. 6.

    Gilbert, K. et al. Atlas-based computational analysis of heart shape and function in congenital heart disease. J. Cardiovasc. Transl Res. 11, 123–132 (2018).

    PubMed  Google Scholar 

  7. 7.

    Vadakkumpadan, F., Arevalo, H., Ceritoglu, C., Miller, M. & Trayanova, N. Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology. IEEE Trans. Med. Imag. 31, 1051–1060 (2012).

    Google Scholar 

  8. 8.

    Witzenburg, C. M. & Holmes, J. W. A. Comparison of phenomenologic growth laws for myocardial hypertrophy. J. Elast. 129, 257–281 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Arts, T., Lumens, J., Kroon, W. & Delhaas, T. Control of whole heart geometry by intramyocardial mechano-feedback: a model study. PLoS Comput. Biol. 8, e1002369 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Niederer, S. A. & Smith, N. P. Using physiologically based models for clinical translation: predictive modelling, data interpretation or something in-between? J. Physiol. 594, 6849–6863 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Trayanova, N. A., Boyle, P. M. & Nikolov, P. P. Personalized imaging and modeling strategies for arrhythmia prevention and therapy. Curr. Opin. Biomed. Eng. 5, 21–28 (2018).

    Google Scholar 

  12. 12.

    Morris, P. D. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18 (2016).

    PubMed  Google Scholar 

  13. 13.

    Taylor, C. A. & Figueroa, C. Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11, 109–134 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Lamata, P. et al. Images as drivers of progress in cardiac computational modelling. Prog. Biophys. Mol. Biol. 115, 198–212 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Crozier, A. et al. Image-based personalization of cardiac anatomy for coupled eSlectromechanical modeling. Annu. Rev. Biomed. Eng. 44, 58–70 (2016).

    CAS  Google Scholar 

  16. 16.

    Luo, C. & Rudy, Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991).

    CAS  PubMed  Google Scholar 

  17. 17.

    Fink, M. et al. Cardiac cell modelling: observations from the heart of the cardiac physiome project. Prog. Biophys. Mol. Biol. 104, 2–21 (2011).

    PubMed  Google Scholar 

  18. 18.

    Heijman, J., Volders, P. G., Westra, R. L. & Rudy, Y. Local control of β-adrenergic stimulation: effects on ventricular myocyte electrophysiology and Ca2+-transient. J. Mol. Cell. Cardiol. 50, 863–871 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lascano, E. C. et al. Role of CaMKII in post acidosis arrhythmias: a simulation study using a human myocyte model. J. Mol. Cell. Cardiol. 60, 172–183 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Fernandez-Chas, M., Curtis, M. J. & Niederer, S. A. Mechanism of doxorubicin cardiotoxicity evaluated by integrating multiple molecular effects into a biophysical model. Br. J. Pharmacol. 175, 763–781 (2017).

    Google Scholar 

  21. 21.

    Fabbri, A., Fantini, M., Wilders, R. & Severi, S. Computational analysis of the human sinus node action potential: model development and effects of mutations. J. Physiol. 595, 2365–2396 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    ten Tusscher, K. H. W. J. & Panfilov, A. V. Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291, H1088–H1100 (2006).

    PubMed  Google Scholar 

  23. 23.

    O’Hara, T., Virág, L., Varró, A. & Rudy, Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7, e1002061 (2011).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Grandi, E., Pasqualini, F. S. & Bers, D. M. A novel computational model of the human ventricular action potential and Ca transient. J. Mol. Cell. Cardiol. 48, 112–121 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Priebe, L. & Beuckelmann, D. J. Simulation study of cellular electric properties in heart failure. Circ. Res. 82, 1206–1223 (1998).

    CAS  PubMed  Google Scholar 

  26. 26.

    Grandi, E. et al. Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ. Res. 109, 1055–1066 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Koivumäki, J. T., Korhonen, T. & Tavi, P. Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: a computational study. PLoS Comput. Biol. 7, e1001067 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Maleckar, M. M., Greenstein, J. L., Trayanova, N. A. & Giles, W. R. Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium. Prog. Biophys. Mol. Biol. 98, 161–170 (2008).

    CAS  PubMed  Google Scholar 

  29. 29.

    Nygren, A. et al. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res. 82, 63–81 (1998).

    CAS  PubMed  Google Scholar 

  30. 30.

    Courtemanche, M., Ramirez, R. J. & Nattel, S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998).

    CAS  PubMed  Google Scholar 

  31. 31.

    Land, S. et al. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. J. Mol. Cell. Cardiol. 106, 68–83 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995).

    CAS  PubMed  Google Scholar 

  33. 33.

    Wilde, A. A. M. & Behr, E. R. Genetic testing for inherited cardiac disease. Nat. Rev. Cardiol. 10, 571–583 (2013).

    CAS  PubMed  Google Scholar 

  34. 34.

    Adsit, G. S., Vaidyanathan, R., Galler, C. M., Kyle, J. W. & Makielski, J. C. Channelopathies from mutations in the cardiac sodium channel protein complex. J. Mol. Cell. Cardiol. 61, 34–43 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Clancy, C. E. & Rudy, Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400, 566–569 (1999).

    CAS  PubMed  Google Scholar 

  36. 36.

    Saucerman, J. J., Healy, S. N., Belik, M. E., Puglisi, J. L. & McCulloch, A. D. Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation: computational models of whole cells and heterogeneous tissue. Circ. Res. 95, 1216–1224 (2004).

    CAS  PubMed  Google Scholar 

  37. 37.

    O’Hara, T. & Rudy, Y. Arrhythmia formation in subclinical (“silent”) long QT syndrome requires multiple insults: quantitative mechanistic study using the KCNQ1 mutation Q357R as example. Heart Rhythm 9, 275–282 (2012).

    PubMed  Google Scholar 

  38. 38.

    Ficker, E. et al. Novel characteristics of a misprocessed mutant HERG channel linked to hereditary long QT syndrome. Am. J. Physiol. Heart Circ. Physiol. 279, H1748–H1756 (2000).

    CAS  PubMed  Google Scholar 

  39. 39.

    Choe, C. U. et al. C-Terminal HERG (LQT2) mutations disrupt IKr channel regulation through 14-3-3ε. Hum. Mol. Genet. 15, 2888–2902 (2006).

    CAS  PubMed  Google Scholar 

  40. 40.

    Clancy, C. E., Tateyama, M., Liu, H., Wehrens, X. H. T. & Kass, R. S. Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia. Circulation 107, 2233–2237 (2003).

    CAS  PubMed  Google Scholar 

  41. 41.

    Flaim, S. N., Giles, W. R. & McCulloch, A. D. Arrhythmogenic consequences of Na+ channel mutations in the transmurally heterogeneous mammalian left ventricle: analysis of the I1768V SCN5A mutation. Heart Rhythm 4, 768–778 (2007).

    PubMed  Google Scholar 

  42. 42.

    Wehrens, X. H. T., Abriel, H., Cabo, C., Benhorin, J. & Kass, R. S. Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na+ channel α-subunit: a comptutational analysis. Circulation 102, 584–590 (2000).

    CAS  PubMed  Google Scholar 

  43. 43.

    Bankston, J. R. et al. A novel LQT-3 mutation disrupts an inactivation gate complex with distinct rate-dependent phenotypic consequences. Channels 1, 273–280 (2007).

    PubMed  Google Scholar 

  44. 44.

    Vecchietti, S. et al. In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes. Am. J. Physiol. Heart Circ. Physiol. 292, H56–H65 (2007).

    CAS  PubMed  Google Scholar 

  45. 45.

    Ahrens-Nicklas, R. C., Clancy, C. E. & Christini, D. J. Re-evaluating the efficacy of beta-adrenergic agonists and antagonists in long QT-3 syndrome through computational modelling. Cardiovasc. Res. 82, 439–447 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Thiel, W. H. et al. Proarrhythmic defects in Timothy syndrome require calmodulin kinase II. Circulation 118, 2225–2234 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Splawski, I. et al. Ca V 1. 2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. 119, 19–31 (2004).

  48. 48.

    Boczek, N. J. et al. Novel Timothy syndrome mutation leading to increase in CACNA1C window current. Heart Rhythm 12, 211–219 (2015).

    PubMed  Google Scholar 

  49. 49.

    Sung, R. J. et al. Beta-adrenergic modulation of arrhythmogenesis and identification of targeted sites of antiarrhythmic therapy in Timothy (LQT8) syndrome: a theoretical study. Am. J. Physiol. Heart Circ. Physiol. 298, H33–44 (2010).

    CAS  PubMed  Google Scholar 

  50. 50.

    Zhu, Z. I. & Clancy, C. E. L-Type Ca2+ channel mutations and T-wave alternans: a model study. Am. J. Physiol. Heart Circ. Physiol. 293, H3480–H3489 (2007).

    CAS  PubMed  Google Scholar 

  51. 51.

    Faber, G. M., Silva, J., Livshitz, L. & Rudy, Y. Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys. J. 92, 1522–1543 (2007).

    CAS  PubMed  Google Scholar 

  52. 52.

    Fermini, B. et al. A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. J. Biomol. Screen. 21, 1–11 (2016).

    CAS  PubMed  Google Scholar 

  53. 53.

    Verkerk, A. O. et al. Role of sequence variations in the human ether-a-go-go-related gene (HERG, KCNH2) in the Brugada syndrome. Cardiovasc. Res. 68, 441–453 (2005).

    CAS  PubMed  Google Scholar 

  54. 54.

    Moreno, C. et al. A new KCNQ1 mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome. Cardiovasc. Res. 107, 613–623 (2015).

    CAS  PubMed  Google Scholar 

  55. 55.

    Hancox, J. C., Whittaker, D. G., Du, C., Stuart, A. G. & Zhang, H. Emerging therapeutic targets in the short QT syndrome. Expert Opin. Ther. Targets 22, 439–451 (2018).

    CAS  PubMed  Google Scholar 

  56. 56.

    Clancy, C. E. & Rudy, Y. Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105, 1208–1213 (2002).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Wu, J., Kato, K., Delisle, B. P. & Horie, M. A molecular mechanism for adrenergic-induced long QT syndrome. J. Am. Coll. Cardiol. 63, 819–827 (2014).

    CAS  PubMed  Google Scholar 

  58. 58.

    Hu, D. et al. Dual variation in SCN5A and CACNB2b underlies the development of cardiac conduction disease without Brugada syndrome. Pacing Clin. Electrophysiol. 33, 274–285 (2010).

    PubMed  Google Scholar 

  59. 59.

    Priest, J. R. et al. Early somatic mosaicism is a rare cause of long-QT syndrome. Proc. Natl Acad. Sci. USA 113, 11555–11560 (2016).

    CAS  PubMed  Google Scholar 

  60. 60.

    Moreno, J. D. et al. Ranolazine for congenital and acquired late iNa-linked arrhythmias: In silico pharmacological screening. Circ. Res. 113, e50–e61 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Campbell, S. G., Lionetti, F. V., Campbell, K. S. & McCulloch, A. D. Coupling of adjacent tropomyosins enhances cross-bridge-mediated cooperative activation in a Markov model of the cardiac thin filament. Biophys. J. 98, 2254–2264 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Land, S. & Niederer, S. A. A spatially detailed model of isometric contraction based on competitive binding of troponin I explains cooperative interactions between tropomyosin and crossbridges. PLoS Comput. Biol. 11, e1004376 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Sewanan, L. R., Moore, J. R., Lehman, W. & Campbell, S. G. Predicting effects of tropomyosin mutations on cardiac muscle contraction through myofilament modeling. Front. Physiol. 7, 473 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Dewan, S., McCabe, K. J., Regnier, M., McCulloch, A. D. & Lindert, S. Molecular effects of cTnC DCM mutations on calcium sensitivity and myofilament activation-an integrated multiscale modeling study. J. Phys. Chem. B 120, 8264–8275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Li, Z. et al. Improving the in silico assessment of proarrhythmia risk by combining hERG (Human Ether-à-go-go-related gene) channel–drug binding kinetics and multichannel pharmacology. Circ. Arrhythm. Electrophysiol. 10, e004628 (2017).

    CAS  PubMed  Google Scholar 

  66. 66.

    Sager, P. T., Gintant, G., Turner, J. R., Pettit, S. & Stockbridge, N. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am. Heart J. 167, 292–300 (2014).

    PubMed  Google Scholar 

  67. 67.

    Johnstone, R. H. et al. Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models? J. Mol. Cell. Cardiol. 96, 49–62 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Sarkar, A. X., Christini, D. J. & Sobie, E. A. Exploiting mathematical models to illuminate electrophysiological variability between individuals. J. Physiol. 590, 2555–2567 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Mirams, G. R. et al. Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovasc. Res. 91, 53–61 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    de Oliveira, B. L. & Niederer, S. A biophysical systems approach to identifying the pathways of acute and chronic doxorubicin mitochondrial cardiotoxicity. PLoS Comput. Biol. 12, e1005214 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Mirams, G. R. et al. Prediction of thorough QT study results using action potential simulations based on ion channel screens. J. Pharmacol. Toxicol. Methods 70, 246–254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Zipes, D. P. & Wellens, H. J. J. Sudden cardiac death. Circulation 98, 2334–2351 (1998).

    CAS  PubMed  Google Scholar 

  73. 73.

    Ferrero, J. M., Trenor, B. & Romero, L. Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction. Europace 16, 405–415 (2014).

    PubMed  Google Scholar 

  74. 74.

    Morena, H. et al. Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart. Circ. Res. 46, 634–646 (1980).

    CAS  PubMed  Google Scholar 

  75. 75.

    Jones, D. K., Peters, C. H., Tolhurst, S. A., Claydon, T. W. & Ruben, P. C. Extracellular proton modulation of the cardiac voltage-gated sodium channel, NaV1.5. Biophys. J. 101, 2147–2156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Du Chun, Y. U. N. et al. Acidosis impairs the protective role of hERG K+ channels against premature stimulation. J. Cardiovasc. Electrophysiol. 21, 1160–1169 (2010).

    Google Scholar 

  77. 77.

    Dutta, S., Mincholé, A., Quinn, T. A. & Rodriguez, B. Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Prog. Biophys. Mol. Biol. 129, 40–52 (2017).

    PubMed  Google Scholar 

  78. 78.

    Dutta, S. et al. Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve. Prog. Biophys. Mol. Biol. 120, 236–248 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Potse, M., Coronel, R., Falcao, S., LeBlanc, A. R. & Vinet, A. The effect of lesion size and tissue remodeling on ST deviation in partial-thickness ischemia. Heart Rhythm 4, 200–206 (2007).

    PubMed  Google Scholar 

  80. 80.

    Kazbanov, I. V. et al. Effect of global cardiac ischemia on human ventricular fibrillation: insights from a multi-scale mechanistic model of the human heart. PLoS Comput. Biol. 10, e1003891 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Sanchez-Alonso, J. L. et al. Microdomain-specific modulation of L-type calcium channels leads to triggered ventricular arrhythmia in heart failure. Circ. Res. 119, 944–945 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Narayan, S. M., Bayer, J. D., Lalani, G. & Trayanova, N. A. Action potential dynamics explain arrhythmic vulnerability in human heart failure: a clinical and modeling study implicating abnormal calcium handling. J. Am. Coll. Cardiol. 52, 1782–1792 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Chang, K. C. & Trayanova, N. A. Mechanisms of arrhythmogenesis related to calcium-driven alternans in a model of human atrial fibrillation. Sci. Rep. 6, 36395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Paci, M., Hyttinen, J., Aalto-Setala, K. & Severi, S. Computational models of ventricular- and atrial-like human induced pluripotent stem cell derived cardiomyocytes. Ann. Biomed. Eng. 41, 2334–2348 (2013).

    PubMed  Google Scholar 

  85. 85.

    Koivumaki, J. T. et al. Structural immaturity of human iPSC-derived cardiomyocytes: in silico investigation of effects on function and disease modeling. Front. Physiol. 9, 80 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Lei, C. L. et al. Tailoring mathematical models to stem-cell derived cardiomyocyte lines can improve predictions of drug-induced changes to their electrophysiology. Front. Physiol. 8, 986 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Paci, M., Hyttinen, J., Rodriguez, B. & Severi, S. Human induced pluripotent stem cell-derived versus adult cardiomyocytes: an in silico electrophysiological study on effects of ionic current block. Br. J. Pharmacol. 172, 5147–5160 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Harding, S. E. Large stem cell-derived cardiomyocyte grafts: cellular ventricular assist devices? Mol. Ther. 22, 1240–1242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Ukwatta, E. et al. Myocardial infarct segmentation from magnetic resonance images for personalized modeling of cardiac electrophysiology. IEEE Trans. Med. Imag. 35, 1408–1419 (2015).

    Google Scholar 

  90. 90.

    Ukwatta, E. et al. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology. Med. Phys. 42, 4579–4590 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Suinesiaputra, A., McCulloch, A. D., Nash, M. P., Pontre, B. & Young, A. A. Cardiac image modelling: breadth and depth in heart disease. Med. Image Anal. 33, 38–43 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Zhang, X. et al. Information maximizing component analysis of left ventricular remodeling due to myocardial infarction. J. Transl Med. 13, 343 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Ringenberg, J. et al. Corrigendum to “effects of fibrosis morphology on reentrant ventricular tachycardia inducibility and simulation fidelity in patient-derived models”. Clin. Med. Insights Cardiol. 8, 51 (2014).

    PubMed  Google Scholar 

  94. 94.

    Bayer, J. D., Blake, R. C., Plank, G. & Trayanova, N. A. A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40, 2243–2254 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Arevalo, H. J. et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7, 11437 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Deng, D., Arevalo, H. J., Prakosa, A., Callans, D. J. & Trayanova, N. A. A feasibility study of arrhythmia risk prediction in patients with myocardial infarction and preserved ejection fraction. Europace 18, iv60–iv66 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Sanchez, C. et al. Sensitivity analysis of ventricular activation and electrocardiogram in tailored models of heart-failure patients. Med. Biol. Eng. Comput. 56, 491–504 (2018).

    CAS  PubMed  Google Scholar 

  98. 98.

    Ranjan, R. et al. Personalized MRI-based modeling predicts ventricular tachycardia vulnerability in patients receiving primary prevention ICDs [abstract 16247]. Circulation 134, A16247–A16247 (2016).

    Google Scholar 

  99. 99.

    Relan, J. et al. Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus 1, 396–407 (2011).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Corrado, C. et al. Personalized models of human atrial electrophysiology derived from endocardial electrograms. IEEE Trans. Biomed. Eng. 64, 735–742 (2016).

    PubMed  Google Scholar 

  101. 101.

    Vigmond, E. J., Ruckdeschel, R. & Trayanova, N. Reentry in a morphologically realistic atrial model. J. Cardiovasc. Electrophysiol. 12, 1046–1054 (2001).

    CAS  PubMed  Google Scholar 

  102. 102.

    Virag, N. et al. Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos 12, 754–763 (2002).

    PubMed  Google Scholar 

  103. 103.

    Dang, L. et al. Evaluation of ablation patterns using a biophysical model of atrial fibrillation. Ann. Biomed. Eng. 33, 465–474 (2005).

    CAS  PubMed  Google Scholar 

  104. 104.

    Vigmond, E. J. et al. The effect of vagally induced dispersion of action potential duration on atrial arrhythmogenesis. Heart Rhythm 1, 334–344 (2004).

    PubMed  Google Scholar 

  105. 105.

    Freudenberg, J., Schiemann, T., Tiede, U. & Hohne, K. H. Simulation of cardiac excitation patterns in a three-dimensional anatomical heart atlas. Comput. Biol. Med. 30, 191–205 (2000).

    CAS  PubMed  Google Scholar 

  106. 106.

    Harrild, D. & Henriquez, C. A computer model of normal conduction in the human atria. Circ. Res. 87, 25–36 (2000).

    Google Scholar 

  107. 107.

    Seemann, G. et al. Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Phil. Trans. A Math. Phys. Eng. Sci. 364, 1465–1481 (2006).

    CAS  Google Scholar 

  108. 108.

    Reumann, M., Bohnert, J., Seemann, G., Osswald, B. & Dossel, O. Preventive ablation strategies in a biophysical model of atrial fibrillation based on realistic anatomical data. IEEE Trans. Biomed. Eng. 55, 399–406 (2008).

    PubMed  Google Scholar 

  109. 109.

    Aslanidi, O. V. et al. 3D virtual human atria: a computational platform for studying clinical atrial fibrillation. Prog. Biophys. Mol. Biol. 107, 156–168 (2011).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    McDowell, K. S. et al. Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation. Biophys. J. 104, 2764–2773 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    McDowell, K. S. et al. Methodology for patient-specific modeling of atrial fibrosis as a substrate for atrial fibrillation. J. Electrocardiol. 45, 640–645 (2012).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Dossel, O., Krueger, M. W., Weber, F. M., Wilhelms, M. & Seemann, G. Computational modeling of the human atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 50, 773–799 (2012).

    PubMed  Google Scholar 

  113. 113.

    Fastl, T. E. et al. Personalized computational modeling of left atrial geometry and transmural myofiber architecture. Med. Image Anal. 47, 180–190 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Pashakhanloo, F. et al. Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circ. Arrhythm. Electrophysiol. 9, e004133 (2016).

    PubMed  Google Scholar 

  115. 115.

    Corrado, C. et al. A work flow to build and validate patient specific left atrium electrophysiology models from catheter measurements. Med. Image Anal. 47, 153–163 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Trayanova, N. A. Mathematical approaches to understanding and imaging atrial fibrillation: significance for mechanisms and management. Circ. Res. 114, 1516–1531 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Ten Tusscher, K. H., Hren, R. & Panfilov, A. V. Organization of ventricular fibrillation in the human heart. Circ. Res. 100, e87–101 (2007).

    PubMed  Google Scholar 

  118. 118.

    Keldermann, R. H. et al. Effect of heterogeneous APD restitution on VF organization in a model of the human ventricles. Am. J. Physiol. Heart Circ. Physiol. 294, H764–H774 (2008).

    CAS  PubMed  Google Scholar 

  119. 119.

    Bayer, J. D., Lalani, G. G., Vigmond, E. J., Narayan, S. M. & Trayanova, N. A. Mechanisms linking electrical alternans and clinical ventricular arrhythmia in human heart failure. Heart Rhythm 13, 1922–1931 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Van Nieuwenhuyse, E., Seemann, G., Panfilov, A. V. & Vandersickel, N. Effects of early afterdepolarizations on excitation patterns in an accurate model of the human ventricles. PLoS ONE 12, e0188867 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Vandersickel, N., de Boer, T. P., Vos, M. A. & Panfilov, A. V. Perpetuation of torsade de pointes in heterogeneous hearts: competing foci or re-entry? J. Physiol. 594, 6865–6878 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Sadrieh, A. et al. Multiscale cardiac modelling reveals the origins of notched T waves in long QT syndrome type 2. Nat. Commun. 5, 5069 (2014).

    CAS  PubMed  Google Scholar 

  123. 123.

    Potse, M. et al. Similarities and differences between electrocardiogram signs of left bundle-branch block and left-ventricular uncoupling. Europace 14, v33–v39 (2012). Suppl. 5.

    PubMed  Google Scholar 

  124. 124.

    Keller, D. U., Weiss, D. L., Dossel, O. & Seemann, G. Influence of I(Ks) heterogeneities on the genesis of the T-wave: a computational evaluation. IEEE Trans. Biomed. Eng. 59, 311–322 (2012).

    PubMed  Google Scholar 

  125. 125.

    Chen, X., Hu, Y., Fetics, B. J., Berger, R. D. & Trayanova, N. A. Unstable QT interval dynamics precedes ventricular tachycardia onset in patients with acute myocardial infarction: a novel approach to detect instability in QT interval dynamics from clinical ECG. Circ. Arrhythm. Electrophysiol. 4, 858–866 (2011).

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Nguyen, U. C. et al. An in-silico analysis of the effect of heart position and orientation on the ECG morphology and vectorcardiogram parameters in patients with heart failure and intraventricular conduction defects. J. Electrocardiol. 48, 617–625 (2015).

    PubMed  Google Scholar 

  127. 127.

    Bacharova, L. et al. The effect of reduced intercellular coupling on electrocardiographic signs of left ventricular hypertrophy. J. Electrocardiol. 44, 571–576 (2011).

    PubMed  Google Scholar 

  128. 128.

    Zhu, X., Wei, D. & Okazaki, O. Computer simulation of clinical electrophysiological study. Pacing Clin. Electrophysiol. 35, 718–729 (2012).

    PubMed  Google Scholar 

  129. 129.

    Ashikaga, H. et al. Feasibility of image-based simulation to estimate ablation target in human ventricular arrhythmia. Heart Rhythm 10, 1109–1116 (2013).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Rantner, L. J., Vadakkumpadan, F., Spevak, P. J., Crosson, J. E. & Trayanova, N. A. Placement of implantable cardioverter-defibrillators in paediatric and congenital heart defect patients: a pipeline for model generation and simulation prediction of optimal configurations. J. Physiol. 591, 4321–4334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Heijman, J., Erfanian Abdoust, P., Voigt, N., Nattel, S. & Dobrev, D. Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation. J. Physiol. 594, 537–553 (2016).

    CAS  PubMed  Google Scholar 

  132. 132.

    Krummen, D. E. et al. Mechanisms of human atrial fibrillation initiation: clinical and computational studies of repolarization restitution and activation latency. Circ. Arrhythm. Electrophysiol. 5, 1149–1159 (2012).

    PubMed  Google Scholar 

  133. 133.

    Zhao, J., Trew, M. L., Legrice, I. J., Smaill, B. H. & Pullan, A. J. A tissue-specific model of reentry in the right atrial appendage. J. Cardiovasc. Electrophysiol. 20, 675–684 (2009).

    PubMed  Google Scholar 

  134. 134.

    Aslanidi, O. V., Boyett, M. R., Dobrzynski, H., Li, J. & Zhang, H. Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy. Biophys. J. 96, 798–817 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Wu, T. J. et al. Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry: potential implications for the mechanism of conversion between atrial fibrillation and atrial flutter. Circ. Res. 83, 448–462 (1998).

    CAS  PubMed  Google Scholar 

  136. 136.

    Gong, Y. et al. Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci: a simulation study. Circulation 115, 2094–2102 (2007).

    PubMed  Google Scholar 

  137. 137.

    Cherry, E. M., Ehrlich, J. R., Nattel, S. & Fenton, F. H. Pulmonary vein reentry — properties and size matter: insights from a computational analysis. Heart Rhythm 4, 1553–1562 (2007).

    PubMed  Google Scholar 

  138. 138.

    Chang, K. C., Bayer, J. D. & Trayanova, N. A. Disrupted calcium release as a mechanism for atrial alternans associated with human atrial fibrillation. PLoS Comput. Biol. 10, e1004011 (2014).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Hwang, M. et al. Ganglionated plexi stimulation induces pulmonary vein triggers and promotes atrial arrhythmogenecity: In silico modeling study. PLoS ONE 12, e0172931 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Gharaviri, A. et al. How disruption of endo-epicardial electrical connections enhances endo-epicardial conduction during atrial fibrillation. Europace 19, 308–318 (2017).

    PubMed  Google Scholar 

  141. 141.

    Roney, C. H. et al. Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. Europace 18, iv146–iv155 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Vigmond, E., Pashaei, A., Amraoui, S., Cochet, H. & Hassaguerre, M. Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data. Heart Rhythm 13, 1536–1543 (2016).

    PubMed  Google Scholar 

  143. 143.

    Roney, C. H. et al. Spatial resolution requirements for accurate identification of drivers of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 10, e004899 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Uldry, L., Virag, N., Jacquemet, V., Vesin, J. M. & Kappenberger, L. Optimizing local capture of atrial fibrillation by rapid pacing: study of the influence of tissue dynamics. Ann. Biomed. Eng. 38, 3664–3673 (2010).

    PubMed  Google Scholar 

  145. 145.

    Uldry, L., Virag, N., Lindemans, F., Vesin, J. M. & Kappenberger, L. Atrial septal pacing for the termination of atrial fibrillation: study in a biophysical model of human atria. Europace 14, 112–120 (2012).

    Google Scholar 

  146. 146.

    Ruchat, P. et al. A biophysical model of atrial fibrillation to define the appropriate ablation pattern in modified maze. Eur. J. Cardiothorac. Surg. 31, 65–69 (2007).

    PubMed  Google Scholar 

  147. 147.

    Li, C. et al. The spatiotemporal stability of dominant frequency sites in in-silico modeling of 3-dimensional left atrial mapping of atrial fibrillation. PLoS ONE 11, e0160017 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Zahid, S. et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 110, 443–454 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Zahid, S. et al. Feasibility of using patient-specific models and the “minimum cut” algorithm to predict optimal ablation targets for left atrial flutter. Heart Rhythm 13, 1687–1698 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    McDowell, K. S. et al. Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS ONE 10, e0117110 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Dhamala, J. et al. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Med. Image Anal. 48, 43–57 (2018).

    PubMed  Google Scholar 

  152. 152.

    Konukoglu, E. et al. Efficient probabilistic model personalization integrating uncertainty on data and parameters: Application to eikonal-diffusion models in cardiac electrophysiology. Prog. Biophys. Mol. Biol. 107, 134–146 (2011).

    PubMed  Google Scholar 

  153. 153.

    Wallman, M., Smith, N. P. & Rodriguez, B. Computational methods to reduce uncertainty in the estimation of cardiac conduction properties from electroanatomical recordings. Med. Image Anal. 18, 228–240 (2014).

    PubMed  Google Scholar 

  154. 154.

    Pathmanathan, P., Shotwell, M. S., Gavaghan, D. J., Cordeiro, J. M. & Gray, R. A. Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology. Prog. Biophys, Mol. Biol. 117, 4–18 (2015).

    CAS  Google Scholar 

  155. 155.

    Shotwell, M. S. & Gray, R. A. Estimability analysis and optimal design in dynamic multi-scale models of cardiac electrophysiology. J. Agr. Biol. Environ. Stat. 21, 261–276 (2016).

    Google Scholar 

  156. 156.

    Dhamala, J. et al. Spatially adaptive multi-scale optimization for local parameter estimation in cardiac electrophysiology. IEEE Trans. Med. Imag. 36, 1966–1978 (2017).

    Google Scholar 

  157. 157.

    Johnston, B. M., Coveney, S., Chang, E. T. Y., Johnston, P. R. & Clayton, R. H. Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia. Med. Biol. Eng. Comput. 56, 761–780 (2018).

    PubMed  Google Scholar 

  158. 158.

    Chang, E. T., Strong, M. & Clayton, R. H. Bayesian Sensitivity Analysis of a cardiac cell model using a gaussian process emulator. PLoS ONE 10, e0130252 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Mullens, W. et al. Insights from a cardiac resynchronization optimization clinic as part of a heart failure disease management program. J. Am. Coll. Cardiol. 53, 765–773 (2009).

    PubMed  Google Scholar 

  160. 160.

    Auricchio, A. & Prinzen, F. W. Enhancing response in the cardiac resynchronization therapy patient: the 3B perspective — bench, bits, and bedside. JACC Clin. Electrophysiol. 3, 1203–1219 (2017).

    PubMed  Google Scholar 

  161. 161.

    Auricchio, A., Lumens, J. & Prinzen, F. W. Does cardiac resynchronization therapy benefit patients with right bundle branch block: cardiac resynchronization therapy has a role in patients with right bundle branch block. Circ. Arrhythm. Electrophysiol. 7, 532–542 (2014).

    PubMed  Google Scholar 

  162. 162.

    Kerckhoffs, R. C. et al. Cardiac resynchronization: insight from experimental and computational models. Prog. Biophys. Mol. Biol. 97, 543–561 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Leenders, G. E. et al. Septal deformation patterns delineate mechanical dyssynchrony and regional differences in contractility: analysis of patient data using a computer model. Circ. Heart Fail. 5, 87–96 (2012).

    PubMed  Google Scholar 

  164. 164.

    Lumens, J. et al. Differentiating electromechanical from non-electrical substrates of mechanical discoordination to identify responders to cardiac resynchronization therapy. Circ. Cardiovasc. Imag. 8, e003744 (2015).

    Google Scholar 

  165. 165.

    Bishop, M. et al. Three-dimensional atrial wall thickness maps to inform catheter ablation procedures for atrial fibrillation. Europace 18, 376–383 (2016).

    PubMed  Google Scholar 

  166. 166.

    Tracy, C. M. et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. [corrected]. Circulation 126, 1784–1800 (2012).

    PubMed  Google Scholar 

  167. 167.

    Jones, S. et al. Cardiac resynchronization therapy: mechanisms of action and scope for further improvement in cardiac function. Europace 19, 1178–1186 (2017).

    PubMed  Google Scholar 

  168. 168.

    Huntjens, P. R. et al. Influence of left ventricular lead position relative to scar location on response to cardiac resynchronization therapy: a model study. Europace 16 (Suppl. 4), iv62–iv68 (2014).

    PubMed  Google Scholar 

  169. 169.

    Kerckhoffs, R. C., McCulloch, A. D., Omens, J. H. & Mulligan, L. J. Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block. Med. Image Anal. 13, 362–369 (2009).

    PubMed  Google Scholar 

  170. 170.

    ter Keurs, H. E., Rijnsburger, W. H., van Heuningen, R. & Nagelsmit, M. J. Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. . Circ. Res. 46, 703–714 (1980).

    PubMed  Google Scholar 

  171. 171.

    Niederer, S. A. et al. Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc. Res. 89, 336–343 (2011).

    CAS  PubMed  Google Scholar 

  172. 172.

    Lumens, J. et al. Comparative electromechanical and hemodynamic effects of left ventricular and biventricular pacing in dyssynchronous heart failure: electrical resynchronization versus left-right ventricular interaction. J. Am. Coll. Cardiol. 62, 2395–2403 (2013).

    PubMed  PubMed Central  Google Scholar 

  173. 173.

    van Everdingen, W. M. et al. Echocardiographic prediction of cardiac resynchronization therapy response requires analysis of both mechanical dyssynchrony and right ventricular function: a combined analysis of patient data and computer simulations. J. Am. Soc. Echocardiogr. 30, 1012–1020 (2017).

    PubMed  Google Scholar 

  174. 174.

    Constantino, J., Hu, Y. & Trayanova, N. A. A computational approach to understanding the cardiac electromechanical activation sequence in the normal and failing heart, with translation to the clinical practice of CRT. Prog. Biophys. Mol. Biol. 110, 372–379 (2012).

    PubMed  PubMed Central  Google Scholar 

  175. 175.

    Crozier, A. et al. The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: a computational modelling study. J. Mol. Cell Cardiol. 96, 93–100 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Lee, A. W. et al. Biophysical modeling to determine the optimization of left ventricular pacing site and AV/VV delays in the acute and chronic phase of cardiac resynchronization therapy. J. Cardiovasc. Electrophysiol. 28, 208–215 (2017).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Okada, J. I. et al. Multi-scale, tailor-made heart simulation can predict the effect of cardiac resynchronization therapy. J. Mol. Cell Cardiol. 108, 17–23 (2017).

    CAS  PubMed  Google Scholar 

  178. 178.

    Pluijmert, M. et al. New insights from a computational model on the relation between pacing site and CRT response. Europace 18, iv94–iv103 (2016).

    PubMed  Google Scholar 

  179. 179.

    Niederer, S. A. et al. Biophysical modeling to simulate the response to multisite left ventricular stimulation using a quadripolar pacing lead. Pacing Clin. Electrophysiol. 35, 204–214 (2012).

    PubMed  Google Scholar 

  180. 180.

    Hyde, E. R. et al. Beneficial effect on cardiac resynchronization from left ventricular endocardial pacing is mediated by early access to high conduction velocity tissue: electrophysiological simulation study. Circ. Arrhythm. Electrophysiol. 8, 1164–1172 (2015).

    PubMed  Google Scholar 

  181. 181.

    Hu, Y., Gurev, V., Constantino, J. & Trayanova, N. Efficient preloading of the ventricles by a properly timed atrial contraction underlies stroke work improvement in the acute response to cardiac resynchronization therapy. Heart Rhythm 10, 1800–1806 (2013).

    PubMed  Google Scholar 

  182. 182.

    Reumann, M. et al. Computer model for the optimization of AV and VV delay in cardiac resynchronization therapy. Med. Biol. Eng. Comput. 45, 845–854 (2007).

    PubMed  Google Scholar 

  183. 183.

    Hu, Y., Gurev, V., Constantino, J. & Trayanova, N. Optimizing cardiac resynchronization therapy to minimize ATP consumption heterogeneity throughout the left ventricle: a simulation analysis using a canine heart failure model. Heart Rhythm 11, 1063–1069 (2014).

    PubMed  PubMed Central  Google Scholar 

  184. 184.

    Sermesant, M. et al. Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16, 201–215 (2012).

    CAS  PubMed  Google Scholar 

  185. 185.

    Kayvanpour, E. et al. Towards personalized cardiology: multi-scale modeling of the failing heart. PLoS ONE 10, e0134869 (2015).

    PubMed  PubMed Central  Google Scholar 

  186. 186.

    Krishnamurthy, A. et al. Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244, 4–21 (2013).

    PubMed  Google Scholar 

  187. 187.

    Huntjens, P. R. et al. Electrical substrates driving response to cardiac resynchronization therapy: a combined clinical-computational evaluation. Circ. Arrhythm. Electrophysiol. 11, e005647 (2018).

    PubMed  Google Scholar 

  188. 188.

    Augustin, C. M. et al. Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J. Comput. Phys. 305, 622–646 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Viceconti, M., Henney, A. & Morley-Fletcher, E. In silico clinical trials: how computer simulation will transform the biomedical industry. Int. J. Clin. Trials 3, 37–46 (2016).

    Google Scholar 

  190. 190.

    Prinzen, F. W. et al. Innovation in cardiovascular disease in Europe with focus on arrhythmias: current status, opportunities, roadblocks, and the role of multiple stakeholders. Europace 20, 733–738 (2017).

    Google Scholar 

  191. 191.

    Niederer, S. A., Fink, M., Noble, D. & Smith, N. P. A meta-analysis of cardiac electrophysiology computational models. Exp. Physiol. 94, 486–495 (2009).

    CAS  PubMed  Google Scholar 

  192. 192.

    Holmes, J. W. & Lumens, J. Clinical applications of patient-specific models: the case for a simple approach. J. Cardiovasc. Transl Res. 11, 71–79 (2018).

    PubMed  Google Scholar 

  193. 193.

    Richter, Y., Lind, P. G. & Maass, P. Modeling specific action potentials in the human atria based on a minimal single-cell model. PLoS ONE 13, e0190448 (2018).

    PubMed  PubMed Central  Google Scholar 

  194. 194.

    Bueno-Orovio, A., Cherry, E. M. & Fenton, F. H. Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253, 544–560 (2008).

    PubMed  Google Scholar 

  195. 195.

    Corrado, C. & Niederer, S. A. A two-variable model robust to pacemaker behaviour for the dynamics of the cardiac action potential. Math. Biosci. 281, 46–54 (2016).

    PubMed  PubMed Central  Google Scholar 

  196. 196.

    Neic, A. et al. Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model. J. Comput. Phys. 346, 191–211 (2017).

    PubMed  PubMed Central  Google Scholar 

  197. 197.

    Gurev, V. et al. A high-resolution computational model of the deforming human heart. Biomech. Model. Mechanobiol. 14, 829–849 (2015).

    PubMed  Google Scholar 

  198. 198.

    Niederer, S., Mitchell, L., Smith, N. & Plank, G. Simulating human cardiac electrophysiology on clinical time-scales. Frontiers Physiol. 2, 14 (2011).

    Google Scholar 

  199. 199.

    Niederer, S. A. et al. Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Phil. Trans. A Math. Phys. Eng. Sci. 369, 4331–4351 (2011).

    Google Scholar 

  200. 200.

    Land, S. et al. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour. Proc. Math. Phys. Eng. Sci. 471, 20150641 (2015).

    PubMed  PubMed Central  Google Scholar 

  201. 201.

    Smith, L. P. et al. SBML Level 3 package: hierarchical model composition, version 1 release 3. J. Integr. Bioinform. 12, 603–659 (2015).

    Google Scholar 

  202. 202.

    Cuellar, A. et al. The CellML 1.1 specification. J. Integr. Bioinform. 12, 259 (2015).

    PubMed  Google Scholar 

  203. 203.

    Kerckhoffs, R. C., Omens, J. H. & McCulloch, A. D. Mechanical discoordination increases continuously after the onset of left bundle branch block despite constant electrical dyssynchrony in a computational model of cardiac electromechanics and growth. Europace 14 (Suppl. 5), v65–v72 (2012).

    PubMed  PubMed Central  Google Scholar 

  204. 204.

    Nolden, M. et al. The medical imaging interaction toolkit: challenges and advances: 10 years of open-source development. Int. J. Comput. Assist. Radiol. Surg. 8, 607–620 (2013).

    PubMed  Google Scholar 

  205. 205.

    Ayachit, U. The Paraview Guide: A Parallel Visualization Application (Kitware Inc, 2015).

  206. 206.

    Rhode, K. S. et al. A system for real-time XMR guided cardiovascular intervention. IEEE Trans. Med. Imag. 24, 1428–1440 (2005).

    Google Scholar 

  207. 207.

    Razavi, R. et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet 362, 1877–1882 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

S.A.N. acknowledges support from the UK Engineering and Physical Sciences Research Council (EP/M012492/1, NS/A000049/1 and EP/P01268X/1), the British Heart Foundation (PG/15/91/31812 and PG/13/37/30280) and King’s Health Partners London National Institute for Health Research (NIHR) Biomedical Research Centre. J.L. acknowledges support from the Dr. Dekker Program of the Dutch Heart Foundation (grant 2015T082) and the Netherlands Organisation for Scientific Research (NWO-ZonMw, VIDI grant 016.176.340). N.A.T. acknowledges support from Leducq Foundation and from the NIH (grants DP1-HL123271 and R01HL116280). M. Strocchi (King’s College London, UK) provided assistance with creating the four-chamber heart images in figure 3.

Reviewer information

Nature Reviews Cardiology thanks B. Rodriguez and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

All the authors researched data for the article, contributed substantially to the discussion of the content, and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Steven A. Niederer.

Ethics declarations

Competing interests

S.A.N. has received support from Abbott, Boston Scientific, Edwards Lifesciences, Pfizer, Roche and Siemens. J.L. has received support from Medtronic. N.A.T. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Comprehensive In vitro Proarrhythmia Assay (CiPA): http://cipaproject.org/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niederer, S.A., Lumens, J. & Trayanova, N.A. Computational models in cardiology. Nat Rev Cardiol 16, 100–111 (2019). https://doi.org/10.1038/s41569-018-0104-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing