Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The expanding role of implantable devices to monitor heart failure and pulmonary hypertension

Abstract

The epidemics of heart failure and, to a lesser extent, of pulmonary arterial hypertension continue unabated worldwide and are extremely costly in terms of loss of life and earnings, as well as the burden of health-care expenditure due to repeated hospitalization. The effectiveness of newly discovered therapies for the two conditions depends on their timely application. To date, symptoms have been used to guide the application and timing of therapy. Compelling evidence now exists that symptoms are preceded by several metabolic and haemodynamic changes, particularly a rise in intravascular pressures during exercise. These observations have stimulated the development of several implantable devices for the detection of impending unstable heart failure or pulmonary arterial hypertension, necessitating admission to hospital. In this Review, we summarize the rationale for monitoring patients with heart failure or pulmonary arterial hypertension, the transition from noninvasive to implantable devices and the current and anticipated clinical uses of these devices.

Key points

  • Long-term frequent or continuous haemodynamic monitoring is now feasible.

  • Measurements of pulmonary arterial pressure from a permanent implanted device have proven efficacy in reducing rehospitalization rates for patients with chronic heart failure.

  • Hypothetically, the integration of biomarker data, clinical signs and haemodynamic data will lead to improved care of patients with chronic cardiovascular conditions.

  • The emerging issue is the cost–benefit ratio for a variety of conditions and for different stages in progressive chronic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Progression and pathophysiology of heart failure.
Fig. 2: Pathophysiology and therapeutic targets for pulmonary arterial hypertension.
Fig. 3: Estimating lung congestion using transthoracic impedance.
Fig. 4: The left atrial pressure (LAP) monitoring system.
Fig. 5: The CardioMEMs device.
Fig. 6: The Titan sensor.
Fig. 7: The surface acoustic wave (SAW) system.

Similar content being viewed by others

References

  1. Ziaeian, B. & Fonarow, G. C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 13, 368–378 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Savarese, G. & Lund, L. H. Global public health burden of heart failure. Card. Fail. Rev. 3, 7–11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ammar, K. A. et al. Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation 115, 1563–1570 (2007).

    Article  PubMed  Google Scholar 

  4. Keates, A. K. et al. Cardiovascular disease in Africa: epidemiological profile and challenges. Nat. Rev. Cardiol. 14, 273–293 (2017).

    Article  PubMed  Google Scholar 

  5. Lau, E. M. T., Giannoulatou, E., Celermajer, D. S. & Humbert, M. Epidemiology and treatment of pulmonary arterial hypertension. Nat. Rev. Cardiol. 14, 603–614 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Mocumbi, A. O., Thienemann, F. & Sliwa, K. A global perspective on the epidemiology of pulmonary hypertension. Can. J. Cardiol. 31, 375–381 (2015).

    Article  PubMed  Google Scholar 

  7. Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States a policy statement from the American Heart Association. Circ. Heart Fail. 6, 606–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoeper, M. M. et al. A global view of pulmonary hypertension. Lancet Respir. Med. 4, 306–322 (2016).

    Article  PubMed  Google Scholar 

  9. Gräf, S. et al. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat. Commun. 9, 1416 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. McGoon, M. D. & Miller, D. P. REVEAL: a contemporary US pulmonary arterial hypertension registry. Eur. Respir. Rev. 21, 8–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Peacock, A. Pulmonary hypertension. Eur. Respir. Rev. 22, 20–25 (2013).

    Article  PubMed  Google Scholar 

  12. Sikirica, M., Iorga, S. R., Bancroft, T. & Potash, J. The economic burden of pulmonary arterial hypertension (PAH) in the US on payers and patients. BMC Health Serv. Res. 14, 676 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. McMurray, J. J. Neprilysin inhibition to treat heart failure: a tale of science, serendipity, and second chances. Eur. J. Heart Fail. 17, 242–247 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Hill, J. A. Braking bad hypertrophy. N. Engl. J. Med. 372, 2160–2162 (2015).

    Article  PubMed  Google Scholar 

  15. de Tombe, P. P. & Kohl, P. Which way to grow? Force over time may be the heart’s Dao de jing. Glob. Cardiol. Sci. Pract. 2016, e201621 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. McMurray, J. J. et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  PubMed  Google Scholar 

  17. Ghofrani, H. A. & Humbert, M. The role of combination therapy in managing pulmonary arterial hypertension. Eur. Respir. Rev. 23, 469–475 (2014).

    Article  PubMed  Google Scholar 

  18. Dorfs, S. et al. Pulmonary capillary wedge pressure during exercise and long-term mortality in patients with suspected heart failure with preserved ejection fraction. Eur. Heart J. 35, 3103–3112 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Nohria, A. et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J. Am. Coll. Cardiol. 41, 1797–1804 (2003).

    Article  PubMed  Google Scholar 

  20. Hochman, J. S. & Katz, S. Back to the future in cardiogenic shock — initial PCI of the culprit lesion only. N. Engl. J. Med. 377, 2486–2488 (2017).

    Article  PubMed  Google Scholar 

  21. ElGuindy, A. & Yacoub, M. H. Heart failure with preserved ejection fraction. Glob. Cardiol. Sci. Pract. 2012, 10 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dunlay, S. M., Roger, V. L. & Redfield, M. M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 14, 591–602 (2017).

    Article  PubMed  Google Scholar 

  23. American Heart Association. Classes of heart failure. AHA http://www.heart.org/HEARTORG/Conditions/HeartFailure/AboutHeartFailure/Classes-of-Heart-Failure_UCM_306328_Article.jsp#.Wss15IhubDc (2017).

  24. Gheorghiade, M. & Pang, P. S. Acute heart failure syndromes. J. Am. Coll. Cardiol. 53, 557–573 (2009).

    Article  PubMed  Google Scholar 

  25. Gheorghiade, M., Vaduganathan, M., Fonarow, G. C. & Bonow, R. O. Rehospitalization for heart failure: problems and perspectives. J. Am. Coll. Cardiol. 61, 391–403 (2013).

    Article  PubMed  Google Scholar 

  26. Gheorghiade, M. et al. Acute heart failure syndromes: current state and framework for future research. Circulation 112, 3958–3968 (2005).

    Article  PubMed  Google Scholar 

  27. Albaghdadi, M., Gheorghiade, M. & Pitt, B. Mineralocorticoid receptor antagonism: therapeutic potential in acute heart failure syndromes. Eur. Heart J. 32, 2626–2633 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Damasceno, A. et al. The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries: results of the sub-Saharan Africa survey of heart failure. Arch. Intern. Med. 172, 1386–1394 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Sulaiman, K. et al. Clinical characteristics, management, and outcomes of acute heart failure patients: observations from the Gulf acute heart failure registry (Gulf CARE). Eur. J. Heart Fail. 17, 374–384 (2015).

    Article  PubMed  Google Scholar 

  30. Follath, F. et al. Clinical presentation, management and outcomes in the Acute Heart Failure Global Survey of Standard Treatment (ALARM-HF). Intensive Care Med. 37, 619–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Hassan, M., Latif, N. & Yacoub, M. Adipose tissue: friend or foe? Nat. Rev. Cardiol. 9, 689–702 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Austin, E. D. & Loyd, J. E. The genetics of pulmonary arterial hypertension. Circ. Res. 115, 189–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newman, J. H. et al. Genetic basis of pulmonary arterial hypertension: current understanding and future directions. J. Am. Coll. Cardiol. 43 (Suppl.), 33–39 (2004).

    Article  Google Scholar 

  34. Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R. & Grimminger, F. Mechanisms of disease: pulmonary arterial hypertension. Nat. Rev. Cardiol. 8, 443–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rabinovitch, M. Molecular pathogenesis of pulmonary arterial hypertension. J. Clin. Invest. 122, 4306–4313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ryan, J. J. & Archer, S. L. Emerging concepts in the molecular basis of pulmonary arterial hypertension. Part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation 131, 1691–1702 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Haddad, R. N. & Mielniczuk, L. M. An evidence-based approach to screening and diagnosis of pulmonary hypertension. Can. J. Cardiol. 31, 382–390 (2015).

    Article  PubMed  Google Scholar 

  38. Inglis, S. C. et al. Structured telephone support or non-invasive telemonitoring for patients with heart failure. Cochrane Database Syst. Rev. 10, CD007228 (2015).

    Google Scholar 

  39. Koehler, F. et al. Impact of remote telemedical management on mortality and hospitalizations in ambulatory patients with chronic heart failure: the Telemedical Interventional Monitoring in Heart Failure study. Circulation 123, 1873–1880 (2011).

    Article  PubMed  Google Scholar 

  40. Chaudhry, S. I. et al. Telemonitoring in patients with heart failure. N. Engl. J. Med. 363, 2301–2309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seto, E. et al. Mobile phone-based telemonitoring for heart failure management: a randomized controlled trial. J. Med. Internet Res. 14, e31 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hindricks, G. et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial. Lancet 384, 583–590 (2014).

    Article  PubMed  Google Scholar 

  43. Varma, N., Michalski, J., Epstein, A. E. & Schweikert, R. Automatic remote monitoring of implantable cardioverter-defibrillator lead and generator performance the lumos-T safely reduces routine office device follow-up (TRUST) trial. Circ. Arrhythm. Electrophysiol. 3, 428–436 (2010).

    Article  PubMed  Google Scholar 

  44. Lara, B. A. et al. Accurate monitoring of intravascular fluid volume: a novel application of intrathoracic impedance measures for the guidance of volume reduction therapy. Int. J. Cardiol. Heart Vasc. 8, 47–51 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Van Veldhuisen, D. J. Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation 124, 1719–1726 (2011).

    Article  PubMed  Google Scholar 

  46. Boehmer, J. P. et al. A multisensor algorithm predicts heart failure events in patients with implanted devices: results from the MultiSENSE study. JACC Heart Fail. 5, 216–225 (2017).

    Article  PubMed  Google Scholar 

  47. Soga, Y. et al. Efficacy of fluid assessment based on intrathoracic impedance monitoring in patients with systolic heart failure. Circ. J. 75, 129–134 (2011).

    Article  PubMed  Google Scholar 

  48. Rickards, A. F., Bombardini, T., Corbucci, G. & Plicchi, G. An implantable intracardiac accelerometer for monitoring myocardial contractility: the multicenter PEA study group. Pacing Clin. Electrophysiol. 19, 2066–2071 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Mansourati, J., Heurteau, M. & Abalea, J. Heart failure monitoring with a cardiac resynchronization therapy device-based cardiac contractility sensor: a case series. J. Med. Case Rep. 8, 27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Morgan, J. M. et al. Remote management of heart failure using implantable electronic devices. Eur. Heart J. 38, 2352–2360 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cournand, A. Cardiac catheterization; development of the technique, its contributions to experimental medicine, and its initial applications in man. Acta Med. Scand. Suppl. 579, 3–32 (1975).

    CAS  PubMed  Google Scholar 

  52. Gibbs, J. S. et al. Diurnal variation of pulmonary artery pressure in chronic heart failure. Br. Heart J. 62, 30–35 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gibbs, J. S., Keegan, J., Wright, C., Fox, K. M. & Poole-Wilson, P. A. Pulmonary artery pressure changes during exercise and daily activities in chronic heart failure. J. Am. Coll. Cardiol. 15, 52–61 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Bourge, R. C. et al. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J. Am. Coll. Cardiol. 51, 1073–1079 (2008).

    Article  PubMed  Google Scholar 

  55. Ritzema, J. et al. Direct left atrial pressure monitoring in ambulatory heart failure patients: initial experience with a new permanent implantable device. Circulation 116, 2952–2959 (2007).

    Article  PubMed  Google Scholar 

  56. Adamson, P. B. et al. Continuous hemodynamic monitoring in patients with mild to moderate heart failure: results of The Reducing Decompensation Events Utilizing Intracardiac Pressures in Patients With Chronic Heart Failure (REDUCEhf) trial. Congest. Heart Fail. 17, 248–254 (2011).

    Article  PubMed  Google Scholar 

  57. Zile, M. R. et al. Intracardiac pressures measured using an implantable hemodynamic monitor: relationship to mortality in patients with chronic heart failure. Circ. Heart Fail. 10, e003594 (2017).

    Article  PubMed  Google Scholar 

  58. Ritzema, J. et al. Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure. Circulation 121, 1086–1095 (2010).

    Article  PubMed  Google Scholar 

  59. Abraham, W. T. et al. Hemodynamic monitoring in advanced heart failure: results from the LAPTOP-HF trial [abstract]. J. Card. Fail. 22, 940 (2016).

    Article  Google Scholar 

  60. Abraham, W. T. et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377, 658–666 (2011).

    Article  PubMed  Google Scholar 

  61. Hubbert, L., Baranowski, J., Delshad, B. & Ahn, H. Left atrial pressure monitoring with an implantable wireless pressure sensor after implantation of a left ventricular assist device. ASAIO J. 63, e60–e65 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Petersan, P. J. & Anlage, S. M. Measurement of resonant frequency and quality factor of microwave resonators: comparison of methods. J. Appl. Phys. 84, 3392–3402 (1998).

    Article  CAS  Google Scholar 

  63. Murphy, O. H. et al. Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor. Biomed. Microdevices 15, 737–749 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zile, M. R. et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation 118, 1433–1441 (2008).

    Article  PubMed  Google Scholar 

  65. Braunwald, E. Biomarkers in heart failure. N. Engl. J. Med. 358, 2148–2159 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Chow, S. L. et al. Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement from the American Heart Association. Circulation 135, e1054–e1091 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, F., Yang, J., Li, Y. & Wang, H. Circulating microRNAs as novel biomarkers for heart failure. Hellenic J. Cardiol. https://doi.org/10.1016/j.hjc.2017.10.002 (2017).

    Article  PubMed  Google Scholar 

  68. Angermann, C. E. et al. Safety and feasibility of pulmonary artery pressure-guided heart failure therapy: rationale and design of the prospective CardioMEMS Monitoring Study for Heart Failure (MEMS-HF). Clin. Res. Cardiol. https://doi.org/10.1007/s00392-018-1281-8 (2018).

    Article  PubMed  Google Scholar 

  69. Kastrup, M. Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey. Acta Anaesthesiol. Scand. 51, 347–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Terracciano, C. M., Miller, L. W. & Yacoub, M. Contemporary use of ventricular assist devices. Ann. Rev. Med. 61, 255–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, G. H., Uriel, N. & Burkhoff, D. Reverse remodelling and myocardial recovery in heart failure. Nat. Rev. Cardiol. 15, 83–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Birks, E. J. et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med. 355, 1873–1884 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Yacoub, M. H. & Terracciano, C. M. Bridge to recovery and the search for decision nodes. Circ. Heart Fail. 4, 393–395 (2011).

    Article  PubMed  Google Scholar 

  74. Morrell, N. W. et al. Cellular and molecular basis of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54, S20–S31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rich, S. Future of clinical trials for pulmonary hypertension. Circulation 123, 2919–2921 (2011).

    Article  PubMed  Google Scholar 

  76. Frantz, R. P. Hemodynamic monitoring in pulmonary arterial hypertension. Expert Rev. Resp. Med. 5, 173–178 (2011).

    Article  Google Scholar 

  77. Raina, A., Abraham, W. T., Adamson, P. B., Bauman, J. & Benza, R. L. Limitations of right heart catheterization in the diagnosis and risk stratification of patients with pulmonary hypertension related to left heart disease: insights from a wireless pulmonary artery pressure monitoring system. J. Heart Lung Transplant. 34, 438–447 (2015).

    Article  PubMed  Google Scholar 

  78. Ghio, S., Schirinzi, S. & Pica, S. Pulmonary arterial compliance: how and why should we measure it? Glob. Cardiol. Sci. Pract. 2015, 58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Klersy, C. et al. A meta-analysis of remote monitoring of heart failure patients. J. Am. Coll. Cardiol. 54, 1683–1694 (2009).

    Article  PubMed  Google Scholar 

  80. Kong, X. et al. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab. 28, 631–643.e3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Binkley, P. F. et al. Feasibility of using multivector impedance to monitor pulmonary congestion in heart failure patients. J. Interv. Card. Electriphysiol. 35, 197–206 (2012).

    Article  Google Scholar 

  82. Lee, S. L. et al. Spatial orientation and morphology of the pulmonary artery: relevance to optimising design and positioning of a continuous pressure monitoring device. J. Cardiovasc. Transl Res. 9, 239–248 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Wellcome Trust and the UK Department of Health for their support during the development of the SAW sensor system.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its contents, wrote the manuscript and reviewed and edited it before submission.

Corresponding author

Correspondence to Magdi H. Yacoub.

Ethics declarations

Competing interests

The authors are co-founders of Cardian Limited, a recent spinout from Imperial College London, UK, for the further development of the SAW sensor system.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yacoub, M.H., McLeod, C. The expanding role of implantable devices to monitor heart failure and pulmonary hypertension. Nat Rev Cardiol 15, 770–779 (2018). https://doi.org/10.1038/s41569-018-0103-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0103-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing