Review Article | Published:

Cardiac lymphatics in health and disease

Nature Reviews Cardiologyvolume 16pages5668 (2019) | Download Citation

Abstract

The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.

Key points

  • Cardiac lymphatics show a dynamic range of fluid uptake and transport that is linked to cardiac contractility and heart rate.

  • Cardiac lymphatics undergo substantial remodelling in several cardiovascular diseases, which can alter the lymphatic drainage capacity in the heart.

  • Insufficient lymphangiogenesis might contribute to the build-up of atherosclerotic lesions in large arteries owing to accumulation of both lipids and activated immune cells.

  • Immune cells contribute to the process of lymphatic remodelling by stimulating or inhibiting lymphangiogenesis.

  • Therapeutic stimulation of cardiac lymphangiogenesis after myocardial infarction leads to accelerated resolution of myocardial oedema and inflammation, promoting cardiac recovery.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Shore, L. R. The lymphatic drainage of the human heart. J. Anat. 63, 291 (1929).

  2. 2.

    Patek, P. The morphology of the lymphatics of the mammalian heart. Am. J. Anat. 64, 203–249 (1939).

  3. 3.

    Davis, K. L. et al. Effects of myocardial edema on the development of myocardial interstitial fibrosis. Microcirculation 7, 269–280 (2000).

  4. 4.

    Mehlhorn, U., Geissler, H. J., Laine, G. A. & Allen, S. J. Role of the cardiac lymph system in myocardial fluid balance. Eur. J. Cardiothorac. Surg. 20, 424–427 (2001).

  5. 5.

    Miller, A. J. The grossly invisible and generally ignored lymphatics of the mammalian heart. Med. Hypotheses 76, 604–606 (2011).

  6. 6.

    Alitalo, K., Tammela, T. & Petrova, T. V. Lymphangiogenesis in development and human disease. Nature 438, 946–953 (2005).

  7. 7.

    Petrova, T. V. & Koh, G. Y. Organ-specific lymphatic vasculature: from development to pathophysiology. J. Exp. Med. 215, 35–49 (2018).

  8. 8.

    Bradham, R. R. & Parker, E. F. The cardiac lymphatics. Ann. Thorac. Surg. 15, 526–535 (1973).

  9. 9.

    Cui, Y. The role of lymphatic vessels in the heart. Pathophysiology 17, 307–314 (2010).

  10. 10.

    Ishikawa, Y. et al. Lymphangiogenesis in myocardial remodelling after infarction. Histopathology 51, 345–353 (2007).

  11. 11.

    Kholová, I. et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur. J. Clin. Invest. 41, 487–497 (2011).

  12. 12.

    Klotz, L. et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522, 62–67 (2015).

  13. 13.

    Henri, O. et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133, 1484–1497 (2016).

  14. 14.

    Aspelund, A., Robciuc, M. R., Karaman, S., Makinen, T. & Alitalo, K. Lymphatic system in cardiovascular medicine. Circ. Res. 118, 515–530 (2016).

  15. 15.

    Dashkevich, A., Hagl, C., Beyersdorf, F., Nykänen, A. I. & Lemström, K. B. VEGF pathways in the lymphatics of healthy and diseased heart. Microcirculation 23, 5–14 (2016).

  16. 16.

    Randolph, G. J., Ivanov, S., Zinselmeyer, B. H. & Scallan, J. P. The lymphatic system: integral roles in immunity. Annu. Rev. Immunol. 35, 31–52 (2017).

  17. 17.

    Vaahtomeri, K., Karaman, S., Mäkinen, T. & Alitalo, K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev. 31, 1615–1634 (2017).

  18. 18.

    Scallan, J. P., Zawieja, S. D., Castorena-Gonzalez, J. A. & Davis, M. J. Lymphatic pumping: mechanics, mechanisms and malfunction: lymphatic pumping mechanisms. J. Physiol. 594, 5749–5768 (2016).

  19. 19.

    Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

  20. 20.

    Antila, S. et al. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med. 214, 3645–3667 (2017).

  21. 21.

    Louveau, A. et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J. Clin. Invest. 127, 3210–3219 (2017).

  22. 22.

    Levick, J. R. & Michel, C. C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87, 198–210 (2010).

  23. 23.

    Hansen, K. C., D’Alessandro, A., Clement, C. C. & Santambrogio, L. Lymph formation, composition and circulation: a proteomics perspective. Int. Immunol. 27, 219–227 (2015).

  24. 24.

    Szabó, G. Enzymes in tissue fluid and peripheral lymph. Lymphology 11, 147–155 (1978).

  25. 25.

    Dixon, J. B. Lymphatic lipid transport: sewer or subway? Trends Endocrinol. Metab. 21, 480–487 (2010).

  26. 26.

    Huang, L.-H., Elvington, A. & Randolph, G. J. The role of the lymphatic system in cholesterol transport. Front. Pharmacol. 6, 182 (2015).

  27. 27.

    Adair, T. H., Moffatt, D. S., Paulsen, A. W. & Guyton, A. C. Quantitation of changes in lymph protein concentration during lymph node transit. Am. J. Physiol. 243, H351–H359 (1982).

  28. 28.

    Knox, P. & Pflug, J. J. The effect of the canine popliteal node on the composition of lymph. J. Physiol. 345, 1–14 (1983).

  29. 29.

    Dieterich, L. C., Seidel, C. D. & Detmar, M. Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis 17, 359–371 (2014).

  30. 30.

    Tammela, T. & Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 140, 460–476 (2010).

  31. 31.

    Yu, P., Tung, J. K. & Simons, M. Lymphatic fate specification: an ERK-controlled transcriptional program. Microvasc. Res. 96, 10–15 (2014).

  32. 32.

    Risebro, C. A. et al. Prox1 maintains muscle structure and growth in the developing heart. Development 136, 495–505 (2009).

  33. 33.

    Petchey, L. K. et al. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy. Proc. Natl Acad. Sci. USA 111, 9515–9520 (2014).

  34. 34.

    Kivelä, R. et al. The transcription factor Prox1 is essential for satellite cell differentiation and muscle fibre-type regulation. Nat. Commun. 7, 13124 (2016).

  35. 35.

    Bernier-Latmani, J. et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J. Clin. Invest. 125, 4572–4586 (2015).

  36. 36.

    Nurmi, H. et al. VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol. Med. 7, 1418–1425 (2015).

  37. 37.

    Norrmén, C., Tammela, T., Petrova, T. V. & Alitalo, K. Biological basis of therapeutic lymphangiogenesis. Circulation 123, 1335–1351 (2011).

  38. 38.

    Sappey, M. P. C. Anatomie, physiologie, pathologie des vaisseaux lymphatiques considérés chez l’homme et les vertébrés (Adrien Delahaye, Paris, 1874).

  39. 39.

    Ratajska, A. et al. Comparative and developmental anatomy of cardiac lymphatics. ScientificWorldJournal 2014, 183170 (2014).

  40. 40.

    Shimada, T., Zhang, L., Abe, K., Yamabe, M. & Miyamoto, T. Developmental morphology of blood and lymphatic capillary networks in mammalian hearts, with special reference to three-dimensional architecture. Ital. J. Anat. Embryol. 106, 203–211 (2001).

  41. 41.

    Juszyński, M., Ciszek, B., Stachurska, E., Jabłońska, A. & Ratajska, A. Development of lymphatic vessels in mouse embryonic and early postnatal hearts. Dev. Dyn. 237, 2973–2986 (2008).

  42. 42.

    Karunamuni, G. et al. Expression of lymphatic markers during avian and mouse cardiogenesis. Anat. Rec. 293, 259–270 (2010).

  43. 43.

    Sabine, A., Saygili Demir, C. & Petrova, T. V. Endothelial cell responses to biomechanical forces in lymphatic vessels. Antioxid. Redox Signal. 25, 451–465 (2016).

  44. 44.

    Ulvmar, M. H., Martinez-Corral, I., Stanczuk, L. & Mäkinen, T. Pdgfrb-Cre targets lymphatic endothelial cells of both venous and non-venous origins. Genes 54, 350–358 (2016).

  45. 45.

    Ulvmar, M. H. & Mäkinen, T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc. Res. 111, 310–321 (2016).

  46. 46.

    Mäkinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7, 199–205 (2001).

  47. 47.

    Shimada, T., Noguchi, T., Takita, K., Kitamura, H. & Nakamura, M. Morphology of lymphatics of the mammalian heart with special reference to the architecture and distribution of the subepicardial lymphatic system. Acta Anat. 136, 16–20 (1989).

  48. 48.

    Miller, A. J., Pick, R. & Katz, L. N. Lymphatics of the mitral valve of the dog. Demonstration and discussion of the possible significance. Circ. Res. 9, 1005–1009 (1961).

  49. 49.

    Sacchi, G., Weber, E., Aglianò, M., Cavina, N. & Comparini, L. Lymphatic vessels of the human heart: precollectors and collecting vessels. A morpho-structural study. J. Submicrosc. Cytol. Pathol. 31, 515–525 (1999).

  50. 50.

    Johnson, R. A. & Blake, T. M. Lymphatics of the heart. Circulation 33, 137–142 (1966).

  51. 51.

    Laine, G. A. & Allen, S. J. Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ. Res. 68, 1713–1721 (1991).

  52. 52.

    Mehlhorn, U. et al. Impact of cardiopulmonary bypass and cardioplegic arrest on myocardial lymphatic function. Am. J. Physiol. 268, H178–H183 (1995).

  53. 53.

    Schertel, E. R. et al. Mechanical workload-myocardial water content relationship in isolated rat hearts. Am. J. Physiol. 273, H271–H278 (1997).

  54. 54.

    Geissler, H. J., Mehlhorn, U., Laine, G. A. & Allen, S. The effect of cardiopulmonary lymphatic obstruction on heart and lung function. Thorac. Cardiovasc. Surg. 49, 384 (2001).

  55. 55.

    Julien, P., Downar, E. & Angel, A. Lipoprotein composition and transport in the pig and dog cardiac lymphatic system. Circ. Res. 49, 248–254 (1981).

  56. 56.

    Barrett, T., Choyke, P. L. & Kobayashi, H. Imaging of the lymphatic system: new horizons. Contrast Media Mol. Imaging 1, 230–245 (2006).

  57. 57.

    Lucarelli, R. T. et al. New approaches to lymphatic imaging. Lymphat. Res. Biol. 7, 205–214 (2009).

  58. 58.

    Martel, C. et al. Photoacoustic lymphatic imaging with high spatial-temporal resolution. J. Biomed. Opt. 19, 116009 (2014).

  59. 59.

    Perin, E. C. et al. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. PLOS ONE 6, e22949 (2011).

  60. 60.

    Santos, A. C. et al. Cardiac lymphatic dynamics after ischemia and reperfusion — experimental model. Nucl. Med. Biol. 25, 685–688 (1998).

  61. 61.

    Zawieja, S. D., Castorena-Gonzalez, J. A., Dixon, B. & Davis, M. J. Experimental models used to assess lymphatic contractile function. Lymphat. Res. Biol. 15, 331–342 (2017).

  62. 62.

    Leeds, S. E. & Uhley, H. N. Measurement of lymph flow of the heart. Lymphology 4, 31–34 (1971).

  63. 63.

    Miller, A. J., Pick, R. & Johnson, P. J. The rates of formation of cardiac lymph and pericardial fluid after the production of myocardial venous congestion in dogs. Lymphology 5, 156–160 (1972).

  64. 64.

    Mehlhorn, U., Geissler, H. J., Laine, G. A. & Allen, S. J. Myocardial fluid balance. Eur. J. Cardiothorac. Surg. 20, 1220–1230 (2001).

  65. 65.

    Laine, G. A. & Granger, H. J. Microvascular, interstitial, and lymphatic interactions in normal heart. Am. J. Physiol. 249, H834–H842 (1985).

  66. 66.

    Feola, M. & Lefer, A. M. Alterations in cardiac lymph dynamics in acute myocardial ischemia in dogs. J. Surg. Res. 23, 299–305 (1977).

  67. 67.

    Nakamura, K. & Rockson, S. G. The role of the lymphatic circulation in the natural history and expression of cardiovascular disease. Int. J. Cardiol. 129, 309–317 (2008).

  68. 68.

    Kim, H., Kataru, R. P. & Koh, G. Y. Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol. 33, 350–356 (2012).

  69. 69.

    Vieira, J. M. et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J. Clin. Invest. 128, 3402–3412 (2018).

  70. 70.

    Yeo, K. P. & Angeli, V. Bidirectional crosstalk between lymphatic endothelial cell and T Cell and its implications in tumor immunity. Front. Immunol. 8, 83 (2017).

  71. 71.

    Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265 (2014).

  72. 72.

    Hulsmans, M., Sam, F. & Nahrendorf, M. Monocyte and macrophage contributions to cardiac remodeling. J. Mol. Cell. Cardiol. 93, 149–155 (2016).

  73. 73.

    Meng, X. et al. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol. 13, 167–179 (2016).

  74. 74.

    Ruparelia, N., Chai, J. T., Fisher, E. A. & Choudhury, R. P. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat. Rev. Cardiol. 14, 133–144 (2017).

  75. 75.

    von Knobelsdorff-Brenkenhoff, F. & Schulz-Menger, J. Cardiovascular magnetic resonance imaging in ischemic heart disease. J. Magn. Reson. Imaging 36, 20–38 (2012).

  76. 76.

    Croisille, P., Kim, H. W. & Kim, R. J. Controversies in cardiovascular MR imaging: T2-weighted imaging should not be used to delineate the area at risk in ischemic myocardial injury. Radiology 265, 12–22 (2012).

  77. 77.

    Mavrogeni, S. et al. T1 and T2 mapping in cardiology: ‘mapping the obscure object of desire’. Cardiology 138, 207–217 (2017).

  78. 78.

    Lota, A. S., Gatehouse, P. D. & Mohiaddin, R. H. T2 mapping and T2* imaging in heart failure. Heart Fail. Rev. 22, 431–440 (2017).

  79. 79.

    Verbrugge, F. H. et al. Global myocardial oedema in advanced decompensated heart failure. Eur. Heart J. Cardiovasc. Imaging 18, 787–794 (2017).

  80. 80.

    Mehlhorn, U., Davis, K. L., Laine, G. A., Geissler, H. J. & Allen, S. J. Myocardial fluid balance in acute hypertension. Microcirculation 3, 371–378 (1996).

  81. 81.

    Nishii, T. et al. Cardiovascular magnetic resonance T2 mapping can detect myocardial edema in idiopathic dilated cardiomyopathy. Int. J. Cardiovasc. Imaging 30 (Suppl. 1), 65–72 (2014).

  82. 82.

    Baeßler, B. et al. Mapping tissue inhomogeneity in acute myocarditis: a novel analytical approach to quantitative myocardial edema imaging by T2-mapping. J. Cardiovasc. Magn. Reson. 17, 115 (2015).

  83. 83.

    Nilsson, J. C. Sustained postinfarction myocardial oedema in humans visualised by magnetic resonance imaging. Heart 85, 639–642 (2001).

  84. 84.

    Carberry, J. et al. Persistence of infarct zone T2 hyperintensity at 6 months after acute ST-segment-elevation myocardial infarction: incidence, pathophysiology, and prognostic implications. Circ. Cardiovasc. Imaging 10, e006586 (2017).

  85. 85.

    Desai, K. V. et al. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. Am. J. Physiol. Heart Circ. Physiol. 294, H2428–H2434 (2008).

  86. 86.

    Dongaonkar, R. M., Stewart, R. H., Geissler, H. J. & Laine, G. A. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc. Res. 87, 331–339 (2010).

  87. 87.

    Kline, I. K., Miller, A. J. & Katz, L. N. Cardiac lymph flow impairment and myocardial fibrosis. Effects of chronic obstruction in dogs. Arch. Pathol. 76, 424–433 (1963).

  88. 88.

    Ludwig, L. L. et al. Impairment of left ventricular function by acute cardiac lymphatic obstruction. Cardiovasc. Res. 33, 164–171 (1997).

  89. 89.

    Kong, D., Kong, X. & Wang, L. Effect of cardiac lymph flow obstruction on cardiac collagen synthesis and interstitial fibrosis. Physiol. Res. 55, 253–258 (2006).

  90. 90.

    Dashkevich, A., Bloch, W., Antonyan, A., Fries, J. U. W. & Geissler, H. J. Morphological and quantitative changes of the initial myocardial lymphatics in terminal heart failure. Lymphat. Res. Biol. 7, 21–27 (2009).

  91. 91.

    Niinimäki, E., Mennander, A. A., Paavonen, T. & Kholová, I. Lymphangiogenesis is increased in heart valve endocarditis. Int. J. Cardiol. 219, 317–321 (2016).

  92. 92.

    Syväranta, S., Helske, S., Lappalainen, J., Kupari, M. & Kovanen, P. T. Lymphangiogenesis in aortic valve stenosis — novel regulatory roles for valvular myofibroblasts and mast cells. Atherosclerosis 221, 366–374 (2012).

  93. 93.

    Geissler, H. J. et al. First year changes of myocardial lymphatic endothelial markers in heart transplant recipients. Eur. J. Cardiothorac. Surg. 29, 767–771 (2006).

  94. 94.

    Wong, B. W., Wong, D., Luo, H. & McManus, B. M. Vascular endothelial growth factor-D is overexpressed in human cardiac allograft vasculopathy and diabetic atherosclerosis and induces endothelial permeability to low-density lipoproteins in vitro. J. Heart Lung Transplant. 30, 955–962 (2011).

  95. 95.

    Park, J.-H. et al. Endothelial progenitor cell transplantation decreases lymphangiogenesis and adverse myocardial remodeling in a mouse model of acute myocardial infarction. Exp. Mol. Med. 43, 479–485 (2011).

  96. 96.

    Cimini, M., Cannatá, A., Pasquinelli, G., Rota, M. & Goichberg, P. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium. PLOS ONE 12, e0173927 (2017).

  97. 97.

    Tatin, F. et al. Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction. JCI Insight 2, 93887 (2017).

  98. 98.

    Nykänen, A. I. et al. Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation 121, 1413–1422 (2010).

  99. 99.

    Dashkevich, A. et al. Ischemia-reperfusion injury enhances lymphatic endothelial VEGFR3 and rejection in cardiac allografts. Am. J. Transplant. 16, 1160–1172 (2016).

  100. 100.

    Greiwe, L., Vinck, M. & Suhr, F. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments. Acta Physiol. 217, 61–79 (2016).

  101. 101.

    Khan, S., Khan, S., Baboota, S. & Ali, J. Immunosuppressive drug therapy — biopharmaceutical challenges and remedies. Expert Opin. Drug Deliv. 12, 1333–1349 (2015).

  102. 102.

    Ebata, R. et al. Increased production of vascular endothelial growth factor-d and lymphangiogenesis in acute Kawasaki disease. Circ. J. 75, 1455–1462 (2011).

  103. 103.

    Lupinski, R. W. Aortic fat pad and atrial fibrillation: cardiac lymphatics revisited. ANZ J. Surg. 79, 70–74 (2009).

  104. 104.

    Miller, A. J., DeBoer, A. & Palmer, A. The role of the lymphatic system in coronary atherosclerosis. Med. Hypotheses 37, 31–36 (1992).

  105. 105.

    Sacchi, G., Weber, E. & Comparini, L. Histological framework of lymphatic vasa vasorum of major arteries: an experimental study. Lymphology 23, 135–139 (1990).

  106. 106.

    Sano, M. et al. Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia — implications for the prevalence of aortic diseases. Atherosclerosis 247, 127–134 (2016).

  107. 107.

    Hjelms, E., Nordestgaard, B. G., Stender, S. & Kjeldsen, K. A surgical model to study in vivo efflux of cholesterol from porcine aorta. Evidence for cholesteryl ester transfer through the aortic wall. Atherosclerosis 77, 239–249 (1989).

  108. 108.

    Lim, H. Y. et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 17, 671–684 (2013).

  109. 109.

    Lemole, G. M. The role of lymphstasis in atherogenesis. Ann. Thorac. Surg. 31, 290–293 (1981).

  110. 110.

    Nakano, T. et al. Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. Hum. Pathol. 36, 330–340 (2005).

  111. 111.

    Drozdz, K. et al. Adventitial lymphatics and atherosclerosis. Lymphology 45, 26–33 (2012).

  112. 112.

    Grzegorek, I. et al. Arterial wall lymphangiogenesis is increased in the human iliac atherosclerotic arteries: involvement of CCR7 receptor. Lymphat. Res. Biol. 12, 222–231 (2014).

  113. 113.

    Rademakers, T. et al. Adventitial lymphatic capillary expansion impacts on plaque T cell accumulation in atherosclerosis. Sci. Rep. 7, 45263 (2017).

  114. 114.

    Rutanen, J. et al. Vascular endothelial growth factor-D expression in human atherosclerotic lesions. Cardiovasc. Res. 59, 971–979 (2003).

  115. 115.

    Taher, M. et al. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. FASEB J. 30, 2490–2499 (2016).

  116. 116.

    Martel, C. et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Invest. 123, 1571–1579 (2013).

  117. 117.

    Vuorio, T. et al. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler. Thromb. Vasc. Biol. 34, 1162–1170 (2014).

  118. 118.

    Simons, M. & Ware, J. A. Therapeutic angiogenesis in cardiovascular disease. Nat. Rev. Drug Discov. 2, 863–872 (2003).

  119. 119.

    Ennett, A. B. & Mooney, D. J. Tissue engineering strategies for in vivo neovascularisation. Expert Opin. Biol. Ther. 2, 805–818 (2002).

  120. 120.

    Mao, A. S. & Mooney, D. J. Regenerative medicine: current therapies and future directions. Proc. Natl Acad. Sci. USA 112, 14452–14459 (2015).

  121. 121.

    Ylä-Herttuala, S. & Baker, A. H. Cardiovascular gene therapy: past, present, and future. Mol. Ther. 25, 1095–1106 (2017).

  122. 122.

    Jeltsch, M. et al. CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129, 1962–1971 (2014).

  123. 123.

    Bui, H. M. et al. Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. J. Clin. Invest. 126, 2167–2180 (2016).

  124. 124.

    Jha, S. K. et al. Efficient activation of the lymphangiogenic growth factor VEGF-C requires the C-terminal domain of VEGF-C and the N-terminal domain of CCBE1. Sci. Rep. 7, 4916 (2017).

  125. 125.

    Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).

  126. 126.

    Zhou, Q. et al. Vascular endothelial growth factor C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage in mice. Arthritis Rheum. 63, 2318–2328 (2011).

  127. 127.

    Tammela, T. et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat. Med. 13, 1458–1466 (2007).

  128. 128.

    Heinolainen, K. et al. VEGFR3 modulates vascular permeability by controlling VEGF/VEGFR2 signaling. Circ. Res. 120, 1414–1425 (2017).

  129. 129.

    Saaristo, A. et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J. Exp. Med. 196, 719–730 (2002).

  130. 130.

    Toivanen, P. I. et al. Novel vascular endothelial growth factor D variants with increased biological activity. J. Biol. Chem. 284, 16037–16048 (2009).

  131. 131.

    Anisimov, A. et al. Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ. Res. 104, 1302–1312 (2009).

  132. 132.

    Goichberg, P. Therapeutic lymphangiogenesis after myocardial infarction: vascular endothelial growth factor-C paves the way. J. Thorac. Dis. 8, 1904–1907 (2016).

  133. 133.

    Losordo, D. W. et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105, 2012–2018 (2002).

  134. 134.

    Witzenbichler, B. et al. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am. J. Pathol. 153, 381–394 (1998).

  135. 135.

    Carmeliet, P. & Conway, E. M. Growing better blood vessels. Nat. Biotechnol. 19, 1019–1020 (2001).

  136. 136.

    Simons, M. & Eichmann, A. Molecular controls of arterial morphogenesis. Circ. Res. 116, 1712–1724 (2015).

  137. 137.

    Cao, R. et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc. Natl Acad. Sci. USA 109, 15894–15899 (2012).

  138. 138.

    Hartikainen, J. et al. Adenoviral intramyocardial VEGF-DΔNΔC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur. Heart J. 38, 2547–2555 (2017).

  139. 139.

    Bianchi, R. et al. Postnatal deletion of podoplanin in lymphatic endothelium results in blood filling of the lymphatic system and impairs dendritic cell migration to lymph nodes. Arterioscler. Thromb. Vasc. Biol. 37, 108–117 (2017).

  140. 140.

    Stein, J. V. & Nombela-Arrieta, C. Chemokine control of lymphocyte trafficking: a general overview. Immunology 116, 1–12 (2005).

  141. 141.

    Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

  142. 142.

    Kiermaier, E. et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science 351, 186–190 (2016).

  143. 143.

    Aebischer, D., Iolyeva, M. & Halin, C. The inflammatory response of lymphatic endothelium. Angiogenesis 17, 383–393 (2014).

  144. 144.

    Haemmerle, M. et al. Enhanced lymph vessel density, remodeling, and inflammation are reflected by gene expression signatures in dermal lymphatic endothelial cells in type 2 diabetes. Diabetes 62, 2509–2529 (2013).

  145. 145.

    Girard, J.-P., Moussion, C. & Förster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773 (2012).

  146. 146.

    Teijeira, A. et al. T cell migration from inflamed skin to draining lymph nodes requires intralymphatic crawling supported by ICAM-1/LFA-1 interactions. Cell Rep. 18, 857–865 (2017).

  147. 147.

    Chakraborty, S., Zawieja, S., Wang, W., Zawieja, D. C. & Muthuchamy, M. Lymphatic system: a vital link between metabolic syndrome and inflammation: roles of lymphatics in metabolic syndrome. Ann. NY Acad. Sci. 1207, E94–E102 (2010).

  148. 148.

    Palframan, R. T. et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194, 1361–1373 (2001).

  149. 149.

    Kataru, R. P. et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113, 5650–5659 (2009).

  150. 150.

    D’Alessio, S. et al. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J. Clin. Invest. 124, 3863–3878 (2014).

  151. 151.

    Tewalt, E. F., Cohen, J. N., Rouhani, S. J. & Engelhard, V. H. Lymphatic endothelial cells — key players in regulation of tolerance and immunity. Front. Immunol. 3, 305 (2012).

  152. 152.

    Christiansen, A. J. et al. Lymphatic endothelial cells attenuate inflammation via suppression of dendritic cell maturation. Oncotarget 7, 39421–39435 (2016).

  153. 153.

    Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. H. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 14, 781–803 (2015).

  154. 154.

    Tamburini, B. A., Burchill, M. A. & Kedl, R. M. Antigen capture and archiving by lymphatic endothelial cells following vaccination or viral infection. Nat. Commun. 5, 3989 (2014).

  155. 155.

    Dietrich, T. et al. Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J. Immunol. 184, 535–539 (2010).

  156. 156.

    Dieterich, L. C. et al. Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front. Immunol. 8, 66 (2017).

  157. 157.

    Bouta, E. M. et al. Brief report: treatment of tumor necrosis factor-transgenic mice with anti-tumor necrosis factor restores lymphatic contractions, repairs lymphatic vessels, and may increase monocyte/macrophage egress. Arthritis Rheumatol. 69, 1187–1193 (2017).

  158. 158.

    Liao, S. et al. Impaired lymphatic contraction associated with immunosuppression. Proc. Natl Acad. Sci. USA 108, 18784–18789 (2011).

  159. 159.

    Jantsch, J., Binger, K. J., Müller, D. N. & Titze, J. Macrophages in homeostatic immune function. Front. Physiol. 5, 146 (2014).

  160. 160.

    Van der Borght, K. et al. Myocardial infarction primes autoreactive T cells through activation of dendritic cells. Cell Rep. 18, 3005–3017 (2017).

  161. 161.

    Angeli, V. et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

  162. 162.

    Ghanta, S. et al. Regulation of inflammation and fibrosis by macrophages in lymphedema. Am. J. Physiol. Heart Circ. Physiol. 308, H1065–H1077 (2015).

  163. 163.

    Cao, Y. Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat. Rev. Cancer 5, 735–743 (2005).

  164. 164.

    Kataru, R. P. et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34, 96–107 (2011).

  165. 165.

    Weichand, B. et al. S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. J. Exp. Med. 214, 2695–2713 (2017).

  166. 166.

    Baluk, P. et al. Transgenic overexpression of interleukin-1β induces persistent lymphangiogenesis but not angiogenesis in mouse airways. Am. J. Pathol. 182, 1434–1447 (2013).

  167. 167.

    Ristimäki, A., Narko, K., Enholm, B., Joukov, V. & Alitalo, K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J. Biol. Chem. 273, 8413–8418 (1998).

  168. 168.

    Ji, H. et al. TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat. Commun. 5, 4944 (2014).

  169. 169.

    Loukas, M. et al. in The Cardiac Lymphatic System: An Overview (ed. Karunamuni, G.) 3–15 (Springer, New York, 2013).

Download references

Acknowledgements

The authors thank A. Ratajska (Warsaw Medical University, Poland) for critical reading of the manuscript, and they acknowledge the work of colleagues and collaborators in providing the background research for this Review. Special thanks goes to D. Godefroy (INSERM UMR1239-DC2N Laboratory, Rouen, France) and D. Schapmann (PRIMACEN, Rouen, France) for expert assistance with cardiac light sheet and confocal microscopy, respectively. E.B. is supported by the European Research Area Network (ERA-NET) on Cardiovascular Diseases (ERA-CVD) (LYMIT-DIS project, a transnational research and development programme jointly funded by national funding organizations within the framework of the ERA-NET ERA-CVD), FHU REMOD-VHF (INSERM U1096 laboratory) and generalized institutional funds from the French INSERM and the Normandy Region together with the European Union: “Europe gets involved in Normandie” with European Regional Development Fund (ERDF): CPER/FEDER 2015 (DO-IT) and CPER/FEDER 2016 (PACT-CBS). K.A. is supported by the Academy of Finland (Centre of Excellence Program 2014–2019 (271845 and 307366)), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement 743155), the Novo Nordisk Foundation, the Sigrid Juselius Foundation, the Helsinki Institute for Life Sciences (HiLife), and the Finnish Cancer Society.

Reviewer information

Nature Reviews Cardiology thanks M. Achen, D. Kerjaschki, M. L. Khan and the other, anonymous reviewer for their contribution to the peer review of this work.

Author information

Affiliations

  1. Normandy University, UniRouen, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France

    • Ebba Brakenhielm
  2. Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland

    • Kari Alitalo

Authors

  1. Search for Ebba Brakenhielm in:

  2. Search for Kari Alitalo in:

Contributions

Both authors researched data for the article and discussed its content. E.B. wrote the manuscript, and K.A. reviewed and edited it before submission.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Ebba Brakenhielm or Kari Alitalo.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/s41569-018-0087-8