Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence

Abstract

Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.

Key points

  • Ageing is a primary risk factor for cardiovascular disease and mortality.

  • The capacity of the adult human heart to maintain function and preserve cellular homeostasis declines with age.

  • Extrinsic factors of environment, behaviour, and lifestyle can promote or blunt cellular and molecular cardiac ageing.

  • Intrinsic processes that promote cellular ageing, such as inflammation and oxidative stress, exacerbate telomere shortening, chromatin remodelling, and epigenetic drift.

  • Cardiovascular ageing is inextricably tied to genetic predisposition and the complex interaction of hereditary influences.

  • Promising advances to antagonize myocardial ageing connect external factors with intrinsic molecular mechanisms, enabling interventional strategies on both behavioural and cellular levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular and molecular signals influencing cardiac ageing.
Fig. 2: Extrinsic and intrinsic influences contributing to cellular longevity.

Similar content being viewed by others

References

  1. Benjamin, E. J. et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135, e146–e603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roth, G. A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 70, 1–25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fontana, L., Kennedy, B. K., Longo, V. D., Seals, D. & Melov, S. Medical research: treat ageing. Nature 511, 405–407 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. Paneni, F., Diaz Canestro, C., Libby, P., Luscher, T. F. & Camici, G. G. The aging cardiovascular system: understanding it at the cellular and clinical levels. J. Am. Coll. Cardiol. 69, 1952–1967 (2017).

    Article  PubMed  Google Scholar 

  6. Bernhard, D. & Laufer, G. The aging cardiomyocyte: a mini-review. Gerontology 54, 24–31 (2008).

    Article  PubMed  CAS  Google Scholar 

  7. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lopez-Otin, C., Galluzzi, L., Freije, J. M. P., Madeo, F. & Kroemer, G. Metabolic control of longevity. Cell 166, 802–821 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69 (Suppl. 1), S4–S9 (2014).

    Article  PubMed  Google Scholar 

  10. Sack, M. N., Fyhrquist, F. Y., Saijonmaa, O. J., Fuster, V. & Kovacic, J. C. Basic biology of oxidative stress and the cardiovascular system: part 1 of a 3-part series. J. Am. Coll. Cardiol. 70, 196–211 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Linton, P. J., Gurney, M., Sengstock, D., Mentzer, R. M. Jr & Gottlieb, R. A. This old heart: cardiac aging and autophagy. J. Mol. Cell. Cardiol. 83, 44–54 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Ren, J. et al. Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: role of Sirt1-mediated autophagy regulation. Aging Cell 16, 976–987 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Woodall, B. P. & Gustafsson, A. B. Autophagy-A key pathway for cardiac health and longevity. Acta Physiol. 00, e13074 (2018).

    Article  CAS  Google Scholar 

  14. Finkel, T. The metabolic regulation of aging. Nat. Med. 21, 1416–1423 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Costantino, S., Paneni, F. & Cosentino, F. Ageing, metabolism and cardiovascular disease. J. Physiol. 594, 2061–2073 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Eschenhagen, T. et al. Cardiomyocyte regeneration: a consensus statement. Circulation 136, 680–686 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. Anversa, P., Leri, A. & Kajstura, J. Cardiac regeneration. J. Am. Coll. Cardiol. 47, 1769–1776 (2006).

    Article  PubMed  Google Scholar 

  19. Ellison, G. M. et al. Adult c-kitpos cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154, 827–842 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. Nadal-Ginard, B., Ellison, G. M. & Torella, D. The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Res. 13, 615–630 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Torella, D., Ellison, G. M. & Nadal-Ginard, B. Adult c-kitpos cardiac stem cells fulfill Koch’s postulates as causal agents for cardiac regeneration. Circ. Res. 114, e24–e26 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Mollova, M. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl Acad. Sci. USA 110, 1446–1451 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ali, S. R. et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc. Natl Acad. Sci. USA 111, 8850–8855 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Article  PubMed  CAS  Google Scholar 

  27. Tzahor, E. & Poss, K. D. Cardiac regeneration strategies: staying young at heart. Science 356, 1035–1039 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Quaife-Ryan, G. A. et al. Multicellular transcriptional analysis of mammalian heart regeneration. Circulation 136, 1123–1139 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yuan, X. & Braun, T. Multimodal regulation of cardiac myocyte proliferation. Circ. Res. 121, 293–309 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. Hesse, M., Welz, A. & Fleischmann, B. K. Heart regeneration and the cardiomyocyte cell cycle. Pflugers Arch. 470, 241–248 (2018).

    Article  PubMed  CAS  Google Scholar 

  31. Keith, M. C. & Bolli, R. “String theory” of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ. Res. 116, 1216–1230 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tang, J. N. et al. Concise Review: Is cardiac cell therapy dead? embarrassing trial outcomes and new directions for the future. Stem Cells Transl Med. 7, 354–359 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Broughton, K. M. et al. Mechanisms of cardiac repair and regeneration. Circ. Res. 122, 1151–1163 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Alkass, K. et al. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163, 1026–1036 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Aix, E., Gutierrez-Gutierrez, O., Sanchez-Ferrer, C., Aguado, T. & Flores, I. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. J. Cell Biol. 213, 571–583 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Naqvi, N. et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 157, 795–807 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Soonpaa, M. H. et al. Cardiomyocyte cell-cycle activity during preadolescence. Cell 163, 781–782 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Rubin, N., Harrison, M. R., Krainock, M., Kim, R. & Lien, C. L. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice. Semin. Cell Dev. Biol. 58, 34–40 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Goldspink, D. F., Burniston, J. G. & Tan, L. B. Cardiomyocyte death and the ageing and failing heart. Exp. Physiol. 88, 447–458 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Lazar, E., Sadek, H. A. & Bergmann, O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur. Heart J. 38, 2333–2342 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Anversa, P. et al. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ. Res. 67, 871–885 (1990).

    Article  PubMed  CAS  Google Scholar 

  43. Anversa, P., Leri, A., Kajstura, J. & Nadal-Ginard, B. Myocyte growth and cardiac repair. J. Mol. Cell. Cardiol. 34, 91–105 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. Chimenti, C. et al. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ. Res. 93, 604–613 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. Wang, W. E. et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 136, 834–848 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Foglia, M. J. & Poss, K. D. Building and re-building the heart by cardiomyocyte proliferation. Development 143, 729–740 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Limana, F. et al. bcl-2 overexpression promotes myocyte proliferation. Proc. Natl Acad. Sci. USA 99, 6257–6262 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Torella, D. et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ. Res. 94, 514–524 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. Pasumarthi, K. B., Nakajima, H., Nakajima, H. O., Soonpaa, M. H. & Field, L. J. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ. Res. 96, 110–118 (2005).

    Article  PubMed  CAS  Google Scholar 

  50. Gude, N. et al. Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ. Res. 99, 381–388 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. Muraski, J. A. et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat. Med. 13, 1467–1475 (2007).

    Article  PubMed  CAS  Google Scholar 

  52. Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl Acad. Sci. USA 98, 10308–10313 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  PubMed  CAS  Google Scholar 

  54. Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. 22, 600–610 (2018).

    Article  PubMed  CAS  Google Scholar 

  55. Zlatanova, I., Pinto, C. & Silvestre, J. S. Immune modulation of cardiac repair and regeneration: the art of mending broken hearts. Front. Cardiovasc. Med. 3, 40 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mahmoud, A. I. et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev. Cell 34, 387–399 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ubil, E. et al. Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature 514, 585–590 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. He, L. et al. Preexisting endothelial cells mediate cardiac neovascularization after injury. J. Clin. Invest. 127, 2968–2981 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Avolio, E. & Madeddu, P. Discovering cardiac pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic heart disease. Vascul. Pharmacol. 86, 53–63 (2016).

    Article  PubMed  CAS  Google Scholar 

  60. Guimaraes-Camboa, N. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359 e345 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Beltrami, A. P. & Madeddu, P. Pericytes and cardiac stem cells: Common features and peculiarities. Pharmacol. Res. 127, 101–109 (2018).

    Article  PubMed  CAS  Google Scholar 

  62. Kovacic, J. C., Moreno, P., Nabel, E. G., Hachinski, V. & Fuster, V. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly. Circulation 123, 1900–1910 (2011).

    Article  PubMed  Google Scholar 

  63. Kovacic, J. C., Moreno, P., Hachinski, V., Nabel, E. G. & Fuster, V. Cellular senescence, vascular disease, and aging: part 1 of a 2-part review. Circulation 123, 1650–1660 (2011).

    Article  PubMed  Google Scholar 

  64. Chen, W. & Frangogiannis, N. G. The role of inflammatory and fibrogenic pathways in heart failure associated with aging. Heart Fail. Rev. 15, 415–422 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sessions, A. O. & Engler, A. J. Mechanical regulation of cardiac aging in model systems. Circ. Res. 118, 1553–1562 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Frangogiannis, N. G. The extracellular matrix in myocardial injury, repair, and remodeling. J. Clin. Invest. 127, 1600–1612 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Trial, J., Entman, M. L. & Cieslik, K. A. Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart. J. Mol. Cell. Cardiol. 91, 28–34 (2016).

    Article  PubMed  CAS  Google Scholar 

  68. Gude, N. A. & Sussman, M. A. Chasing c-Kit through the heart: taking a broader view. Pharmacol. Res. 127, 110–115 (2018).

    Article  PubMed  CAS  Google Scholar 

  69. Gude, N. A. et al. Cardiac c-Kit Biology Revealed by Inducible Transgenesis. Circ. Res. (2018).

  70. Maroli, G. & Braun, T. The complex biology of KIT+ cells in the heart. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-018-0037-5 (2018).

    Article  PubMed  Google Scholar 

  71. Bolli, R. et al. Rationale and design of the CONCERT-HF trial (Combination of mesenchymal and c-kit+ cardiac stem cells as regenerative therapy for heart failure). Circ. Res. 122, 1703–1715 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Cyranoski, D. ‘Reprogrammed’ stem cells approved to mend human hearts for the first time. Nature 557, 619–620 (2018).

    Article  PubMed  CAS  Google Scholar 

  73. Natsumeda, M. et al. A combination of allogeneic stem cells promotes cardiac regeneration. J. Am. Coll. Cardiol. 70, 2504–2515 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Kulandavelu, S. et al. Pim1 kinase overexpression enhances ckit+ cardiac stem cell cardiac repair following myocardial infarction in swine. J. Am. Coll. Cardiol. 68, 2454–2464 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Urbanek, K. et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Natl Acad. Sci. USA 102, 8692–8697 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Rota, M., Goichberg, P., Anversa, P. & Leri, A. Aging effects on cardiac progenitor cell physiology. Compr. Physiol. 5, 1775–1814 (2015).

    Article  PubMed  Google Scholar 

  77. Matsumoto, C. et al. Short telomeres induce p53 and autophagy and modulate age-associated changes in cardiac progenitor cell fate. Stem Cells 33, 868–880 (2018).

    Article  CAS  Google Scholar 

  78. Mohsin, S. et al. Human cardiac progenitor cells engineered with Pim-I kinase enhance myocardial repair. J. Am. Coll. Cardiol. 60, 1278–1287 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Mohsin, S. et al. Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ. Res. 113, 1169–1179 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Samse, K. et al. Functional effect of Pim1 depends upon intracellular localization in human cardiac progenitor cells. J. Biol. Chem. 290, 13935–13947 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Samse, K., Hariharan, N. & Sussman, M. A. Personalizing cardiac regenerative therapy: At the heart of Pim1 kinase. Pharmacol. Res. 103, 13–16 (2016).

    Article  PubMed  Google Scholar 

  82. Kajstura, J. et al. Telomere shortening is an in vivo marker of myocyte replication and aging. Am. J. Pathol. 156, 813–819 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Papp, Z., Czuriga, D., Balogh, L., Balogh, A. & Borbely, A. How cardiomyocytes make the heart old. Curr. Pharm. Biotechnol. 13, 2515–2521 (2012).

    Article  PubMed  CAS  Google Scholar 

  84. Sheydina, A., Riordon, D. R. & Boheler, K. R. Molecular mechanisms of cardiomyocyte aging. Clin. Sci. 121, 315–329 (2011).

    Article  CAS  Google Scholar 

  85. Jeyapalan, J. C. & Sedivy, J. M. Cellular senescence and organismal aging. Mech. Ageing Dev. 129, 467–474 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Campisi, J. Cellular senescence: putting the paradoxes in perspective. Curr. Opin. Genet. Dev. 21, 107–112 (2011).

    Article  PubMed  CAS  Google Scholar 

  89. Hall, B. M. et al. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8, 1294–1315 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Arai, Y. et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2, 1549–1558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Siddiqi, S. & Sussman, M. A. Cardiac hegemony of senescence. Curr. Transl Geriatr. Exp. Gerontol. Rep. 2, 247–254 (2013).

    Article  Google Scholar 

  92. Childs, B. G., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. McHugh, D. & Gil, J. Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65–77 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Minamino, T. et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541–1544 (2002).

    Article  PubMed  CAS  Google Scholar 

  95. Matthews, C. et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ. Res. 99, 156–164 (2006).

    Article  PubMed  CAS  Google Scholar 

  96. Wang, M. & Shah, A. M. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries. J. Mol. Cell. Cardiol. 83, 101–111 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Curtis, A. B., Karki, R., Hattoum, A. & Sharma, U. C. Arrhythmias in patients ≥80 years of age: pathophysiology, management, and outcomes. J. Am. Coll. Cardiol. 71, 2041–2057 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Biernacka, A. & Frangogiannis, N. G. Aging and cardiac fibrosis. Aging Dis. 2, 158–173 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Cesselli, D. et al. Effects of age and heart failure on human cardiac stem cell function. Am. J. Pathol. 179, 349–366 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hariharan, N. & Sussman, M. A. Cardiac aging – getting to the stem of the problem. J. Mol. Cell. Cardiol. 83, 32–36 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Allsopp, R. C., Morin, G. B., DePinho, R., Harley, C. B. & Weissman, I. L. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102, 517–520 (2003).

    Article  PubMed  CAS  Google Scholar 

  102. Nollet, E. et al. Accelerated cellular senescence as underlying mechanism for functionally impaired bone marrow-derived progenitor cells in ischemic heart disease. Atherosclerosis 260, 138–146 (2017).

    Article  PubMed  CAS  Google Scholar 

  103. Tang, Y., Liu, M. L., Zang, T. & Zhang, C. L. Direct reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neurons. Front. Mol. Neurosci. 10, 359 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cheng, Z., Peng, H. L., Zhang, R., Fu, X. M. & Zhang, G. S. Rejuvenation of cardiac tissue developed from reprogrammed aged somatic cells. Rejuven. Res. 20, 389–400 (2017).

    Article  CAS  Google Scholar 

  105. Ocampo, A., Reddy, P. & Izpisua Belmonte, J. C. Anti-aging strategies based on cellular reprogramming. Trends Mol. Med. 22, 725–738 (2016).

    Article  PubMed  Google Scholar 

  106. Kim, H. et al. Cardiovascular effects of long-term exposure to air pollution: a population-based study with 900 845 person-years of follow-up. J. Am. Heart Assoc. 6, e007170 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Sinharay, R. et al. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet 391, 339–349 (2017).

    Article  PubMed  Google Scholar 

  108. Lin, L. Y., Chuang, H. C., Liu, I. J., Chen, H. W. & Chuang, K. J. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population. Sci. Total Environ. 463–464, 176–181 (2013).

    Article  PubMed  CAS  Google Scholar 

  109. Chuang, H. C. et al. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study. Environ. Int. 106, 91–96 (2017).

    Article  PubMed  CAS  Google Scholar 

  110. Ward-Caviness, C. K. et al. Associations between residential proximity to traffic and vascular disease in a cardiac catheterization cohort. Arterioscler Thromb. Vasc. Biol. 38, 275–282 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Hoxha, M. et al. Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ. Health 8, 41 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lin, N. et al. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers. Environ. Pollut. 227, 1–7 (2017).

    Article  PubMed  CAS  Google Scholar 

  113. Martens, D. S. & Nawrot, T. S. Air pollution stress and the aging phenotype: the telomere connection. Curr. Environ. Health Rep. 3, 258–269 (2016).

    Article  PubMed  CAS  Google Scholar 

  114. Corella, D., Coltell, O., Macian, F. & Ordovas, J. M. Advances in understanding the molecular basis of the mediterranean diet effect. Annu. Rev. Food Sci. Technol. 9, 227–249 (2018).

    Article  PubMed  CAS  Google Scholar 

  115. Garcia-Calzon, S. et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin. Nutr. 35, 1399–1405 (2016).

    Article  PubMed  CAS  Google Scholar 

  116. Fito, M. & Konstantinidou, V. Nutritional genomics and the mediterranean diet’s effects on human cardiovascular health. Nutrients 8, 218 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Arpon, A. et al. Impact of consuming extra-virgin olive oil or nuts within a mediterranean diet on dna methylation in peripheral white blood cells within the PREDIMED-Navarra randomized controlled trial: a role for dietary lipids. Nutrients 10, E15 (2017).

    Article  PubMed  Google Scholar 

  118. Gill, S., Le, H. D., Melkani, G. C. & Panda, S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 347, 1265–1269 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Melkani, G. C. & Panda, S. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J. Physiol. 595, 3691–3700 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ahmet, I., Wan, R., Mattson, M. P., Lakatta, E. G. & Talan, M. Cardioprotection by intermittent fasting in rats. Circulation 112, 3115–3121 (2005).

    Article  PubMed  Google Scholar 

  121. Katare, R. G., Kakinuma, Y., Arikawa, M., Yamasaki, F. & Sato, T. Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway. J. Mol. Cell. Cardiol. 46, 405–412 (2009).

    Article  PubMed  CAS  Google Scholar 

  122. Wan, R. et al. Cardioprotective effect of intermittent fasting is associated with an elevation of adiponectin levels in rats. J. Nutr. Biochem. 21, 413–417 (2010).

    Article  PubMed  CAS  Google Scholar 

  123. Chausse, B., Vieira-Lara, M. A., Sanchez, A. B., Medeiros, M. H. & Kowaltowski, A. J. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state. PLoS ONE 10, e0120413 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Godar, R. J. et al. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury. Autophagy 11, 1537–1560 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Maegawa, S. et al. Caloric restriction delays age-related methylation drift. Nat. Commun. 8, 539 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Horne, B. D., Muhlestein, J. B. & Anderson, J. L. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am. J. Clin. Nutr. 102, 464–470 (2015).

    Article  PubMed  CAS  Google Scholar 

  127. Zuo, L. et al. Comparison of high-protein, intermittent fasting low-calorie diet and heart healthy diet for vascular health of the obese. Front. Physiol. 7, 350 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. St-Onge, M. P. et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation 135, e96–e121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Tinsley, G. M. & Horne, B. D. Intermittent fasting and cardiovascular disease: current evidence and unresolved questions. Future Cardiol. 14, 47–54 (2018).

    Article  PubMed  CAS  Google Scholar 

  130. Melkani, G. C. et al. TRiC/CCT chaperonins are essential for maintaining myofibril organization, cardiac physiological rhythm, and lifespan. FEBS Lett. 591, 3447–3458 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Barger, J. L. et al. Identification of tissue-specific transcriptional markers of caloric restriction in the mouse and their use to evaluate caloric restriction mimetics. Aging Cell 16, 750–760 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Booth, F. W., Roberts, C. K., Thyfault, J. P., Ruegsegger, G. N. & Toedebusch, R. G. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol. Rev. 97, 1351–1402 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Garatachea, N. et al. Exercise attenuates the major hallmarks of aging. Rejuven. Res. 18, 57–89 (2015).

    Article  Google Scholar 

  134. Howden, E. J. et al. Reversing the cardiac effects of sedentary aging in middle age — a randomized controlled trial: implications for heart failure prevention. Circulation 137, 1549–1560 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  135. Werner, C. et al. Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J. Am. Coll. Cardiol. 52, 470–482 (2008).

    Article  PubMed  CAS  Google Scholar 

  136. Werner, C. et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120, 2438–2447 (2009).

    Article  PubMed  Google Scholar 

  137. Ludlow, A. T. & Roth, S. M. Physical activity and telomere biology: exploring the link with aging-related disease prevention. J. Aging Res. 2011, 790378 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ludlow, A. T. et al. Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. J. Gerontol. A Biol. Sci. Med. Sci. 67, 911–926 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Ludlow, A. T., Ludlow, L. W. & Roth, S. M. Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. Biomed. Res. Int. 2013, 601368 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Loprinzi, P. D. Leisure-time screen-based sedentary behavior and leukocyte telomere length: implications for a new leisure-time screen-based sedentary behavior mechanism. Mayo Clin. Proc. 90, 786–790 (2015).

    Article  PubMed  CAS  Google Scholar 

  141. Loprinzi, P. D. & Sng, E. Mode-specific physical activity and leukocyte telomere length among US adults: implications of running on cellular aging. Prev. Med. 85, 17–19 (2016).

    Article  PubMed  Google Scholar 

  142. Tucker, L. A. Physical activity and telomere length in US men and women: an NHANES investigation. Prev. Med. 100, 145–151 (2017).

    Article  PubMed  Google Scholar 

  143. Loprinzi, P. D. & Loenneke, J. P. Leukocyte telomere length and mortality among US adults: effect modification by physical activity behaviour. J. Sports Sci. 36, 213–219 (2018).

    Article  PubMed  Google Scholar 

  144. Edwards, M. K. & Loprinzi, P. D. Sedentary behavior, physical activity and cardiorespiratory fitness on leukocyte telomere length. Health Promot. Perspect. 7, 22–27 (2017).

    Article  PubMed  Google Scholar 

  145. Ludlow, A. T., Gratidao, L., Ludlow, L. W., Spangenburg, E. E. & Roth, S. M. Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle. Exp. Physiol. 102, 397–410 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Saban, K. L., Mathews, H. L., DeVon, H. A. & Janusek, L. W. Epigenetics and social context: implications for disparity in cardiovascular disease. Aging Dis. 5, 346–355 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Kivimaki, M. et al. Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data. Lancet 380, 1491–1497 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Steptoe, A. & Kivimaki, M. Stress and cardiovascular disease: an update on current knowledge. Annu. Rev. Publ. Health 34, 337–354 (2013).

    Article  Google Scholar 

  149. Steptoe, A. & Kivimaki, M. Stress and cardiovascular disease. Nat. Rev. Cardiol. 9, 360–370 (2012).

    Article  PubMed  CAS  Google Scholar 

  150. Powell, N. D. et al. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proc. Natl Acad. Sci. USA 110, 16574–16579 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Wirtz, P. H. & von Kanel, R. Psychological stress, inflammation, and coronary heart disease. Curr. Cardiol. Rep. 19, 111 (2017).

    Article  PubMed  Google Scholar 

  152. Chen, Z. et al. Brain-heart interaction: cardiac complications after stroke. Circ. Res. 121, 451–468 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Arri, S. S., Ryan, M., Redwood, S. R. & Marber, M. S. Mental stress-induced myocardial ischaemia. Heart 102, 472–480 (2016).

    Article  PubMed  CAS  Google Scholar 

  154. Dawson, D. K. Acute stress-induced (takotsubo) cardiomyopathy. Heart 104, 96–102 (2017).

    Article  PubMed  Google Scholar 

  155. Scally, C. et al. Persistent long-term structural, functional, and metabolic changes after stress-induced (Takotsubo) cardiomyopathy. Circulation 137, 1039–1048 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Chaix, R. et al. Epigenetic clock analysis in long-term meditators. Psychoneuroendocrinology 85, 210–214 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Benson, H., Beary, J. F. & Carol, M. P. The relaxation response. Psychiatry 37, 37–46 (1974).

    Article  PubMed  CAS  Google Scholar 

  158. Benson, H., Rosner, B. A., Marzetta, B. R. & Klemchuk, H. M. Decreased blood-pressure in pharmacologically treated hypertensive patients who regularly elicited the relaxation response. Lancet 1, 289–291 (1974).

    Article  PubMed  CAS  Google Scholar 

  159. Bhasin, M. K. et al. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLoS ONE 8, e62817 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Krishna, B. H., Keerthi, G. S., Kumar, C. K. & Reddy, N. M. Association of leukocyte telomere length with oxidative stress in yoga practitioners. J. Clin. Diagn. Res. 9, CC01–CC03 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Piao, L. et al. Chronic psychological stress accelerates vascular senescence and impairs ischemia-induced neovascularization: the role of dipeptidyl peptidase-4/glucagon-like peptide-1-adiponectin axis. J. Am. Heart Assoc. 6, e006421 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Alibhai, F. J. et al. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J. Mol. Cell. Cardiol. 105, 24–37 (2017).

    Article  PubMed  CAS  Google Scholar 

  163. Yang, Y. C. et al. Social relationships and physiological determinants of longevity across the human life span. Proc. Natl Acad. Sci. USA 113, 578–583 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  164. Blackburn, E. H., Epel, E. S. & Lin, J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193–1198 (2015).

    Article  PubMed  CAS  Google Scholar 

  165. Anderson, R., Richardson, G. D. & Passos, J. F. Mechanisms driving the ageing heart. Exp. Gerontol. https://doi.org/10.1016/j.exger.2017.10.015 (2017).

    Article  PubMed  Google Scholar 

  166. Booth, S. A. & Charchar, F. J. Cardiac telomere length in heart development, function, and disease. Physiol. Genom. 49, 368–384 (2017).

    Article  CAS  Google Scholar 

  167. Yeh, J. K. & Wang, C. Y. Telomeres and telomerase in cardiovascular diseases. Genes 7, E58 (2016).

    Article  PubMed  CAS  Google Scholar 

  168. de Magalhaes, J. P. & Passos, J. F. Stress, cell senescence and organismal ageing. Mech. Ageing Dev. 170, 2–9 (2018).

    Article  PubMed  CAS  Google Scholar 

  169. Aix, E., Gallinat, A. & Flores, I. Telomeres and telomerase in heart regeneration. Differentiation 100, 26–30 (2018).

    Article  PubMed  CAS  Google Scholar 

  170. Chang, A. C. Y. & Blau, H. M. Short telomeres — a hallmark of heritable cardiomyopathies. Differentiation 100, 31–36 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  171. Cimato, T. R. Biological age and circulating progenitor cell levels as predictors heart disease events. Circ. Res. 120, 1053–1054 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Hammadah, M. et al. Telomere shortening, regenerative capacity, and cardiovascular outcomes. Circ. Res. 120, 1130–1138 (2017).

    Article  PubMed  CAS  Google Scholar 

  173. Bhattacharyya, J., Mihara, K., Bhattacharjee, D. & Mukherjee, M. Telomere length as a potential biomarker of coronary artery disease. Indian J. Med. Res. 145, 730–737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Haycock, P. C. et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 349, g4227 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Gebreab, S. Y. et al. Less than ideal cardiovascular health is associated with shorter leukocyte telomere length: the National Health and Nutrition Examination Surveys, 1999–2002. J. Am. Heart Assoc. 6, e004105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Rehkopf, D. H. et al. Leukocyte telomere length in relation to 17 biomarkers of cardiovascular disease risk: a cross-sectional study of US adults. PLoS Med. 13, e1002188 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Peng, H. et al. Impact of biological aging on arterial aging in American Indians: findings from the Strong Heart Family Study. Aging 8, 1583–1592 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Passarino, G., De Rango, F. & Montesanto, A. Human longevity: genetics or lifestyle? It takes two to tango. Immun. Ageing 13, 12 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Bellizzi, D. et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85, 258–263 (2005).

    Article  PubMed  CAS  Google Scholar 

  180. Pawlikowska, L. et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8, 460–472 (2009).

    Article  PubMed  CAS  Google Scholar 

  181. Ziv, E. & Hu, D. Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res. Rev. 10, 201–204 (2011).

    Article  PubMed  CAS  Google Scholar 

  182. Morris, B. J., Willcox, D. C., Donlon, T. A. & Willcox, B. J. FOXO3: a major gene for human longevity — a mini-review. Gerontology 61, 515–525 (2015).

    Article  PubMed  CAS  Google Scholar 

  183. Codd, V. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 45, 422–427 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Ding, H. et al. Association between previously identified loci affecting telomere length and coronary heart disease (CHD) in Han Chinese population. Clin. Interv. Aging 9, 857–861 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Smith, J. G. & Newton-Cheh, C. Genome-wide association studies of late-onset cardiovascular disease. J. Mol. Cell. Cardiol. 83, 131–141 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Navarro, C. L., Cau, P. & Levy, N. Molecular bases of progeroid syndromes. Hum. Mol. Genet. 15, R151–R161 (2006).

    Article  PubMed  CAS  Google Scholar 

  187. Brayson, D. & Shanahan, C. M. Current insights into LMNA cardiomyopathies: Existing models and missing LINCs. Nucleus 8, 17–33 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Chen, L. et al. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2, 191–199 (2003).

    Article  PubMed  Google Scholar 

  189. Rossi, M. L., Ghosh, A. K. & Bohr, V. A. Roles of Werner syndrome protein in protection of genome integrity. DNA Repair 9, 331–344 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Broer, L. & van Duijn, C. M. GWAS and meta-analysis in aging/longevity. Adv. Exp. Med. Biol. 847, 107–125 (2015).

    Article  PubMed  CAS  Google Scholar 

  191. Broer, L. et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J. Gerontol. A Biol. Sci. Med. Sci. 70, 110–118 (2015).

    Article  PubMed  CAS  Google Scholar 

  192. Fortney, K. et al. Genome-wide scan informed by age-related disease identifies loci for exceptional human longevity. PLoS Genet. 11, e1005728 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Chen, Z., Yang, S. H., Xu, H. & Li, J. J. ABO blood group system and the coronary artery disease: an updated systematic review and meta-analysis. Sci. Rep. 6, 23250 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Deelen, J. et al. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum. Mol. Genet. 23, 4420–4432 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Zeng, Y. et al. Novel loci and pathways significantly associated with longevity. Sci. Rep. 6, 21243 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Joshi, P. K. et al. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. Nat. Commun. 8, 910 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Benson, M. D. et al. The genetic architecture of the cardiovascular risk proteome. Circulation 137, 1158–1172 (2018).

    Article  PubMed  Google Scholar 

  198. Mailman, M. D. et al. The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 39, 1181–1186 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Sierra, M. I., Fernandez, A. F. & Fraga, M. F. Epigenetics of aging. Curr. Genom. 16, 435–440 (2015).

    Article  CAS  Google Scholar 

  204. Cruickshanks, H. A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Zhong, J., Agha, G. & Baccarelli, A. A. The role of DNA methylation in cardiovascular risk and disease: methodological aspects, study design, and data analysis for epidemiological studies. Circ. Res. 118, 119–131 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Sharma, P. et al. Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients. Gene 541, 31–40 (2014).

    Article  PubMed  CAS  Google Scholar 

  207. Duan, L., Hu, J., Xiong, X., Liu, Y. & Wang, J. The role of DNA methylation in coronary artery disease. Gene 646, 91–97 (2018).

    Article  PubMed  CAS  Google Scholar 

  208. Azad, M. A. K. et al. Hyperhomocysteinemia and cardiovascular disease in animal model. Amino Acids 50, 3–9 (2018).

    Article  PubMed  CAS  Google Scholar 

  209. Heyn, H., Moran, S. & Esteller, M. Aberrant DNA methylation profiles in the premature aging disorders Hutchinson-Gilford Progeria and Werner syndrome. Epigenetics 8, 28–33 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Issa, J. P. Aging and epigenetic drift: a vicious cycle. J. Clin. Invest. 124, 24–29 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Gilsbach, R. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat. Commun. 9, 391 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Weber, C. M. & Henikoff, S. Histone variants: dynamic punctuation in transcription. Genes Dev. 28, 672–682 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. O’Sullivan, R. J., Kubicek, S., Schreiber, S. L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 17, 1218–1225 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Piazzesi, A. et al. Replication-independent histone variant H3.3 controls animal lifespan through the regulation of pro-longevity transcriptional programs. Cell Rep. 17, 987–996 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Duarte, L. F. et al. Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat. Commun. 5, 5210 (2014).

    Article  PubMed  CAS  Google Scholar 

  216. Bano, D., Piazzesi, A., Salomoni, P. & Nicotera, P. The histone variant H3.3 claims its place in the crowded scene of epigenetics. Aging 9, 602–614 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  217. Tvardovskiy, A., Schwammle, V., Kempf, S. J., Rogowska-Wrzesinska, A. & Jensen, O. N. Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape. Nucleic Acids Res. 45, 9272–9289 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Goldman, J. A. et al. Resolving heart regeneration by replacement histone profiling. Dev. Cell 40, 392–404.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Saade, E., Pirozhkova, I., Aimbetov, R., Lipinski, M. & Ogryzko, V. Molecular turnover, the H3.3 dilemma and organismal aging (hypothesis). Aging Cell 14, 322–333 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Valdivia, M. M., Hamdouch, K., Ortiz, M. & Astola, A. CENPA a genomic marker for centromere activity and human diseases. Curr. Genom. 10, 326–335 (2009).

    Article  CAS  Google Scholar 

  221. Lee, S. H., Itkin-Ansari, P. & Levine, F. CENP-A, a protein required for chromosome segregation in mitosis, declines with age in islet but not exocrine cells. Aging 2, 785–790 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. McGregor, M., Hariharan, N., Joyo, A. Y., Margolis, R. L. & Sussman, M. A. CENP-A is essential for cardiac progenitor cell proliferation. Cell Cycle 13, 739–748 (2014).

    Article  PubMed  CAS  Google Scholar 

  223. Feser, J. et al. Elevated histone expression promotes life span extension. Mol. Cell 39, 724–735 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Wang, Y., Yuan, Q. & Xie, L. Histone modifications in aging the underlying mechanisms and implications. Curr. Stem Cell Res. Ther. 13, 125–135 (2018).

    PubMed  CAS  Google Scholar 

  225. Peleg, S., Feller, C., Ladurner, A. G. & Imhof, A. The metabolic impact on histone acetylation and transcription in ageing. Trends Biochem. Sci. 41, 700–711 (2016).

    Article  PubMed  CAS  Google Scholar 

  226. Dang, W. et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459, 802–807 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Ferguson, B. S. & McKinsey, T. A. Non-sirtuin histone deacetylases in the control of cardiac aging. J. Mol. Cell. Cardiol. 83, 14–20 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. McCauley, B. S. & Dang, W. Histone methylation and aging: lessons learned from model systems. Biochim. Biophys. Acta 1839, 1454–1462 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Matsushima, S. & Sadoshima, J. The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol. 309, H1375–H1389 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Cencioni, C. et al. Sirtuin function in aging heart and vessels. J. Mol. Cell. Cardiol. 83, 55–61 (2015).

    Article  PubMed  CAS  Google Scholar 

  231. Winnik, S., Auwerx, J., Sinclair, D. A. & Matter, C. M. Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur. Heart J. 36, 3404–3412 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Tang, X. et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation 136, 2051–2067 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  233. Alcendor, R. R. et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 100, 1512–1521 (2007).

    Article  PubMed  CAS  Google Scholar 

  234. Canto, C. & Auwerx, J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 20, 325–331 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Hariharan, N. et al. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res. 107, 1470–1482 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Hsu, C. P. et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122, 2170–2182 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  237. D’Onofrio, N., Servillo, L. & Balestrieri, M. L. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid. Redox Signal 28, 711–732 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Spadari, R. C. et al. Role of β-adrenergic receptors and sirtuin signaling in the heart during aging, heart failure, and adaptation to stress. Cell. Mol. Neurobiol. 38, 109–120 (2018).

    Article  PubMed  CAS  Google Scholar 

  239. Wang, L. et al. Cardiomyocyte specific deletion of Sirt1 gene sensitizes myocardium to ischemia and reperfusion injury. Cardiovasc. Res. 114, 805–821 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Gomes, P., Outeiro, T. F. & Cavadas, C. Emerging role of Sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol. Sci. 36, 756–768 (2015).

    Article  PubMed  CAS  Google Scholar 

  241. Elkhwanky, M. S. & Hakkola, J. Extranuclear sirtuins and metabolic stress. Antioxid. Redox Signal 28, 662–676 (2018).

    Article  PubMed  CAS  Google Scholar 

  242. Tang, X., Chen, X. F., Chen, H. Z. & Liu, D. P. Mitochondrial Sirtuins in cardiometabolic diseases. Clin. Sci. 131, 2063–2078 (2017).

    Article  CAS  Google Scholar 

  243. Wood, J. G. et al. Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 115, 1564–1569 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Vitiello, M. et al. Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Ageing Res. Rev. 35, 301–311 (2017).

    Article  PubMed  CAS  Google Scholar 

  245. Sundaresan, N. R. et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 18, 1643–1650 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Vakhrusheva, O. et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102, 703–710 (2008).

    Article  PubMed  CAS  Google Scholar 

  247. Ryu, D. et al. A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab. 20, 856–869 (2014).

    Article  PubMed  CAS  Google Scholar 

  248. Araki, S. et al. Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor-β signaling pathway. Circulation 132, 1081–1093 (2015).

    Article  PubMed  CAS  Google Scholar 

  249. Andersen, J. S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

    Article  PubMed  CAS  Google Scholar 

  250. Siddiqi, S. et al. Myocardial induction of nucleostemin in response to postnatal growth and pathological challenge. Circ. Res. 103, 89–97 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Avitabile, D. et al. Nucleolar stress is an early response to myocardial damage involving nucleolar proteins nucleostemin and nucleophosmin. Proc. Natl Acad. Sci. USA 108, 6145–6150 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Hariharan, N. et al. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J. Am. Coll. Cardiol. 65, 133–147 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Lee, N. et al. Comparative interactomes of SIRT6 and SIRT7: implication of functional links to aging. Proteomics 14, 1610–1622 (2014).

    Article  PubMed  CAS  Google Scholar 

  254. Donlon, T. A. et al. Analysis of polymorphisms in 59 potential candidate genes for association with human longevity. J. Gerontol. A Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glx247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Santulli, G. et al. Models for preclinical studies in aging-related disorders: one is not for all. Transl Med. UniSa 13, 4–12 (2015).

    PubMed  Google Scholar 

  256. Koks, S. et al. Mouse models of ageing and their relevance to disease. Mech. Ageing Dev. 160, 41–53 (2016).

    Article  PubMed  CAS  Google Scholar 

  257. Tsang, H. G. et al. Large animal models of cardiovascular disease. Cell Biochem. Funct. 34, 113–132 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Blackburn, E. H. & Gall, J. G. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120, 33–53 (1978).

    Article  PubMed  CAS  Google Scholar 

  259. Blackburn, E. H. et al. Recognition and elongation of telomeres by telomerase. Genome 31, 553–560 (1989).

    Article  PubMed  CAS  Google Scholar 

  260. Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  261. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  PubMed  CAS  Google Scholar 

  262. Blasco, M. A., Funk, W., Villeponteau, B. & Greider, C. W. Functional characterization and developmental regulation of mouse telomerase RNA. Science 269, 1267–1270 (1995).

    Article  PubMed  CAS  Google Scholar 

  263. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  PubMed  CAS  Google Scholar 

  264. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    Article  PubMed  CAS  Google Scholar 

  265. Hande, M. P., Samper, E., Lansdorp, P. & Blasco, M. A. Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J. Cell Biol. 144, 589–601 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  PubMed  CAS  Google Scholar 

  267. Goytisolo, F. A. & Blasco, M. A. Many ways to telomere dysfunction: in vivo studies using mouse models. Oncogene 21, 584–591 (2002).

    Article  PubMed  CAS  Google Scholar 

  268. Cheong, C., Hong, K. U. & Lee, H. W. Mouse models for telomere and telomerase biology. Exp. Mol. Med. 35, 141–153 (2003).

    Article  PubMed  CAS  Google Scholar 

  269. Chiang, Y. J. et al. Expression of telomerase RNA template, but not telomerase reverse transcriptase, is limiting for telomere length maintenance in vivo. Mol. Cell. Biol. 24, 7024–7031 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Leri, A. et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J. 22, 131–139 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Perez-Rivero, G. et al. Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation 114, 309–317 (2006).

    Article  PubMed  CAS  Google Scholar 

  272. DiMario, J. X., Uzman, A. & Strohman, R. C. Fiber regeneration is not persistent in dystrophic (MDX) mouse skeletal muscle. Dev. Biol. 148, 314–321 (1991).

    Article  PubMed  CAS  Google Scholar 

  273. Straub, V., Rafael, J. A., Chamberlain, J. S. & Campbell, K. P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 139, 375–385 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Sacco, A. et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143, 1059–1071 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Mourkioti, F. et al. Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat. Cell Biol. 15, 895–904 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Chang, A. C. et al. Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy. Proc. Natl Acad. Sci. USA 113, 13120–13125 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  277. Theodoris, C. V. et al. Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency. J. Clin. Invest. 127, 1683–1688 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Pekovic, V. & Hutchison, C. J. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J. Anat. 213, 5–25 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Pacheco, L. M. et al. Progerin expression disrupts critical adult stem cell functions involved in tissue repair. Aging 6, 1049–1063 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Mounkes, L. C., Kozlov, S., Hernandez, L., Sullivan, T. & Stewart, C. L. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423, 298–301 (2003).

    Article  PubMed  CAS  Google Scholar 

  281. Arimura, T. et al. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum. Mol. Genet. 14, 155–169 (2005).

    Article  PubMed  CAS  Google Scholar 

  282. Mounkes, L. C., Kozlov, S. V., Rottman, J. N. & Stewart, C. L. Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. Hum. Mol. Genet. 14, 2167–2180 (2005).

    Article  PubMed  CAS  Google Scholar 

  283. Wang, Y., Herron, A. J. & Worman, H. J. Pathology and nuclear abnormalities in hearts of transgenic mice expressing M371K lamin A encoded by an LMNA mutation causing Emery-Dreifuss muscular dystrophy. Hum. Mol. Genet. 15, 2479–2489 (2006).

    Article  PubMed  CAS  Google Scholar 

  284. Lu, D. et al. LMNA E82K mutation activates FAS and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice. PLoS ONE 5, e15167 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Osorio, F. G. et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci. Transl Med. 3, 106ra107 (2011).

    Article  PubMed  CAS  Google Scholar 

  286. Bertrand, A. T. et al. DelK32-lamin A/C has abnormal location and induces incomplete tissue maturation and severe metabolic defects leading to premature death. Hum. Mol. Genet. 21, 1037–1048 (2012).

    Article  PubMed  CAS  Google Scholar 

  287. Zhang, H., Kieckhaefer, J. E. & Cao, K. Mouse models of laminopathies. Aging Cell 12, 2–10 (2013).

    Article  PubMed  CAS  Google Scholar 

  288. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Ramos, F. J. et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl Med. 4, 144ra103 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  290. Gurau, F. et al. Anti-senescence compounds: a potential nutraceutical approach to healthy aging. Ageing Res. Rev. 46, 14–31 (2018).

    Article  PubMed  CAS  Google Scholar 

  291. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  PubMed  CAS  Google Scholar 

  292. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Scudellari, M. To stay young, kill zombie cells. Nature 550, 448–450 (2017).

    Article  PubMed  CAS  Google Scholar 

  297. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  300. Steenman, M. & Lande, G. Cardiac aging and heart disease in humans. Biophys. Rev. 9, 131–137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Bhatia-Dey, N., Kanherkar, R. R., Stair, S. E., Makarev, E. O. & Csoka, A. B. Cellular senescence as the causal nexus of aging. Front. Genet. 7, 13 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. Aunan, J. R., Cho, W. C. & Soreide, K. The biology of aging and cancer: a brief overview of shared and divergent molecular hallmarks. Aging Dis. 8, 628–642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Seals, D. R., Brunt, V. E. & Rossman, M. J. Strategies for optimal cardiovascular aging. Am. J. Physiol. Heart Circ. Physiol. https://doi.org/10.1152/ajpheart.00734.2017 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Aiello, A. et al. Nutrigerontology: a key for achieving successful ageing and longevity. Immun. Ageing 13, 17 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Zhang, H. et al. Spermine and spermidine reversed age-related cardiac deterioration in rats. Oncotarget 8, 64793–64808 (2017).

    PubMed  PubMed Central  Google Scholar 

  307. Bernardes de Jesus, B. et al. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10, 604–621 (2011).

    Article  PubMed  CAS  Google Scholar 

  308. Harley, C. B., Liu, W., Flom, P. L. & Raffaele, J. M. A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response. Rejuven. Res. 16, 386–395 (2013).

    Article  CAS  Google Scholar 

  309. Salvador, L. et al. A natural product telomerase activator lengthens telomeres in humans: a randomized, double blind, and placebo controlled study. Rejuven. Res. 19, 478–484 (2016).

    Article  CAS  Google Scholar 

  310. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  PubMed  CAS  Google Scholar 

  311. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  312. Hershberger, K. A., Martin, A. S. & Hirschey, M. D. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat. Rev. Nephrol. 13, 213–225 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  313. Mitchell, S. J. et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836–843 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Trevino-Saldana, N. & Garcia-Rivas, G. Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals. Oxid. Med. Cell Longev. 2017, 1750306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Jiang, S. et al. Curcumin as a potential protective compound against cardiac diseases. Pharmacol. Res. 119, 373–383 (2017).

    Article  PubMed  CAS  Google Scholar 

  316. Saeidinia, A. et al. Curcumin in heart failure: a choice for complementary therapy? Pharmacol. Res. 131, 112–119 (2018).

    Article  PubMed  CAS  Google Scholar 

  317. Tripathi, V., Chhabria, S., Jadhav, V., Bhartiya, D. & Tripathi, A. Stem cells and progenitors in human peripheral blood get activated by extremely active resveratrol (XAR). Stem Cell Rev. 14, 213–222 (2017).

    Article  CAS  Google Scholar 

  318. Fujitsuka, N. et al. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1. Mol. Psychiatry 21, 1613–1623 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Yang, Z. & Ming, X. F. mTOR signalling: the molecular interface connecting metabolic stress, aging and cardiovascular diseases. Obes. Rev. 13 (Suppl. 2), 58–68 (2012).

    Article  PubMed  CAS  Google Scholar 

  320. Weichhart, T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology 64, 127–134 (2018).

    Article  PubMed  CAS  Google Scholar 

  321. Volkers, M. et al. Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation 128, 2132–2144 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  322. Sciarretta, S., Forte, M., Frati, G. & Sadoshima, J. New insights into the role of mTOR signaling in the cardiovascular system. Circ. Res. 122, 489–505 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  323. Volkers, M. et al. PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Mol. Med. 6, 57–65 (2014).

    Article  PubMed  CAS  Google Scholar 

  324. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl Med. 6, 268ra179 (2014).

    Article  PubMed  CAS  Google Scholar 

  325. Stephens, A. D. et al. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol. Biol. Cell 29, 220–233 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  326. Gilham, D. et al. RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis 247, 48–57 (2016).

    Article  PubMed  CAS  Google Scholar 

  327. Shin, D. G. & Bayarsaihan, D. A. Novel epi-drug therapy based on the suppression of BET family epigenetic readers. Yale J. Biol. Med. 90, 63–71 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  328. Costantino, S. et al. Epigenetics and cardiovascular regenerative medicine in the elderly. Int. J. Cardiol. 250, 207–214 (2018).

    Article  PubMed  Google Scholar 

  329. Long, C. et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci. Adv. 4, eaap9004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Zhang, Y., Long, C., Bassel-Duby, R. & Olson, E. N. Myoediting: toward prevention of muscular dystrophy by therapeutic genome editing. Physiol. Rev. 98, 1205–1240 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  331. Lewis, F. C., Kumar, S. D. & Ellison-Hughes, G. M. Non-invasive strategies for stimulating endogenous repair and regenerative mechanisms in the damaged heart. Pharmacol. Res. 127, 33–40 (2018).

    Article  PubMed  CAS  Google Scholar 

  332. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  PubMed  CAS  Google Scholar 

  333. Conboy, I. M. & Rando, T. A. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle 11, 2260–2267 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Rando, T. A. & Finkel, T. Cardiac aging and rejuvenation—a sense of humors? N. Engl. J. Med. 369, 575–576 (2013).

    Article  PubMed  CAS  Google Scholar 

  335. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Du, G. Q. et al. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury. Bas. Res. Cardiol. 112, 7 (2017).

    Article  CAS  Google Scholar 

  337. Zimmers, T. A. et al. Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Bas. Res. Cardiol. 112, 48 (2017).

    Article  CAS  Google Scholar 

  338. Smith, S. C. et al. GDF11 does not rescue aging-related pathological hypertrophy. Circ. Res. 117, 926–932 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  339. Harper, S. C. et al. Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects? Circ. Res. 118, 1143–1150 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  340. Hong, K. U. & Bolli, R. Cardiac stem cell therapy for cardiac repair. Curr. Treat. Opt. Cardiovasc. Med. 16, 324 (2014).

    Article  Google Scholar 

  341. Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Chugh, A. R. et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126, S54–S64 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Ren, R., Ocampo, A., Liu, G. H. & Izpisua Belmonte, J. C. Regulation of Stem Cell Aging by Metabolism and Epigenetics. Cell Metab. 26, 460–474 (2017).

    Article  PubMed  CAS  Google Scholar 

  344. Fischer, K. M. et al. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation 120, 2077–2087 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  345. Marotta, P. et al. Combining cell and gene therapy to advance cardiac regeneration. Expert Opin. Biol. Ther. 18, 409–423 (2018).

    Article  PubMed  CAS  Google Scholar 

  346. Hu, X. et al. A large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates: paracrine activity without remuscularization. Circ. Res. 118, 970–983 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  347. Zhang, Z. et al. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction. Stem Cell Res. Ther. 8, 89 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  348. Quijada, P. et al. Cardiac stem cell hybrids enhance myocardial repair. Circ. Res. 117, 695–706 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  349. Finan, A. & Richard, S. Stimulating endogenous cardiac repair. Front. Cell Dev. Biol. 3, 57 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  350. Jung, J. H., Fu, X. & Yang, P. C. Exosomes generated from ipsc-derivatives: new direction for stem cell therapy in human heart diseases. Circ. Res. 120, 407–417 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  351. Yang, P. C. Induced pluripotent stem cell (iPSC)-derived exosomes for precision medicine in heart failure. Circ. Res. 122, 661–663 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  352. Huhne, R., Thalheim, T. & Suhnel, J. AgeFactDB — the JenAge Ageing Factor Database — towards data integration in ageing research. Nucleic Acids Res. 42, D892–D896 (2014).

    Article  PubMed  CAS  Google Scholar 

  353. Zahn, J. M. et al. AGEMAP: a gene expression database for aging in mice. PLOS Genet. 3, e201 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  354. Kwon, Y., Natori, Y. & Tanokura, M. New approach to generating insights for aging research based on literature mining and knowledge integration. PLoS ONE 12, e0183534 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Nakayama, H., Nishida, K. & Otsu, K. Macromolecular degradation systems and cardiovascular aging. Circ. Res. 118, 1577–1592 (2016).

    Article  PubMed  CAS  Google Scholar 

  356. Xia, S. et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J. Immunol. Res. 2016, 8426874 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Shi, R., Guberman, M. & Kirshenbaum, L. A. Mitochondrial quality control: The role of mitophagy in aging. Trends Cardiovasc. Med. 28, 246–260 (2018).

    Article  PubMed  CAS  Google Scholar 

  358. Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Karuppagounder, V. et al. The senescence accelerated mouse prone 8 (SAMP8): A novel murine model for cardiac aging. Ageing Res. Rev. 35, 291–296 (2017).

    Article  PubMed  CAS  Google Scholar 

  360. Din, S. et al. Metabolic dysfunction consistent with premature aging results from deletion of Pim kinases. Circ. Res. 115, 376–387 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  361. Kubben, N. et al. Post-natal myogenic and adipogenic developmental: defects and metabolic impairment upon loss of A-type lamins. Nucleus 2, 195–207 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  362. Pendas, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 31, 94–99 (2002).

    Article  PubMed  CAS  Google Scholar 

  363. Chang, S. et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36, 877–882 (2004).

    Article  PubMed  CAS  Google Scholar 

  364. Wijshake, T. et al. Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation. PLoS Genet. 8, e1003138 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  365. Matsumoto, T. et al. Aging-associated vascular phenotype in mutant mice with low levels of BubR1. Stroke 38, 1050–1056 (2007).

    Article  PubMed  CAS  Google Scholar 

  366. Chouchani, E. T. et al. Complex I deficiency due to selective loss of Ndufs4 in the mouse heart results in severe hypertrophic cardiomyopathy. PLoS ONE 9, e94157 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  367. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  PubMed  CAS  Google Scholar 

  368. Nurminen, A., Farnum, G. A. & Kaguni, L. S. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database. BBA Clin. 7, 147–156 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  369. Acehan, D. et al. Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J. Biol. Chem. 286, 899–908 (2011).

    Article  PubMed  CAS  Google Scholar 

  370. Soustek, M. S. et al. Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency. Hum. Gene Ther. 22, 865–871 (2011).

    Article  PubMed  CAS  Google Scholar 

  371. Graham, B. H. et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat. Genet. 16, 226–234 (1997).

    Article  PubMed  CAS  Google Scholar 

  372. Strauss, K. A. et al. Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup. Proc. Natl Acad. Sci. USA 110, 3453–3458 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  373. Pfeffer, J. M., Pfeffer, M. A., Fishbein, M. C. & Frohlich, E. D. Cardiac function and morphology with aging in the spontaneously hypertensive rat. Am. J. Physiol. 237, H461–H468 (1979).

    PubMed  CAS  Google Scholar 

  374. Chan, V. et al. Cardiovascular changes during maturation and ageing in male and female spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 57, 469–478 (2011).

    Article  PubMed  CAS  Google Scholar 

  375. Rosa, C. M. et al. Diabetes mellitus activates fetal gene program and intensifies cardiac remodeling and oxidative stress in aged spontaneously hypertensive rats. Cardiovasc. Diabetol 12, 152 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  376. de Castro, N. M., Yaqoob, P., de la Fuente, M., Baeza, I. & Claus, S. P. Premature impairment of methylation pathway and cardiac metabolic dysfunction in fa/fa obese Zucker rats. J. Proteome Res. 12, 1935–1945 (2013).

    Article  PubMed  CAS  Google Scholar 

  377. Niemann, B. et al. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J. Am. Coll. Cardiol. 57, 577–585 (2011).

    Article  PubMed  CAS  Google Scholar 

  378. Christoffersen, C. et al. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 144, 3483–3490 (2003).

    Article  PubMed  CAS  Google Scholar 

  379. Barouch, L. A. et al. Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity. Circ. Res. 98, 119–124 (2006).

    Article  PubMed  CAS  Google Scholar 

  380. Aasum, E., Hafstad, A. D., Severson, D. L. & Larsen, T. S. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52, 434–441 (2003).

    Article  PubMed  CAS  Google Scholar 

  381. Borgarelli, M. & Buchanan, J. W. Historical review, epidemiology and natural history of degenerative mitral valve disease. J. Vet. Cardiol. 14, 93–101 (2012).

    Article  PubMed  Google Scholar 

  382. Petzoldt, M. et al. Reliability of transcardiopulmonary thermodilution cardiac output measurement in experimental aortic valve insufficiency. PLoS ONE 12, e0186481 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  383. Gerrity, R. G., Natarajan, R., Nadler, J. L. & Kimsey, T. Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50, 1654–1665 (2001).

    Article  PubMed  CAS  Google Scholar 

  384. Hamamdzic, D. & Wilensky, R. L. Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia. J. Diabetes Res. 2013, 761415 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  385. Bo-Htay, C., Palee, S., Apaijai, N., Chattipakorn, S. C. & Chattipakorn, N. Effects of d-galactose-induced ageing on the heart and its potential interventions. J. Cell. Mol. Med. 22, 1392–1410 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  386. Laye, M. J., Thyfault, J. P., Stump, C. S. & Booth, F. W. Inactivity induces increases in abdominal fat. J. Appl. Physiol. (1985) 102, 1341–1347 (2007).

    Article  Google Scholar 

  387. Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2018).

    Article  PubMed  Google Scholar 

  388. Fuentes, T. I. et al. Simulated microgravity exerts an age-dependent effect on the differentiation of cardiovascular progenitors isolated from the human heart. PLoS ONE 10, e0132378 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  389. Di Giulio, C. Do we age faster in absence of gravity? Front. Physiol. 4, 134 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  390. Caiani, E. G. et al. Objective evaluation of changes in left ventricular and atrial volumes during parabolic flight using real-time three-dimensional echocardiography. J. Appl. Physiol. (1985) 101, 460–468 (2006).

    Article  CAS  Google Scholar 

  391. Caiani, E. G., Massabuau, P., Weinert, L., Vaida, P. & Lang, R. M. Effects of 5 days of head-down bed rest, with and without short-arm centrifugation as countermeasure, on cardiac function in males (BR-AG1 study). J. Appl. Physiol. (1985) 117, 624–632 (2014).

    Article  CAS  Google Scholar 

  392. Demontis, G. C. et al. Human pathophysiological adaptations to the space environment. Front. Physiol. 8, 547 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  393. Crestani, C. C. Emotional stress and cardiovascular complications in animal models: a review of the influence of stress type. Front. Physiol. 7, 251 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.A.G. is supported by NIH grants R37HL091102, R01HL117163, R01HL105759, and U54CA132384. K.M.B. is supported by NIH grant F32HL136196. M.A.S. is supported by NIH grants R01HL067245, R37HL091102, R01HL105759, R01HL113647, R01HL117163, P01HL085577, and R01HL122525, as well as by an award from the Fondation Leducq.

Author information

Authors and Affiliations

Authors

Contributions

N.A.G. and M.A.S. researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission. K.M.B. and F.F. contributed to creation of the display items before submission.

Corresponding author

Correspondence to Mark A. Sussman.

Ethics declarations

Competing interests

K.M.B. has a significant interest in CardioCreate, and M.A.S. is a founding member of CardioCreate. N.A.G. and F.F. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Atlas of Gene Expression in Mouse Aging Project (AGEMAP): https://omictools.com/atlas-of-gene-expression-in-mouse-aging-project-tool

Database of Genotypes and Phenotypes (dbGaP): https://www.ncbi.nlm.nih.gov/gap

Digital Ageing Atlas (DAA): http://ageing-map.org/

Human Ageing Genomic Resources (HAGR): http://genomics.senescence.info/

JenAge Ageing Factor Database (AgeFactDB): http://agefactdb.jenage.de/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gude, N.A., Broughton, K.M., Firouzi, F. et al. Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence. Nat Rev Cardiol 15, 523–542 (2018). https://doi.org/10.1038/s41569-018-0061-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0061-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing