Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial quality control mechanisms as molecular targets in cardiac ageing

Abstract

Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Advancing age is a major risk factor for developing cardiovascular disease because of the lifelong exposure to cardiovascular risk factors and specific alterations affecting the heart and the vasculature during ageing. Indeed, the ageing heart is characterized by structural and functional changes that are caused by alterations in fundamental cardiomyocyte functions. In particular, the myocardium is heavily dependent on mitochondrial oxidative metabolism and is especially susceptible to mitochondrial dysfunction. Indeed, primary alterations in mitochondrial function, which are subsequently amplified by defective quality control mechanisms, are considered to be major contributing factors to cardiac senescence. In this Review, we discuss the mechanisms linking defective mitochondrial quality control mechanisms (that is, proteostasis, biogenesis, dynamics, and autophagy) to organelle dysfunction in the context of cardiac ageing. We also illustrate relevant molecular pathways that might be exploited for the prevention and treatment of age-related heart dysfunction.

Key points

  • Older adults are especially vulnerable to developing cardiovascular disease owing to long-term exposure to risk factors and intrinsic cardiovascular alterations occurring during ageing.

  • Mitochondrial quality control (MQC) operates through the coordination of various processes (proteostasis, biogenesis, dynamics, and mitophagy) to ensure cell homeostasis.

  • Mitochondrial dysfunction, amplified by failing quality control processes, is believed to be a major mechanism underlying cardiac ageing and cardiovascular disease.

  • Preclinical evidence suggests that modulation of MQC can be harnessed for therapeutic benefit against cardiac ageing and cardiovascular disease.

  • Current unknowns include the optimal window of MQC functioning to achieve cardioprotection, the timing and intensity of interventions, and noninvasively accessible biomarkers of MQC in the heart.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondrial quality control pathways.
Fig. 2: Nucleus–mitochondrion crosstalk during cardiac ageing.
Fig. 3: Regulation of cardiac autophagy.

Similar content being viewed by others

References

  1. Mozaffarian, D. et al. Heart disease and stroke statistics—2016 update. Circulation 133, e38–e360 (2016).

    PubMed  Google Scholar 

  2. Chiao, Y. A. & Rabinovitch, P. S. The aging heart. Cold Spring Harb. Perspect. Med. 5, a025148 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zhang, Y. et al. Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radic. Biol. Med. 71, 208–220 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Baris, O. R. et al. Mosaic deficiency in mitochondrial oxidative metabolism promotes cardiac arrhythmia during aging. Cell Metab. 21, 667–677 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Lok, N. S. & Lau, C. P. Prevalence of palpitations, cardiac arrhythmias and their associated risk factors in ambulant elderly. Int. J. Cardiol. 54, 231–236 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. Dutta, D., Calvani, R., Bernabei, R., Leeuwenburgh, C. & Marzetti, E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ. Res. 110, 1125–1138 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Marzetti, E. et al. Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives. Clin. Geriatr. Med. 25, 715–732 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. North, B. J. & Sinclair, D. A. The intersection between aging and cardiovascular disease. Circ. Res. 110, 1097–1108 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Theurey, P. & Pizzo, P. The aging mitochondria. Genes (Basel) 9, 22 (2018).

    Article  CAS  Google Scholar 

  11. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  PubMed  CAS  Google Scholar 

  12. Garinis, G. A., van der Horst, G. T. J., Vijg, J. & Hoeijmakers, J. H. J. DNA damage and ageing: new-age ideas for an age-old problem. Nat. Cell Biol. 10, 1241–1247 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zierer, J. et al. Metabolomics profiling reveals novel markers for leukocyte telomere length. Aging (Albany, NY) 8, 77–94 (2016).

    Article  CAS  Google Scholar 

  15. Yen, W.-L. & Klionsky, D. J. How to live long and prosper: autophagy, mitochondria, and aging. Physiology 23, 248–262 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. Marzetti, E. et al. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am. J. Physiol. Heart Circ. Physiol. 305, H459–H476 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wohlgemuth, S. E., Calvani, R. & Marzetti, E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J. Mol. Cell. Cardiol. 71, 62–70 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. Chung, H. Y. et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res. Rev. 8, 18–30 (2009).

    Article  PubMed  CAS  Google Scholar 

  19. Fougère, B., Boulanger, E., Nourhashémi, F., Guyonnet, S. & Cesari, M. Chronic inflammation: accelerator of biological aging. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1218–1225 (2017).

    PubMed  Google Scholar 

  20. Lin, C.-C. et al. NADPH oxidase/ROS-dependent VCAM-1 induction on TNF-α-challenged human cardiac fibroblasts enhances monocyte adhesion. Front. Pharmacol. 6, 310 (2015).

    PubMed  Google Scholar 

  21. Sallam, N. & Laher, I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid. Med. Cell. Longev. 2016, 7239639 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gimbrone, M. A. & García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118, 620–636 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  PubMed  CAS  Google Scholar 

  25. Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    Article  PubMed  CAS  Google Scholar 

  26. Senft, D. & Ronai, Z. A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40, 141–148 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sano, R. et al. Endoplasmic reticulum protein BI-1 regulates Ca2+-mediated bioenergetics to promote autophagy. Genes Dev. 26, 1041–1054 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Adam-Vizi, V. & Starkov, A. A. Calcium and mitochondrial reactive oxygen species generation: how to read the facts. J. Alzheimers Dis. 20 (Suppl. 2), S413–S426 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Andersson, D. C. et al. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 14, 196–207 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bánsághi, S. et al. Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species. J. Biol. Chem. 289, 8170–8181 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rhee, S. G. & Kil, I. S. Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: linking mitochondrial function to circadian rhythm. Free Radic. Biol. Med. 100, 73–80 (2016).

    Article  PubMed  CAS  Google Scholar 

  32. Manella, G. & Asher, G. The circadian nature of mitochondrial biology. Front. Endocrinol. (Lausanne) 7, 162 (2016).

    Google Scholar 

  33. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  PubMed  CAS  Google Scholar 

  34. Duicu, O. M. et al. Ageing-induced decrease in cardiac mitochondrial function in healthy rats. Can. J. Physiol. Pharmacol. 91, 593–600 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Kuka, S. et al. Effect of aging on formation of reactive oxygen species by mitochondria of rat heart. Gen. Physiol. Biophys. 32, 415–420 (2014).

    Article  CAS  Google Scholar 

  36. Wong, H.-S., Dighe, P. A., Mezera, V., Monternier, P.-A. & Brand, M. D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 292, 16804–16809 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kennedy, S. R., Salk, J. J., Schmitt, M. W. & Loeb, L. A. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet. 9, e1003794 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Itsara, L. S. et al. Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet. 10, e1003974 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. Dai, D.-F. et al. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9, 536–544 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lewis, K. N., Andziak, B., Yang, T. & Buffenstein, R. The naked mole-rat response to oxidative stress: just deal with it. Antioxid. Redox Signal. 19, 1388–1399 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Someya, S. et al. Effects of calorie restriction on the lifespan and healthspan of POLG mitochondrial mutator mice. PLoS ONE 12, e0171159 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Das, K. C. & Muniyappa, H. Age-dependent mitochondrial energy dynamics in the mice heart: role of superoxide dismutase-2. Exp. Gerontol. 48, 947–959 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Logan, A. et al. In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice. Aging Cell 13, 765–768 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Feng, W. et al. Increased age-related cardiac dysfunction in bradykinin B2 receptor-deficient mice. J. Gerontol. A Biol. Sci. Med. Sci. 71, 178–187 (2016).

    Article  PubMed  CAS  Google Scholar 

  48. Marzetti, E. et al. Shorter telomeres in peripheral blood mononuclear cells from older persons with sarcopenia: results from an exploratory study. Front. Aging Neurosci. 6, 233 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tocchi, A., Quarles, E. K., Basisty, N., Gitari, L. & Rabinovitch, P. S. Mitochondrial dysfunction in cardiac aging. Biochim. Biophys. Acta 1847, 1424–1433 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wojtovich, A. P., Nadtochiy, S. M., Brookes, P. S. & Nehrke, K. Ischemic preconditioning: the role of mitochondria and aging. Exp. Gerontol. 47, 1–7 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. Mishra, P. & Chan, D. C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379–387 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wu, H., Wei, H., Sehgal, S. A., Liu, L. & Chen, Q. Mitophagy receptors sense stress signals and couple mitochondrial dynamic machinery for mitochondrial quality control. Free Radic. Biol. Med. 100, 199–209 (2016).

    Article  PubMed  CAS  Google Scholar 

  54. Rossignol, R. et al. Mitochondrial threshold effects. Biochem. J. 370, 751–762 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wanrooij, S. et al. In vivo mutagenesis reveals that OriL is essential for mitochondrial DNA replication. EMBO Rep. 13, 1130–1137 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Elson, J. L., Samuels, D. C., Turnbull, D. M. & Chinnery, P. F. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am. J. Hum. Genet. 68, 802–806 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Greaves, L. C. et al. Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations. PLoS Genet. 8, e1003082 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kauppila, T. E. S., Kauppila, J. H. K. & Larsson, N.-G. Mammalian mitochondria and aging: an update. Cell Metab. 25, 57–71 (2017).

    Article  PubMed  CAS  Google Scholar 

  59. Müller-Höcker, J., Droste, M., Kadenbach, B., Pongratz, D. & Hübner, G. Fatal mitochondrial myopathy with cytochrome-c-oxidase deficiency and subunit-restricted reduction of enzyme protein in two siblings: an autopsy-immunocytochemical study. Hum. Pathol. 20, 666–672 (1989).

    Article  PubMed  Google Scholar 

  60. Cottrell, D. A. et al. Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol. Aging 22, 265–272 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. Khrapko, K., Kraytsberg, Y., de Grey, A. D. N. J., Vijg, J. & Schon, E. A. Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell 5, 279–282 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. Inoue, K. et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat. Genet. 26, 176–181 (2000).

    Article  PubMed  CAS  Google Scholar 

  63. Nakada, K. et al. Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat. Med. 7, 934–940 (2001).

    Article  PubMed  CAS  Google Scholar 

  64. Vermulst, M. et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39, 540–543 (2007).

    Article  PubMed  CAS  Google Scholar 

  65. Meissner, C. et al. The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp. Gerontol. 43, 645–652 (2008).

    Article  PubMed  CAS  Google Scholar 

  66. Kraytsberg, Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 38, 518–520 (2006).

    Article  PubMed  CAS  Google Scholar 

  67. Khrapko, K. & Vijg, J. Mitochondrial DNA mutations and aging: a case closed? Nat. Genet. 39, 445–446 (2007).

    Article  PubMed  CAS  Google Scholar 

  68. Srivastava, S. The mitochondrial basis of aging and age-related disorders. Genes (Basel) 8, 398 (2017).

    Article  CAS  Google Scholar 

  69. Taylor, S. D. et al. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain. Aging Cell 13, 29–38 (2014).

    Article  PubMed  CAS  Google Scholar 

  70. Taylor, R. W. et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest. 112, 1351–1360 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Nag, A. C. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28, 41–61 (1980).

    PubMed  CAS  Google Scholar 

  72. Vliegen, H. W., van der Laarse, A., Cornelisse, C. J. & Eulderink, F. Myocardial changes in pressure overload-induced left ventricular hypertrophy. A study on tissue composition, polyploidization and multinucleation. Eur. Heart J. 12, 488–494 (1991).

    Article  PubMed  CAS  Google Scholar 

  73. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bates, M. G. D. et al. Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur. Heart J. 33, 3023–3033 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Fischer, F., Hamann, A. & Osiewacz, H. D. Mitochondrial quality control: an integrated network of pathways. Trends Biochem. Sci. 37, 284–292 (2012).

    Article  PubMed  CAS  Google Scholar 

  77. Szklarczyk, R., Nooteboom, M. & Osiewacz, H. D. Control of mitochondrial integrity in ageing and disease. Phil. Trans. R. Soc. B Biol. Sci. 369, 20130439 (2014).

    Article  CAS  Google Scholar 

  78. Twig, G., Hyde, B. & Shirihai, O. S. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta 1777, 1092–1097 (2008).

    Article  PubMed  CAS  Google Scholar 

  79. Calvani, R. et al. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol. Chem. 394, 393–414 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Boateng, S. Y. & Goldspink, P. H. Assembly and maintenance of the sarcomere night and day. Cardiovasc. Res. 77, 667–675 (2008).

    Article  PubMed  CAS  Google Scholar 

  81. Klein, I., Samarel, A. M., Welikson, R. & Hong, C. Heterotopic cardiac transplantation decreases the capacity for rat myocardial protein synthesis. Circ. Res. 68, 1100–1107 (1991).

    Article  PubMed  CAS  Google Scholar 

  82. Razeghi, P. et al. Atrophic remodeling of the heart in vivo simultaneously activates pathways of protein synthesis and degradation. Circulation 108, 2536–2541 (2003).

    Article  PubMed  CAS  Google Scholar 

  83. Patterson, C., Portbury, A. L., Schisler, J. C. & Willis, M. S. Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ. Res. 109, 453–462 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Portbury, A. L., Willis, M. S. & Patterson, C. Tearin’ up my heart: proteolysis in the cardiac sarcomere. J. Biol. Chem. 286, 9929–9934 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Powell, S. R. The ubiquitin-proteasome system in cardiac physiology and pathology. Am. J. Physiol. Circ. Physiol. 291, H1–H19 (2006).

    Article  CAS  Google Scholar 

  86. Quirós, P. M., Langer, T. & López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16, 345–359 (2015).

    Article  PubMed  CAS  Google Scholar 

  87. Voos, W. Chaperone-protease networks in mitochondrial protein homeostasis. Biochim. Biophys. Acta 1833, 388–399 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Ngo, J. K. & Davies, K. J. A. Importance of the lon protease in mitochondrial maintenance and the significance of declining lon in aging. Ann. NY Acad. Sci. 1119, 78–87 (2007).

    Article  PubMed  CAS  Google Scholar 

  89. Gispert, S. et al. Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Hum. Mol. Genet. 22, 4871–4887 (2013).

    Article  PubMed  CAS  Google Scholar 

  90. Cipolat, S. et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163–175 (2006).

    Article  PubMed  CAS  Google Scholar 

  91. Maltecca, F. et al. The mitochondrial protease AFG3L2 is essential for axonal development. J. Neurosci. 28, 2827–2836 (2008).

    Article  PubMed  CAS  Google Scholar 

  92. Narendra, D., Tanaka, A., Suen, D.-F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Calì, T., Ottolini, D., Negro, A. & Brini, M. Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics. Biochim. Biophys. Acta 1832, 495–508 (2013).

    Article  PubMed  CAS  Google Scholar 

  94. Verfaillie, T. et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19, 1880–1891 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Santos, C. X. C., Anilkumar, N., Zhang, M., Brewer, A. C. & Shah, A. M. Redox signaling in cardiac myocytes. Free Radic. Biol. Med. 50, 777–793 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sumandea, M. P. & Steinberg, S. F. Redox signaling and cardiac sarcomeres. J. Biol. Chem. 286, 9921–9927 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Divald, A. et al. Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits. Circ. Res. 106, 1829–1838 (2010).

    Article  PubMed  CAS  Google Scholar 

  98. Yuan, H. et al. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am. J. Physiol. Heart Circ. Physiol. 296, H470–H479 (2009).

    Article  PubMed  CAS  Google Scholar 

  99. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tepp, K. et al. Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Mol. Cell. Biochem. 432, 141–158 (2017).

    Article  PubMed  CAS  Google Scholar 

  101. Tatarková, Z. et al. Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Physiol. Res. 60, 281–289 (2011).

    PubMed  Google Scholar 

  102. Esterhammer, R. et al. Cardiac high-energy phosphate metabolism alters with age as studied in 196 healthy males with the help of 31-phosphorus 2-dimensional chemical shift imaging. PLoS ONE 9, e97368 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yaniv, Y., Juhaszova, M. & Sollott, S. J. Age-related changes of myocardial ATP supply and demand mechanisms. Trends Endocrinol. Metab. 24, 495–505 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Nathania, M. et al. Impact of age on the association between cardiac high-energy phosphate metabolism and cardiac power in women. Heart 104, 111–118 (2018).

    Article  PubMed  Google Scholar 

  105. Klepinin, A. et al. Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J. Bioenerg. Biomembr. 48, 531–548 (2016).

    Article  PubMed  CAS  Google Scholar 

  106. Huss, J. M. & Kelly, D. P. Nuclear receptor signaling and cardiac energetics. Circ. Res. 95, 568–578 (2004).

    Article  PubMed  CAS  Google Scholar 

  107. Rattanasopa, C., Phungphong, S., Wattanapermpool, J. & Bupha-Intr, T. Significant role of estrogen in maintaining cardiac mitochondrial functions. J. Steroid Biochem. Mol. Biol. 147, 1–9 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Huss, J. M., Torra, I. P., Staels, B., Giguère, V. & Kelly, D. P. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol. 24, 9079–9091 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Dorn, G. W., Vega, R. B. & Kelly, D. P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 29, 1981–1991 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kubli, D. A. & Gustafsson, Å. B. Mitochondria and mitophagy: the yin and yang of cell death control. Circ. Res. 111, 1208–1221 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S–890S (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Leone, T. C. & Kelly, D. P. Transcriptional control of cardiac fuel metabolism and mitochondrial function. Cold Spring Harb. Symp. Quant. Biol. 76, 175–182 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Karamanlidis, G. et al. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ. Res. 106, 1541–1548 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Bayeva, M., Gheorghiade, M. & Ardehali, H. Mitochondria as a therapeutic target in heart failure. J. Am. Coll. Cardiol. 61, 599–610 (2013).

    Article  PubMed  CAS  Google Scholar 

  115. Faerber, G. et al. Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor γ coactivator levels and mitochondrial dysfunction. J. Thorac. Cardiovasc. Surg. 141, 492–500.e1 (2011).

    Article  PubMed  CAS  Google Scholar 

  116. Shimizu, Y. et al. Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J. Mol. Cell. Cardiol. 116, 29–40 (2018).

    Article  PubMed  CAS  Google Scholar 

  117. Picca, A. & Lezza, A. M. S. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions. Useful insights from aging and calorie restriction studies. Mitochondrion 25, 67–75 (2015).

    Article  PubMed  CAS  Google Scholar 

  118. Anmann, T. et al. Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart. Biochim. Biophys. Acta 1837, 1350–1361 (2014).

    Article  PubMed  CAS  Google Scholar 

  119. Palmer, J. W., Tandler, B. & Hoppel, C. L. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J. Biol. Chem. 252, 8731–8739 (1977).

    PubMed  CAS  Google Scholar 

  120. Palmer, J. W., Tandler, B. & Hoppel, C. L. Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. Arch. Biochem. Biophys. 236, 691–702 (1985).

    Article  PubMed  CAS  Google Scholar 

  121. Ichas, F., Jouaville, L. S. & Mazat, J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89, 1145–1153 (1997).

    Article  PubMed  CAS  Google Scholar 

  122. Glancy, B. et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature 523, 617–620 (2015).

    Article  PubMed  CAS  Google Scholar 

  123. Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P. & Zorov, D. B. Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J. Cell Biol. 107, 481–495 (1988).

    Article  PubMed  CAS  Google Scholar 

  124. Glancy, B. et al. Power grid protection of the muscle mitochondrial reticulum. Cell Rep. 19, 487–496 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. El’darov, C. M., Vays, V. B., Vangeli, I. M., Kolosova, N. G. & Bakeeva, L. E. Morphometric examination of mitochondrial ultrastructure in aging cardiomyocytes. Biochemistry (Mosc.) 80, 604–609 (2015).

    Article  CAS  Google Scholar 

  126. Tate, E. L. & Herbener, G. H. A morphometric study of the density of mitochondrial cristae in heart and liver of aging mice. J. Gerontol. 31, 129–134 (1976).

    Article  PubMed  CAS  Google Scholar 

  127. Chen, H. et al. Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. J. Cell Biol. 211, 795–805 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Song, M., Mihara, K., Chen, Y., Scorrano, L. & Dorn, G. W. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 21, 273–286 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Song, M., Franco, A., Fleischer, J. A., Zhang, L. & Dorn, G. W. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metab. 26, 872–883.e5 (2017).

    Article  PubMed  CAS  Google Scholar 

  130. Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Parone, P. A. et al. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 3, e3257 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sun, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685–696 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Lemasters, J. J. Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (type 3). Redox Biol. 2, 749–754 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Jin, S. M. et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Chen, Y. & Dorn, G. W. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Okatsu, K. et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol. 209, 111–128 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166 (2014).

    Article  PubMed  CAS  Google Scholar 

  140. Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372–376 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  PubMed  CAS  Google Scholar 

  142. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Murakawa, T. et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6, 7527 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Chen, Y. et al. Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy. Proc. Natl Acad. Sci. USA 107, 9035–9042 (2010).

    Article  PubMed  Google Scholar 

  145. Hanna, R. A. et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094–19104 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012).

    Article  PubMed  CAS  Google Scholar 

  147. Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141 (2012).

    Article  PubMed  CAS  Google Scholar 

  148. McLelland, G.-L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Zhou, J. et al. Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging. Aging (Albany, NY) 9, 583–599 (2017).

    Google Scholar 

  150. Peng, L. et al. Changes in cell autophagy and apoptosis during age-related left ventricular remodeling in mice and their potential mechanisms. Biochem. Biophys. Res. Commun. 430, 822–826 (2013).

    Article  PubMed  CAS  Google Scholar 

  151. Zhang, Y. et al. Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging. Biochim. Biophys. Acta 1863, 1919–1932 (2017).

    Article  PubMed  CAS  Google Scholar 

  152. Shirakabe, A., Ikeda, Y., Sciarretta, S., Zablocki, D. K. & Sadoshima, J. Aging and autophagy in the heart. Circ. Res. 118, 1563–1576 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Blice-Baum, A. C. et al. Modest overexpression of FOXO maintains cardiac proteostasis and ameliorates age-associated functional decline. Aging Cell 16, 93–103 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Chun, S. K. et al. Autophagy in ischemic livers: a critical role of sirtuin 1/mitofusin 2 axis in autophagy induction. Toxicol. Res. 32, 35–46 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Huang, R. et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456–466 (2015).

    Article  PubMed  CAS  Google Scholar 

  156. Ferrara, N. et al. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res. 11, 139–150 (2008).

    Article  PubMed  CAS  Google Scholar 

  157. Ren, J. et al. Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: role of Sirt1-mediated autophagy regulation. Aging Cell 16, 976–987 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Hsu, Y.-J. et al. Sirtuin 1 protects the aging heart from contractile dysfunction mediated through the inhibition of endoplasmic reticulum stress-mediated apoptosis in cardiac-specific Sirtuin 1 knockout mouse model. Int. J. Cardiol. 228, 543–552 (2017).

    Article  PubMed  Google Scholar 

  159. Hoshino, A. et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun. 4, 2308 (2013).

    Article  PubMed  CAS  Google Scholar 

  160. Edwards, M. G. et al. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program. BMC Genomics 8, 80 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Tan, V. P. & Miyamoto, S. Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. J. Mol. Cell. Cardiol. 95, 31–41 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Egan, D., Kim, J., Shaw, R. J. & Guan, K.-L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7, 643–644 (2011).

    Article  PubMed  CAS  Google Scholar 

  163. Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Maejima, Y., Isobe, M. & Sadoshima, J. Regulation of autophagy by Beclin 1 in the heart. J. Mol. Cell. Cardiol. 95, 19–25 (2016).

    Article  PubMed  CAS  Google Scholar 

  165. Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10, 285–292 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gurkar, A. U. et al. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat. Commun. 4, 2189 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Ikeda, Y. et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ. Res. 116, 264–278 (2015).

    Article  PubMed  CAS  Google Scholar 

  169. Troncoso, R. et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc. Res. 93, 320–329 (2012).

    Article  PubMed  CAS  Google Scholar 

  170. Sciarretta, S. et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 125, 1134–1146 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Cuervo, A. M. Calorie restriction and aging: the ultimate “cleansing diet”. J. Gerontol. A Biol. Sci. Med. Sci. 63, 547–549 (2008).

    Article  PubMed  Google Scholar 

  172. Tóth, M. L. et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4, 330–338 (2008).

    Article  PubMed  Google Scholar 

  173. Wohlgemuth, S. E. et al. Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res. 10, 281–292 (2007).

    Article  PubMed  CAS  Google Scholar 

  174. Shinmura, K. et al. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J. Mol. Cell. Cardiol. 50, 117–127 (2011).

    Article  PubMed  CAS  Google Scholar 

  175. Han, X. et al. Influence of long-term caloric restriction on myocardial and cardiomyocyte contractile function and autophagy in mice. J. Nutr. Biochem. 23, 1592–1599 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Delbridge, L. M. D., Mellor, K. M., Taylor, D. J. & Gottlieb, R. A. Myocardial stress and autophagy: mechanisms and potential therapies. Nat. Rev. Cardiol. 14, 412–425 (2017).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Fondazione Roma (NCDs Call for Proposals 2013), Innovative Medicine Initiative-Joint Undertaking (IMI-JU 115621), intramural research grants from the Catholic University of the Sacred Heart (D3.2 2013 and D3.2 2015), the non-profit research foundation “Centro Studi Achille e Linda Lorenzon”, and the Claude D. Pepper Older Americans Independence Center at the University of Florida’s Institute on Aging (NIA 1P30AG028740).

Reviewer information

Nature Reviews Cardiology thanks E. Lesnefsky and the other anonymous reviewers for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

A.P. and R.T.M. researched data for the article. A.P., J.L.B., and J.-S.K. discussed the content of the article. A.P., R.T.M., L.D., and E.M. wrote the manuscript. E.M. and C.L. revised and edited the manuscript before submission.

Corresponding authors

Correspondence to Emanuele Marzetti or Christiaan Leeuwenburgh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picca, A., Mankowski, R.T., Burman, J.L. et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 15, 543–554 (2018). https://doi.org/10.1038/s41569-018-0059-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0059-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing