Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The epicardium as a hub for heart regeneration

Abstract

After decades of directed research, no effective regenerative therapy is currently available to repair the injured human heart. The epicardium, a layer of mesothelial tissue that envelops the heart in all vertebrates, has emerged as a new player in cardiac repair and regeneration. The epicardium is essential for muscle regeneration in the zebrafish model of innate heart regeneration, and the epicardium also participates in fibrotic responses in mammalian hearts. This structure serves as a source of crucial cells, such as vascular smooth muscle cells, pericytes, and fibroblasts, during heart development and repair. The epicardium also secretes factors that are essential for proliferation and survival of cardiomyocytes. In this Review, we describe recent advances in our understanding of the biology of the epicardium and the effect of these findings on the candidacy of this structure as a therapeutic target for heart repair and regeneration.

Key points

  • The epicardium is a layer of mesothelial tissue that envelops the heart in all vertebrates.

  • The epicardium contributes essential cells and signals during heart development and regeneration.

  • The epicardium comprises a heterogeneous cell population and is a highly regenerative tissue.

  • The epicardium is required for normal myocardial regeneration in zebrafish.

  • Current research approaches aim to activate the adult epicardium to promote heart regeneration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cellular contributions of epicardial cells during heart repair and regeneration.
Fig. 2: Epicardial signals in heart repair and regeneration.
Fig. 3: Ex vivo epicardial regeneration.
Fig. 4: Epicardium-based strategy for heart repair.

References

  1. 1.

    Tzahor, E. & Poss, K. D. Cardiac regeneration strategies: staying young at heart. Science 356, 1035–1039 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Cahill, T. J., Choudhury, R. P. & Riley, P. R. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat. Rev. Drug Discov. 16, 699–717 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Galdos, F. X. et al. Cardiac regeneration: lessons from development. Circ. Res. 120, 941–959 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Uygur, A. & Lee, R. T. Mechanisms of cardiac regeneration. Dev. Cell 36, 362–374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Zhang, Y., Mignone, J. & MacLellan, W. R. Cardiac regeneration and stem cells. Physiol. Rev. 95, 1189–1204 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Huang, G. N. et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599–1603 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kikuchi, K. et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895–2902 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Smart, N. et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474, 640–644 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Zhou, B. et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 121, 1894–1904 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wang, J., Karra, R., Dickson, A. L. & Poss, K. D. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev. Biol. 382, 427–435 (2013).

    CAS  Google Scholar 

  11. 11.

    Smart, N. et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177–182 (2007).

    CAS  Google Scholar 

  12. 12.

    Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    CAS  Google Scholar 

  13. 13.

    Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    CAS  Google Scholar 

  14. 14.

    Marin-Juez, R. et al. Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 113, 11237–11242 (2016).

    CAS  Google Scholar 

  15. 15.

    Lai, S. L. et al. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. eLife 6, e25605 (2017).

    Google Scholar 

  16. 16.

    Gonzalez-Rosa, J. M., Martin, V., Peralta, M., Torres, M. & Mercader, N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138, 1663–1674 (2011).

    CAS  Google Scholar 

  17. 17.

    Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zhang, Y. et al. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS ONE 5, e12559 (2010).

    Google Scholar 

  19. 19.

    Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    CAS  Google Scholar 

  20. 20.

    Mollova, M. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl Acad. Sci. USA 110, 1446–1451 (2013).

    CAS  Google Scholar 

  21. 21.

    Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Haubner, B. J. et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY) 4, 966–977 (2012).

    CAS  Google Scholar 

  23. 23.

    Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187–192 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Darehzereshki, A. et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev. Biol. 399, 91–99 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Soonpaa, M. H. & Field, L. J. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83, 15–26 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Patterson, M. et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat. Genet. 49, 1346–1353 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gonzalez-Rosa, J. M. et al. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev. Cell 44, 433–446.e7 (2018).

    CAS  Google Scholar 

  28. 28.

    Cano-Martinez, A. et al. Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation. Arch. Cardiol. Mex. 80, 79–86 (2010).

    Google Scholar 

  29. 29.

    Mercer, S. E., Odelberg, S. J. & Simon, H. G. A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev. Biol. 382, 457–469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Chablais, F., Veit, J., Rainer, G. & Jazwinska, A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev. Biol. 11, 21 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wang, J. et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138, 3421–3430 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Goldman, J. A. et al. Resolving heart regeneration by replacement histone profiling. Dev. Cell 40, 392–404.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Vivien, C. J., Hudson, J. E. & Porrello, E. R. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen. Med. 1, 16012 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gonzalez-Rosa, J. M., Burns, C. E. & Burns, C. G. Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxf.) 4, 105–123 (2017).

    Google Scholar 

  35. 35.

    Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell 43, 659–672.e5 (2017).

    CAS  Google Scholar 

  36. 36.

    Mahmoud, A. I. et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev. Cell 34, 387–399 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Gonzalez-Rosa, J. M., Peralta, M. & Mercader, N. Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev. Biol. 370, 173–186 (2012).

    CAS  Google Scholar 

  38. 38.

    Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Choi, W. Y. et al. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140, 660–666 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kikuchi, K. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 20, 397–404 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kim, J. et al. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc. Natl Acad. Sci. USA 107, 17206–17210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kurkiewicz, T. O. Histogenezie miesna sur cowego zwierzat kregowych — Zur Histogenese des Herzmuskels der Wilbertiere. Bull. Int. Acad. Sci. Cracov. 148–191 (1909).

  43. 43.

    Manasek, F. J. Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J. Morphol. 125, 329–365 (1968).

    CAS  Google Scholar 

  44. 44.

    Manasek, F. J. Embryonic development of the heart. II. Formation of the epicardium. J. Embryol. Exp. Morphol. 22, 333–348 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Manner, J. The development of pericardial villi in the chick embryo. Anat. Embryol. (Berl.) 186, 379–385 (1992).

    CAS  Google Scholar 

  46. 46.

    Manner, J. Experimental study on the formation of the epicardium in chick embryos. Anat. Embryol. (Berl.) 187, 281–289 (1993).

    CAS  Google Scholar 

  47. 47.

    Serluca, F. C. Development of the proepicardial organ in the zebrafish. Dev. Biol. 315, 18–27 (2008).

    CAS  Google Scholar 

  48. 48.

    Nesbitt, T. et al. Epicardial development in the rat: a new perspective. Microsc. Microanal. 12, 390–398 (2006).

    CAS  Google Scholar 

  49. 49.

    Komiyama, M., Ito, K. & Shimada, Y. Origin and development of the epicardium in the mouse embryo. Anat. Embryol. (Berl.) 176, 183–189 (1987).

    CAS  Google Scholar 

  50. 50.

    Jahr, M., Schlueter, J., Brand, T. & Manner, J. Development of the proepicardium in Xenopus laevis. Dev. Dyn. 237, 3088–3096 (2008).

    Google Scholar 

  51. 51.

    Hirakow, R. Epicardial formation in staged human embryos. Kaibogaku Zasshi 67, 616–622 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Fransen, M. E. & Lemanski, L. F. Epicardial development in the axolotl, Ambystoma mexicanum. Anat. Rec. 226, 228–236 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Risebro, C. A., Vieira, J. M., Klotz, L. & Riley, P. R. Characterisation of the human embryonic and foetal epicardium during heart development. Development 142, 3630–3636 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Maya-Ramos, L., Cleland, J., Bressan, M. & Mikawa, T. Induction of the Proepicardium. J. Dev. Biol. 1, 82–91 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Peralta, M. et al. Heartbeat-driven pericardiac fluid forces contribute to epicardium morphogenesis. Current Biology 23, 1726–1735 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Nahirney, P. C., Mikawa, T. & Fischman, D. A. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev. Dyn. 227, 511–523 (2003).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Rodgers, L. S., Lalani, S., Runyan, R. B. & Camenisch, T. D. Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev. Dyn. 237, 145–152 (2008).

    Google Scholar 

  58. 58.

    Plavicki, J. S. et al. Multiple modes of proepicardial cell migration require heartbeat. BMC Dev. Biol. 14, 18 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Lie-Venema, H. et al. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. ScientificWorldJournal 7, 1777–1798 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Mikawa, T. & Fischman, D. A. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc. Natl Acad. Sci. USA 89, 9504–9508 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Manner, J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 255, 212–226 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Mikawa, T. & Gourdie, R. G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174, 221–232 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Perez-Pomares, J. M. et al. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev. Biol. 247, 307–326 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Guadix, J. A., Carmona, R., Munoz-Chapuli, R. & Perez-Pomares, J. M. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Dev. Dyn. 235, 1014–1026 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Dettman, R. W., Denetclaw, W. Jr, Ordahl, C. P. & Bristow, J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol. 193, 169–181 (1998).

    CAS  Google Scholar 

  66. 66.

    Perez-Pomares, J. M. et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 46, 1005–1013 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Gittenberger-de Groot, A. C., Vrancken Peeters, M. P., Mentink, M. M., Gourdie, R. G. & Poelmann, R. E. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ. Res. 82, 1043–1052 (1998).

    CAS  Google Scholar 

  68. 68.

    Cai, C. L. et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104–108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Rudat, C. & Kispert, A. Wt1 and epicardial fate mapping. Circ. Res. 111, 165–169 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Christoffels, V. M. et al. Tbx18 and the fate of epicardial progenitors. Nature 458, E8–E9 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Katz, T. C. et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev. Cell 22, 639–650 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Braitsch, C. M., Kanisicak, O., van Berlo, J. H., Molkentin, J. D. & Yutzey, K. E. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J. Mol. Cell. Cardiol. 65, 108–119 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Zhou, B., von Gise, A., Ma, Q., Rivera-Feliciano, J. & Pu, W. T. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem. Biophys. Res. Commun. 375, 450–453 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Braitsch, C. M. & Yutzey, K. E. Transcriptional control of cell lineage development in epicardium-derived cells. J. Dev. Biol. 1, 92–111 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Bersell, K. et al. Moderate and high amounts of tamoxifen in alphaMHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death. Dis. Model. Mech. 6, 1459–1469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Lafontant, P. J. et al. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy. PLoS ONE 8, e72388 (2013).

    Google Scholar 

  78. 78.

    Patel, S. H. et al. Low-dose tamoxifen treatment in juvenile males has long-term adverse effects on the reproductive system: implications for inducible transgenics. Sci. Rep. 7, 8991 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Smith, L. Good planning and serendipity: exploiting the Cre/Lox system in the testis. Reproduction 141, 151–161 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    McLellan, M. A., Rosenthal, N. A. & Pinto, A. R. Cre-loxP-mediated recombination: general principles and experimental considerations. Curr. Protoc. Mouse Biol. 7, 1–12 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Song, A. J. & Palmiter, R. D. Detecting and avoiding problems when using the Cre-lox system. Trends Genet. 34, 333–340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Ali, S. R. et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ. Res. 115, 625–635 (2014).

    CAS  Google Scholar 

  83. 83.

    Acharya, A. et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139, 2139–2149 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Grieskamp, T., Rudat, C., Ludtke, T. H., Norden, J. & Kispert, A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ. Res. 108, 813–823 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Volz, K. S. et al. Pericytes are progenitors for coronary artery smooth muscle. eLife 4, e10036 (2015).

    Google Scholar 

  86. 86.

    Yamaguchi, Y. et al. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARgamma activation. Proc. Natl Acad. Sci. USA 112, 2070–2075 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Zhou, B. et al. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J. Mol. Cell. Cardiol. 52, 43–47 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    van Wijk, B., Gunst, Q. D., Moorman, A. F. & van den Hoff, M. J. Cardiac regeneration from activated epicardium. PLoS ONE 7, e44692 (2012).

    Google Scholar 

  89. 89.

    Dube, K. N. et al. Recapitulation of developmental mechanisms to revascularize the ischemic heart. JCI Insight 2, 96800 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Fang, M., Xiang, F. L., Braitsch, C. M. & Yutzey, K. E. Epicardium-derived fibroblasts in heart development and disease. J. Mol. Cell. Cardiol. 91, 23–27 (2016).

    CAS  Google Scholar 

  93. 93.

    Moore-Morris, T., Guimaraes-Camboa, N., Yutzey, K. E., Puceat, M. & Evans, S. M. Cardiac fibroblasts: from development to heart failure. J. Mol. Med. (Berl.) 93, 823–830 (2015).

    CAS  Google Scholar 

  94. 94.

    Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Song, K. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599–604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Zhao, Y. et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat. Commun. 6, 8243 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Cao, N. et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352, 1216–1220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Hashimoto, H., Olson, E. N. & Bassel-Duby, R. Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-018-0036-6 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Forte, E., Furtado, M. & Rosenthal, N. The interstitium in cardiac repair: role of the immune–stromal cell interplay. Nat. Rev. Cardiol. (in press).

  101. 101.

    Duim, S. N., Kurakula, K., Goumans, M. J. & Kruithof, B. P. Cardiac endothelial cells express Wilms’ tumor-1: Wt1 expression in the developing, adult and infarcted heart. J. Mol. Cell. Cardiol. 81, 127–135 (2015).

    CAS  Google Scholar 

  102. 102.

    Zangi, L. et al. Insulin-like growth factor 1 receptor-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation 135, 59–72 (2017).

    CAS  Google Scholar 

  103. 103.

    Liu, Q. et al. Epicardium-to-fat transition in injured heart. Cell Res. 24, 1367–1369 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    He, L. et al. Enhancing the precision of genetic lineage tracing using dual recombinases. Nat. Med. 23, 1488–1498 (2017).

    CAS  Google Scholar 

  105. 105.

    Schnabel, K., Wu, C. C., Kurth, T. & Weidinger, G. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE 6, e18503 (2011).

    Google Scholar 

  106. 106.

    Cao, J. et al. Single epicardial cell transcriptome sequencing identifies caveolin 1 as an essential factor in zebrafish heart regeneration. Development 143, 232–243 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Poon, K. L., Liebling, M., Kondrychyn, I., Garcia-Lecea, M. & Korzh, V. Zebrafish cardiac enhancer trap lines: new tools for in vivo studies of cardiovascular development and disease. Dev. Dyn. 239, 914–926 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Wu, C. C. et al. Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration. Dev. Cell 36, 36–49 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Lane, E. B., Hogan, B. L., Kurkinen, M. & Garrels, J. I. Co-expression of vimentin and cytokeratins in parietal endoderm cells of early mouse embryo. Nature 303, 701–704 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Tournoij, E. et al. Mlck1a is expressed in zebrafish thrombocytes and is an essential component of thrombus formation. J. Thromb. Haemost. 8, 588–595 (2010).

    CAS  Google Scholar 

  112. 112.

    Bollini, S. et al. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cells Dev. 23, 1719–1730 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Athanasiadis, E. I. et al. Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis. Nat. Commun. 8, 2045 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Wills, A. A., Holdway, J. E., Major, R. J. & Poss, K. D. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135, 183–192 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Porrello, E. R. & Olson, E. N. A neonatal blueprint for cardiac regeneration. Stem Cell Res. 13, 556–570 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Vieira, J. M. et al. BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease. Nat. Commun. 8, 16034 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Ramjee, V. et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J. Clin. Invest. 127, 899–911 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Stevens, S. M., von Gise, A., VanDusen, N., Zhou, B. & Pu, W. T. Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart. Dev. Biol. 413, 153–159 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Pinto, A. R., Godwin, J. W. & Rosenthal, N. A. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res. 13, 705–714 (2014).

    CAS  Google Scholar 

  124. 124.

    Karra, R. & Poss, K. D. Redirecting cardiac growth mechanisms for therapeutic regeneration. J. Clin. Invest. 127, 427–436 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Foglia, M. J. & Poss, K. D. Building and re-building the heart by cardiomyocyte proliferation. Development 143, 729–740 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Furtado, M. B., Nim, H. T., Boyd, S. E. & Rosenthal, N. A. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 143, 387–397 (2016).

    CAS  Google Scholar 

  127. 127.

    Olivey, H. E. & Svensson, E. C. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ. Res. 106, 818–832 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Smart, N. & Riley, P. R. The epicardium as a candidate for heart regeneration. Future Cardiol. 8, 53–69 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Limana, F. et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: role of the pericardial fluid. J. Mol. Cell. Cardiol. 48, 609–618 (2010).

    CAS  Google Scholar 

  130. 130.

    Merki, E. et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc. Natl Acad. Sci. USA 102, 18455–18460 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Zhao, T., Zhao, W., Chen, Y., Ahokas, R. A. & Sun, Y. Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction. Int. J. Cardiol. 152, 307–313 (2011).

    Google Scholar 

  132. 132.

    Itoh, N., Ohta, H., Nakayama, Y. & Konishi, M. Roles of FGF signals in heart development, health, and disease. Front. Cell Dev. Biol. 4, 110 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Itoh, N. & Ohta, H. Pathophysiological roles of FGF signaling in the heart. Front. Physiol. 4, 247 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Chablais, F. & Jazwinska, A. The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling. Development 139, 1921–1930 (2012).

    CAS  Google Scholar 

  135. 135.

    Vilahur, G. et al. Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J. Mol. Cell. Cardiol. 50, 522–533 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Hao, J. et al. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J. Mol. Cell. Cardiol. 31, 667–678 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Deten, A., Holzl, A., Leicht, M., Barth, W. & Zimmer, H. G. Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J. Mol. Cell. Cardiol. 33, 1191–1207 (2001).

    CAS  Google Scholar 

  138. 138.

    Frangogiannis, N. G. The role of transforming growth factor (TGF)-beta in the infarcted myocardium. J. Thorac. Dis. 9, S52–S63 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Dogra, D. et al. Opposite effects of Activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nat. Commun. 8, 1902 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Zhao, L. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 111, 1403–1408 (2014).

    CAS  Google Scholar 

  141. 141.

    Munch, J., Grivas, D., Gonzalez-Rajal, A., Torregrosa-Carrion, R. & de la Pompa, J. L. Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development 144, 1425–1440 (2017).

    CAS  Google Scholar 

  142. 142.

    Russell, J. L. et al. A dynamic notch injury response activates epicardium and contributes to fibrosis repair. Circ. Res. 108, 51–59 (2011).

    CAS  Google Scholar 

  143. 143.

    Kratsios, P. et al. Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart. Circ. Res. 106, 559–572 (2010).

    CAS  Google Scholar 

  144. 144.

    Karra, R., Knecht, A. K., Kikuchi, K. & Poss, K. D. Myocardial NF-kappaB activation is essential for zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 112, 13255–13260 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Zymek, P. et al. The role of platelet-derived growth factor signaling in healing myocardial infarcts. J. Am. Coll. Cardiol. 48, 2315–2323 (2006).

    CAS  Google Scholar 

  146. 146.

    Duan, J. et al. Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 31, 429–442 (2012).

    CAS  Google Scholar 

  147. 147.

    Paik, D. T. et al. Wnt10b gain-of-function improves cardiac repair by arteriole formation and attenuation of fibrosis. Circ. Res. 117, 804–816 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Sugimoto, K., Hui, S. P., Sheng, D. Z. & Kikuchi, K. Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch. eLife 6, e24635 (2017).

    Google Scholar 

  149. 149.

    Wang, J., Cao, J., Dickson, A. L. & Poss, K. D. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 522, 226–230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Lavine, K. J. & Ornitz, D. M. Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet. 24, 33–40 (2008).

    CAS  Google Scholar 

  151. 151.

    Dunaeva, M. & Waltenberger, J. Hh signaling in regeneration of the ischemic heart. Cell. Mol. Life Sci. 74, 3481–3490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Lavine, K. J. & Ornitz, D. M. Rebuilding the coronary vasculature: hedgehog as a new candidate for pharmacologic revascularization. Trends Cardiovasc. Med. 17, 77–83 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Huang, Y. et al. Igf signaling is required for cardiomyocyte proliferation during zebrafish heart development and regeneration. PLoS ONE 8, e67266 (2013).

    Google Scholar 

  154. 154.

    Pachori, A. S. et al. Bone morphogenetic protein 4 mediates myocardial ischemic injury through JNK-dependent signaling pathway. J. Mol. Cell. Cardiol. 48, 1255–1265 (2010).

    CAS  Google Scholar 

  155. 155.

    Leach, J. P. et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550, 260–264 (2017).

    PubMed  PubMed Central  Google Scholar 

  156. 156.

    Morikawa, Y., Heallen, T., Leach, J., Xiao, Y. & Martin, J. F. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature 547, 227–231 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Xin, M. et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA 110, 13839–13844 (2013).

    CAS  Google Scholar 

  158. 158.

    Xin, M. et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci. Signal. 4, ra70 (2011).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    von Gise, A. et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl Acad. Sci. USA 109, 2394–2399 (2012).

    Google Scholar 

  160. 160.

    Singh, A. et al. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development. Cell Rep. 15, 1384–1393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Xiao, Y. et al. Hippo signaling plays an essential role in cell state transitions during cardiac fibroblast development. Dev. Cell 45, 153–169.e6 (2018).

    CAS  Google Scholar 

  162. 162.

    Itou, J. et al. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 139, 4133–4142 (2012).

    CAS  Google Scholar 

  163. 163.

    Harrison, M. R. et al. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev. Cell 33, 442–454 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Bersell, K., Arab, S., Haring, B. & Kuhn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009).

    CAS  Google Scholar 

  165. 165.

    Parodi, E. M. & Kuhn, B. Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc. Res. 102, 194–204 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Gemberling, M., Karra, R., Dickson, A. L. & Poss, K. D. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife https://doi.org/10.7554/eLife.05871 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Kang, J. et al. Modulation of tissue repair by regeneration enhancer elements. Nature 532, 201–206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Bock-Marquette, I. et al. Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J. Mol. Cell. Cardiol. 46, 728–738 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    George, E. L., Baldwin, H. S. & Hynes, R. O. Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 90, 3073–3081 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Ieda, M. et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell 16, 233–244 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Magnusson, M. K. & Mosher, D. F. Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler. Thromb. Vasc. Biol. 18, 1363–1370 (1998).

    CAS  Google Scholar 

  174. 174.

    Trinh, L. A. & Stainier, D. Y. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev. Cell 6, 371–382 (2004).

    CAS  Google Scholar 

  175. 175.

    Dettman, R. W., Pae, S. H., Morabito, C. & Bristow, J. Inhibition of alpha4-integrin stimulates epicardial-mesenchymal transformation and alters migration and cell fate of epicardially derived mesenchyme. Dev. Biol. 257, 315–328 (2003).

    CAS  Google Scholar 

  176. 176.

    Balmer, G. M. et al. Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nat. Commun. 5, 4054 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Missinato, M. A., Tobita, K., Romano, N., Carroll, J. A. & Tsang, M. Extracellular component hyaluronic acid and its receptor Hmmr are required for epicardial EMT during heart regeneration. Cardiovasc. Res. 107, 487–498 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Marro, J., Pfefferli, C., de Preux Charles, A. S., Bise, T. & Jazwinska, A. Collagen XII contributes to epicardial and connective tissues in the zebrafish heart during ontogenesis and regeneration. PLoS ONE 11, e0165497 (2016).

    Google Scholar 

  179. 179.

    Wehner, D. et al. Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish. Nat. Commun. 8, 126 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. 180.

    Cao, J. & Poss, K. D. Explant culture of adult zebrafish hearts for epicardial regeneration studies. Nat. Protoc. 11, 872–881 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Cao, J. et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev. Cell 42, 600–615 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Urayama, K. et al. Prokineticin receptor-1 induces neovascularization and epicardial-derived progenitor cell differentiation. Arterioscler. Thromb. Vasc. Biol. 28, 841–849 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Ogura, Y. et al. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation 126, 1728–1738 (2012).

    PubMed  PubMed Central  Google Scholar 

  184. 184.

    Oshima, Y. et al. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation 117, 3099–3108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Maruyama, S. et al. Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Mol. Med. 8, 949–966 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Shimano, M. et al. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc. Natl Acad. Sci. USA 108, E899–E906 (2011).

    CAS  Google Scholar 

  187. 187.

    van Tuyn, J. et al. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25, 271–278 (2007).

    Google Scholar 

  188. 188.

    Moerkamp, A. T. et al. Human fetal and adult epicardial-derived cells: a novel model to study their activation. Stem Cell Res. Ther. 7, 174 (2016).

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Witty, A. D. et al. Generation of the epicardial lineage from human pluripotent stem cells. Nat. Biotechnol. 32, 1026–1035 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Iyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142, 1528–1541 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Guadix, J. A. et al. Human pluripotent stem cell differentiation into functional epicardial progenitor cells. Stem Cell Rep. 9, 1754–1764 (2017).

    CAS  Google Scholar 

  192. 192.

    Bao, X. et al. Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions. Nat. Biomed. Eng. 1, 0003 (2016).

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Zhao, J. et al. Efficient differentiation of TBX18+/WT1+ epicardial-like cells from human pluripotent stem cells using small molecular compounds. Stem Cells Dev. 26, 528–540 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Wessels, A. et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev. Biol. 366, 111–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Lin, Z. & Pu, W. T. Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Res. 13, 571–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Dickson (Duke University, Durham, NC, USA) for assistance with artwork and R. Karra (Duke University, Durham, NC, USA) and J. Kang (University of Wisconsin-Madison, USA) for comments on the manuscript. The authors apologize to their colleagues whose work they could not discuss owing to space limitations. J.C. was supported by AHA postdoctoral fellowships (14POST20230023 and 16POST30230005). K.D.P. acknowledges grant support from the National Heart, Lung, and Blood Institute (NHLBI) (HL081674, HL131319, and HL136182), an AHA Merit Award, and Fondation Leducq.

Reviewer information

Nature Reviews Cardiology thanks M. J. Goumans, P. Riley, and B. Zhou for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding authors

Correspondence to Jingli Cao or Kenneth D. Poss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Diploid

Containing two complete sets of chromosomes.

Knock-in

A genetic engineering method to insert an exogenous sequence or to replace the endogenous sequence in a given locus of the genome.

Mitogenic factors

Factors that promote cell proliferation.

In situ hybridization

A biochemical method that uses labelled complementary nucleic acids to visualize specific nucleic acid sequences in tissues.

Gene-trap line

A high-throughput method that captures the readouts of gene regulatory sequences in transgenic animals.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Poss, K.D. The epicardium as a hub for heart regeneration. Nat Rev Cardiol 15, 631–647 (2018). https://doi.org/10.1038/s41569-018-0046-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing