Review Article | Published:

Transcriptional regulation of the cardiac conduction system

Nature Reviews Cardiologyvolume 15pages617630 (2018) | Download Citation


The rate and rhythm of heart muscle contractions are coordinated by the cardiac conduction system (CCS), a generic term for a collection of different specialized muscular tissues within the heart. The CCS components initiate the electrical impulse at the sinoatrial node, propagate it from atria to ventricles via the atrioventricular node and bundle branches, and distribute it to the ventricular muscle mass via the Purkinje fibre network. The CCS thereby controls the rate and rhythm of alternating contractions of the atria and ventricles. CCS function is well conserved across vertebrates from fish to mammals, although particular specialized aspects of CCS function are found only in endotherms (mammals and birds). The development and homeostasis of the CCS involves transcriptional and regulatory networks that act in an embryonic-stage-dependent, tissue-dependent, and dose-dependent manner. This Review describes emerging data from animal studies, stem cell models, and genome-wide association studies that have provided novel insights into the transcriptional networks underlying CCS formation and function. How these insights can be applied to develop disease models and therapies is also discussed.

Key points

  • The cardiac conduction system (CCS) and atrial and ventricular working myocardium are derived from shared precursor cells that diverge during heart formation owing to localized signalling cues.

  • Differentiation of CCS components is controlled by a network of core cardiac transcription factors and CCS-specific transcription factors; the latter also maintain phenotypic homeostasis of the adult CCS.

  • CCS-specific transcription factors suppress the working myocardial gene programme, maintain embryonic myocardial properties, and activate a pacemaker gene programme.

  • The atrioventricular bundle and bundle branches acquire fast-conducting properties during cardiac development, on top of their pacemaker-like properties.

  • The Purkinje fibre network is derived from the embryonic trabecular chamber myocardium, which acquires fast-conducting properties from the onset of its development.

  • Insights from developmental biology are being applied to develop novel cardiac disease models and additional translational efforts aimed at regeneration of the CCS.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Wolf, C. M. & Berul, C. I. Inherited conduction system abnormalities — one group of diseases, many genes. J. Cardiovasc. Electrophysiol. 17, 446–455 (2006).

  2. 2.

    Dobrzynski, H., Boyett, M. R. & Anderson, R. H. New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 115, 1921–1932 (2007).

  3. 3.

    Lev, M. Anatomic basis for atrioventricular block. Am. J. Med. 37, 742–748 (1964).

  4. 4.

    Walsh, E. P. Interventional electrophysiology in patients with congenital heart disease. Circulation 115, 3224–3234 (2007).

  5. 5.

    Basso, C., Corrado, D., Rossi, L. & Thiene, G. Ventricular preexcitation in children and young adults: atrial myocarditis as a possible trigger of sudden death. Circulation 103, 269–275 (2001).

  6. 6.

    Boink, G. J., Christoffels, V. M., Robinson, R. B. & Tan, H. L. The past, present, and future of pacemaker therapies. Trends Cardiovasc. Med. 25, 661–673 (2015).

  7. 7.

    Cingolani, E., Goldhaber, J. I. & Marban, E. Next-generation pacemakers: from small devices to biological pacemakers. Nat. Rev. Cardiol. 15, 139–150 (2017).

  8. 8.

    Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).

  9. 9.

    Kapoor, N., Liang, W., Marban, E. & Cho, H. C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2013).

  10. 10.

    Keith, A. & Flack, M. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J. Anat. Physiol. 41, 172–189 (1907).

  11. 11.

    Brown, H. F., DiFrancesco, D. & Noble, S. J. How does adrenaline accelerate the heart? Nature 280, 235–236 (1979).

  12. 12.

    van Mierop, L. H. S. Localization of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am. J. Physiol. 212, 407–415 (1967).

  13. 13.

    Paff, G. H., Boucek, R. J. & Harrell, T. C. Observations on the development of the electrocardiogram. Anat. Rec. 160, 575–582 (1968).

  14. 14.

    Davis, D. L. et al. A GATA6 gene heart-region-specific enhancer provides a novel means to mark and probe a discrete component of the mouse cardiac conduction system. Mech. Dev. 108, 105–119 (2001).

  15. 15.

    Aanhaanen, W. T. et al. The Tbx2 + primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ. Res. 104, 1267–1274 (2009).

  16. 16.

    de la Cruz, M. V. et al. Living morphogenesis of the ventricles and congenital pathology of their component parts. Cardiol. Young 11, 588–600 (2001).

  17. 17.

    Dominguez, J. N., Meilhac, S. M., Bland, Y. S., Buckingham, M. E. & Brown, N. A. Asymmetric fate of the posterior part of the second heart field results in unexpected left/right contributions to both poles of the heart. Circ. Res. 111, 1323–1335 (2012).

  18. 18.

    Jensen, B. et al. Identifying the evolutionary building blocks of the cardiac conduction system. PLoS ONE 7, e44231 (2012).

  19. 19.

    Vicente-Steijn, R. et al. Funny current channel HCN4 delineates the developing cardiac conduction system in chicken heart. Heart Rhythm 8, 1254–1263 (2011).

  20. 20.

    Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017).

  21. 21.

    Ma, L., Lu, M. F., Schwartz, R. J. & Martin, J. F. Bmp2 is essential for cardiac cushion epithelial–mesenchymal transition and myocardial patterning. Development 132, 5601–5611 (2005).

  22. 22.

    Harrelson, Z. et al. Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 131, 5041–5052 (2004).

  23. 23.

    Singh, R. et al. Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cell. Mol. Life Sci. 69, 1377–1389 (2012).

  24. 24.

    Aanhaanen, W. T. et al. Defective Tbx2-dependent patterning of the atrioventricular canal myocardium causes accessory pathway formation in mice. J. Clin. Invest. 121, 534–544 (2011).

  25. 25.

    Bressan, M. et al. Reciprocal myocardial–endocardial interactions pattern the delay in atrioventricular junction conduction. Development 141, 4149–4157 (2014).

  26. 26.

    Lockhart, M. M. et al. Alk3 mediated Bmp signaling controls the contribution of epicardially derived cells to the tissues of the atrioventricular junction. Dev. Biol. 396, 8–18 (2014).

  27. 27.

    Gaussin, V. et al. Alk3/Bmpr1a receptor is required for development of the atrioventricular canal into valves and annulus fibrosus. Circ. Res. 97, 219–226 (2005).

  28. 28.

    Stroud, D. M. et al. Abnormal conduction and morphology in the atrioventricular node of mice with atrioventricular canal-targeted deletion of Alk3/Bmpr1a receptor. Circulation 116, 2535–2543 (2007).

  29. 29.

    Frank, D. U. et al. Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc. Natl Acad. Sci. USA 109, E154–E163 (2011).

  30. 30.

    Horsthuis, T. et al. Gene expression profiling of the forming atrioventricular node using a novel Tbx3-based node-specific transgenic reporter. Circ. Res. 105, 61–69 (2009).

  31. 31.

    Bakker, M. L. et al. T-Box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc. Res. 94, 439–449 (2012).

  32. 32.

    Boogerd, K. J. et al. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of connexin43. Cardiovasc. Res. 78, 485–493 (2008).

  33. 33.

    Luna-Zurita, L. et al. Complex interdependence regulates heterotypic transcription factor distribution and coordinates cardiogenesis. Cell 164, 999–1014 (2016).

  34. 34.

    Moskowitz, I. P. G. et al. The T-box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 131, 4107–4116 (2004).

  35. 35.

    Munshi, N. V. et al. Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. Development 136, 2665–2674 (2009).

  36. 36.

    Harris, J. P. et al. MyoR modulates cardiac conduction by repressing Gata4. Mol. Cell. Biol. 35, 649–661 (2015).

  37. 37.

    Liu, F. et al. GATA-binding factor 6 contributes to atrioventricular node development and function. Circ. Cardiovasc. Genet. 8, 284–293 (2015).

  38. 38.

    Singh, R. et al. Tbx20 interacts with SMADs to confine Tbx2 expression to the atrioventricular canal. Circ. Res. 105, 442–452 (2009).

  39. 39.

    Rutenberg, J. B. et al. Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors. Development 133, 4381–4390 (2006).

  40. 40.

    Kokubo, H., Tomita-Miyagawa, S., Hamada, Y. & Saga, Y. Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development 134, 747–755 (2007).

  41. 41.

    Rentschler, S. et al. Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J. Clin. Invest. 121, 525–533 (2011).

  42. 42.

    Stefanovic, S. et al. GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. Nat. Commun. 5, 3680 (2014).

  43. 43.

    Verhoeven, M. C., Haase, C., Christoffels, V. M., Weidinger, G. & Bakkers, J. Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. Birth Defects Res. A Clin. Mol. Teratol. 91, 435–440 (2011).

  44. 44.

    Gillers, B. S. et al. Canonical wnt signaling regulates atrioventricular junction programming and electrophysiological properties. Circ. Res. 116, 398–406 (2015).

  45. 45.

    Tyser, R. C. et al. Calcium handling precedes cardiac differentiation to initiate the first heartbeat. eLife 5, e17113 (2016).

  46. 46.

    Kamino, K., Hirota, A. & Fujii, S. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature 290, 595–597 (1981).

  47. 47.

    Bressan, M., Liu, G. & Mikawa, T. Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 340, 744–748 (2013).

  48. 48.

    Mommersteeg, M. T. et al. The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc. Res. 87, 92–101 (2010).

  49. 49.

    Stieber, J. et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc. Natl Acad. Sci. USA 100, 15235–15240 (2003).

  50. 50.

    Garcia-Frigola, C., Shi, Y. & Evans, S. M. Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr. Patterns 3, 777–783 (2003).

  51. 51.

    Stanley, E. G. et al. Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3′UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int. J. Dev. Biol. 46, 431–439 (2002).

  52. 52.

    Christoffels, V. M. et al. Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ. Res. 98, 1555–1563 (2006).

  53. 53.

    Mommersteeg, M. T. M. et al. Molecular pathway for the localized formation of the sinoatrial node. Circ. Res. 100, 354–362 (2007).

  54. 54.

    Wiese, C. et al. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ. Res. 104, 388–397 (2009).

  55. 55.

    Mommersteeg, M. T. M. et al. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ. Res. 101, 902–909 (2007).

  56. 56.

    Wang, J. et al. Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification. Proc. Natl Acad. Sci. USA 107, 9753–9758 (2010).

  57. 57.

    Wang, J. et al. Pitx2-microRNA pathway that delimits sinoatrial node development and inhibits predisposition to atrial fibrillation. Proc. Natl Acad. Sci. USA 111, 9181–9186 (2014).

  58. 58.

    Espinoza-Lewis, R. A. et al. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev. Biol. 327, 378–385 (2009).

  59. 59.

    Espinoza-Lewis, R. A. et al. Ectopic expression of Nkx2.5 suppresses the formation of the sinoatrial node in mice. Dev. Biol. 356, 359–369 (2011).

  60. 60.

    Ye, W. et al. A common Shox2–Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node. Development 142, 2521–2532 (2015).

  61. 61.

    Mori, A. D. et al. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Dev. Biol. 297, 566–586 (2006).

  62. 62.

    Puskaric, S. et al. Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart. Hum. Mol. Genet. 19, 4625–4633 (2010).

  63. 63.

    Blaschke, R. J. et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 115, 1830–1838 (2007).

  64. 64.

    Hoffmann, S. et al. Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia. Bas. Res. Cardiol. 108, 339 (2013).

  65. 65.

    Tessadori, F. et al. Identification and functional characterization of cardiac pacemaker cells in zebrafish. PLoS ONE 7, e47644 (2012).

  66. 66.

    Vedantham, V., Galang, G., Evangelista, M., Deo, R. C. & Srivastava, D. RNA sequencing of mouse sinoatrial node reveals an upstream regulatory role for Islet-1 in cardiac pacemaker cells. Circ. Res. 116, 797–803 (2015).

  67. 67.

    Sun, Y. et al. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev. Biol. 304, 286–296 (2007).

  68. 68.

    Weinberger, F. et al. Localization of Islet-1-positive cells in the healthy and infarcted adult murine heart. Circ. Res. 110, 1303–1310 (2012).

  69. 69.

    Liang, X. et al. Transcription factor ISL1 is essential for pacemaker development and function. J. Clin. Invest. 125, 3256–3268 (2015).

  70. 70.

    Hoogaars, W. M. et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 21, 1098–1112 (2007).

  71. 71.

    Wu, M. et al. Baf250a orchestrates an epigenetic pathway to repress the Nkx2.5-directed contractile cardiomyocyte program in the sinoatrial node. Cell Res. 24, 1201–1213 (2014).

  72. 72.

    Norden, J., Greulich, F., Rudat, C., Taketo, M. M. & Kispert, A. Wnt/β-catenin signaling maintains the mesenchymal precursor pool for murine sinus horn formation. Circ. Res. 109, e42–e50 (2011).

  73. 73.

    Jensen, B. et al. Specialized impulse conduction pathway in the alligator heart. eLife 7, e32120 (2018).

  74. 74.

    Wessels, A. et al. Spatial distribution of “tissue-specific” antigens in the developing human heart and skeletal muscle: III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system. Anat. Rec. 232, 97–111 (1992).

  75. 75.

    Hoogaars, W. M. H. et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc. Res. 62, 489–499 (2004).

  76. 76.

    Verzi, M. P., McCulley, D. J., De, V. S., Dodou, E. & Black, B. L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev. Biol. 287, 134–145 (2005).

  77. 77.

    Aanhaanen, W. T. et al. Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ. Res. 107, 728–736 (2010).

  78. 78.

    Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K. & Bruneau, B. G. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife 3, e03848 (2014).

  79. 79.

    Davis, L. M., Rodefeld, M. E., Green, K., Beyer, E. C. & Saffitz, J. E. Gap junction protein phenotypes of the human heart and conduction system. J. Cardiovasc. Electrophysiol. 6, 813–822 (1995).

  80. 80.

    Yoo, S. et al. Localization of Na+ channel isoforms at the atrioventricular junction and atrioventricular node in the rat. Circulation 114, 1360–1371 (2006).

  81. 81.

    Arnolds, D. E. et al. TBX5 drives Scn5a expression to regulate cardiac conduction system function. J. Clin. Invest. 122, 2509–2518 (2012).

  82. 82.

    Remme, C. A. et al. The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Bas. Res. Cardiol. 104, 511–522 (2009).

  83. 83.

    Moskowitz, I. P. et al. A molecular pathway including Id2. Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 129, 1365–1376 (2007).

  84. 84.

    Ismat, F. A. et al. Homeobox protein Hop functions in the adult cardiac conduction system. Circ. Res. 96, 898–903 (2005).

  85. 85.

    Zhang, S. S. et al. Iroquois homeobox gene 3, establishes fast conduction in the cardiac His–Purkinje network. Proc. Natl Acad. Sci. USA 108, 13576–13581 (2011).

  86. 86.

    Nguyen-Tran, V. T. et al. A novel genetic pathway for sudden cardiac death via defects in the transition between ventricular and conduction system cell lineages. Cell 102, 671–682 (2000).

  87. 87.

    Hewett, K. W. et al. Knockout of the neural and heart expressed gene HF-1b results in apical deficits of ventricular structure and activation. Cardiovasc. Res. 67, 548–560 (2005).

  88. 88.

    Shekhar, A. et al. Transcription factor ETV1 is essential for rapid conduction in the heart. J. Clin. Invest. 126, 4444–4459 (2016).

  89. 89.

    Risebro, C. A. et al. Epistatic rescue of Nkx2.5 adult cardiac conduction disease phenotypes by Prospero-related homeobox protein 1 and HDAC3. Circ. Res. 111, e19–e31 (2012).

  90. 90.

    Bruneau, B. G. et al. A murine model of Holt–Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721 (2001).

  91. 91.

    van den Boogaard, M. et al. Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J. Clin. Invest. 122, 2519–2530 (2012).

  92. 92.

    Bakker, M. L. et al. Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ. Res. 102, 1340–1349 (2008).

  93. 93.

    Nadadur, R. D. et al. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm. Sci. Transl. Med. 8, 354ra115 (2016).

  94. 94.

    van den Boogaard, M. et al. A common genetic variant within SCN10A modulates cardiac SCN5A expression. J. Clin. Invest. 124, 1844–1852 (2014).

  95. 95.

    van Weerd, J. H. et al. A large permissive regulatory domain exclusively conrols Tbx3 expression in the cardiac conduction system. Circ. Res. 115, 432–441 (2014).

  96. 96.

    Liang, X. et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ. Res. 113, 399–407 (2013).

  97. 97.

    Pallante, B. A. et al. Contactin-2 expression in the cardiac Purkinje fiber network. Circ. Arrhythm. Electrophysiol. 3, 186–194 (2010).

  98. 98.

    Gorza, L. & Vitadello, M. Distribution of conduction system fibres in the developing and adult rabbit heart, revealed by an antineurofilament antibody. Circ. Res. 65, 360–369 (1989).

  99. 99.

    Bhattacharyya, S., Bhakta, M. & Munshi, N. V. Phenotypically silent Cre recombination within the postnatal ventricular conduction system. PLoS ONE 12, e0174517 (2017).

  100. 100.

    Christoffels, V. M., Keijser, A. G. M., Houweling, A. C., Clout, D. E. W. & Moorman, A. F. M. Patterning the embryonic heart: Identification of five mouse Iroquois homeobox genes in the developing heart. Dev. Biol. 224, 263–274 (2000).

  101. 101.

    Christoffels, V. M. et al. Chamber formation and morphogenesis in the developing mammalian heart. Dev. Biol. 223, 266–278 (2000).

  102. 102.

    Delorme, B. et al. Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ. Res. 81, 423–437 (1997).

  103. 103.

    Miquerol, L. et al. Biphasic development of the mammalian ventricular conduction system. Circ. Res. 107, 153–161 (2010).

  104. 104.

    Chen, H. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131, 2219–2231 (2004).

  105. 105.

    Grego-Bessa, J. et al. Notch signaling is essential for ventricular chamber development. Dev. Cell 12, 415–429 (2007).

  106. 106.

    Luxan, G., D’Amato, G., MacGrogan, D. & de la Pompa, J. L. Endocardial Notch signaling in cardiac development and disease. Circ. Res. 118, e1–e18 (2016).

  107. 107.

    Hua, L. L. et al. Specification of the mouse cardiac conduction system in the absence of endothelin signaling. Dev. Biol. 393, 245–254 (2014).

  108. 108.

    Hall, C. E. et al. Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development 131, 581–592 (2004).

  109. 109.

    Rentschler, S. et al. Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation 126, 1058–1066 (2012).

  110. 110.

    Rentschler, S. et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development 128, 1785–1792 (2001).

  111. 111.

    Lai, D. et al. Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ. Res. 107, 715–727 (2010).

  112. 112.

    Rentschler, S. et al. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc. Natl Acad. Sci. USA 99, 10464–10469 (2002).

  113. 113.

    Meysen, S. et al. Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Dev. Biol. 303, 740–753 (2007).

  114. 114.

    Christoffels, V. M., Hoogaars, W. M. H. & Moorman, A. F. M. in Heart Development and Regeneration (eds Rosenthal, N. & Harvey, R. P.) 171–194 (Elsevier, 2010).

  115. 115.

    Koizumi, A. et al. Genetic defects in a His–Purkinje system transcription factor. IRX3, cause lethal cardiac arrhythmias. Eur. Heart J. 37, 1469–1475 (2016).

  116. 116.

    Costantini, D. L. et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123, 347–358 (2005).

  117. 117.

    Gaborit, N. et al. Cooperative and antagonistic roles for Irx3 and Irx5 in cardiac morphogenesis and postnatal physiology. Development 139, 4007–4019 (2012).

  118. 118.

    Sucov, H. M., Gu, Y., Thomas, S., Li, P. & Pashmforoush, M. Epicardial control of myocardial proliferation and morphogenesis. Pediatr. Cardiol. 30, 617–625 (2009).

  119. 119.

    Koibuchi, N. & Chin, M. T. CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ. Res. 100, 850–855 (2007).

  120. 120.

    Xin, M. et al. Essential roles of the bHLH transcription factor Hrt2 in repression of atrial gene expression and maintenance of postnatal cardiac function. Proc. Natl Acad. Sci. USA 104, 7975–7980 (2007).

  121. 121.

    Bezzina, C. R. et al. Common variants at SCN5A–SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45, 1044–1049 (2013).

  122. 122.

    Veerman, C. C. et al. The Brugada syndrome susceptibility gene HEY2 modulates cardiac transmural ion channel patterning and electrical heterogeneity. Circ. Res. 121, 537–548 (2017).

  123. 123.

    Kim, K. H. et al. Irx3 is required for postnatal maturation of the mouse ventricular conduction system. Sci. Rep. 6, 19197 (2016).

  124. 124.

    Barbuti, A. & Robinson, R. B. Stem cell-derived nodal-like cardiomyocytes as a novel pharmacologic tool: insights from sinoatrial node development and function. Pharmacol. Rev. 67, 368–388 (2015).

  125. 125.

    Boink, G. J. & Robinson, R. B. Gene therapy for restoring heart rhythm. J. Cardiovasc. Pharmacol. Ther. 19, 426–438 (2014).

  126. 126.

    Mummery, C. L. et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, 344–358 (2012).

  127. 127.

    Mandel, Y. et al. Human embryonic and induced pluripotent stem cell-derived cardiomyocytes exhibit beat rate variability and power-law behavior. Circulation 125, 883–893 (2012).

  128. 128.

    Ben-Ari, M. et al. From beat rate variability in induced pluripotent stem cell-derived pacemaker cells to heart rate variability in human subjects. Heart Rhythm 11, 1808–1818 (2014).

  129. 129.

    Jung, J. J. et al. Programming and isolation of highly pure physiologically and pharmacologically functional sinus-nodal bodies from pluripotent stem cells. Stem Cell Rep. 2, 592–605 (2014).

  130. 130.

    Rimmbach, C., Jung, J. J. & David, R. Generation of murine cardiac pacemaker cell aggregates based on ES-cell-programming in combination with Myh6-promoter-selection. J. Vis. Exp. 17, e52465 (2015).

  131. 131.

    Hashem, S. I. & Claycomb, W. C. Genetic isolation of stem cell-derived pacemaker-nodal cardiac myocytes. Mol. Cell. Biochem. 383, 161–171 (2013).

  132. 132.

    Ionta, V. et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Rep. 4, 129–142 (2015).

  133. 133.

    Scavone, A. et al. Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells. Circ. Res. 113, 389–398 (2013).

  134. 134.

    Hoffmann, S. et al. Comparative expression analysis of Shox2-deficient embryonic stem cell-derived sinoatrial node-like cells. Stem Cell Res. 21, 51–57 (2017).

  135. 135.

    Birket, M. J. et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat. Biotechnol. 33, 970–979 (2015).

  136. 136.

    Dubois, N. C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011–1018 (2011).

  137. 137.

    Tsai, S. Y. et al. Efficient generation of cardiac Purkinje cells from ESCs by activating cAMP signaling. Stem Cell Rep. 4, 1089–1102 (2015).

  138. 138.

    Hu, Y. F., Dawkins, J. F., Cho, H. C., Marban, E. & Cingolani, E. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl. Med. 6, 245ra94 (2014).

  139. 139.

    Greulich, F., Rudat, C., Farin, H. F., Christoffels, V. M. & Kispert, A. Lack of genetic interaction between Tbx18 and Tbx2/Tbx20 in mouse epicardial development. PLoS ONE 11, e0156787 (2016).

  140. 140.

    Farin, H. F. et al. Transcriptional repression by the T-box proteins Tbx18 and Tbx15 depends on Groucho corepressors. J. Biol. Chem. 282, 25748–25759 (2007).

  141. 141.

    Boink, G. J. et al. Ca2+-stimulated adenylyl cyclase AC1 generates efficient biological pacing as single gene therapy and in combination with HCN2. Circulation 126, 528–536 (2012).

  142. 142.

    Boink, G. J. et al. HCN2/SkM1 gene transfer into canine left bundle branch induces stable, autonomically responsive biological pacing at physiological heart rates. J. Am. Coll. Cardiol. 61, 1192–1201 (2013).

  143. 143.

    Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22, 1282–1289 (2004).

  144. 144.

    Chauveau, S. et al. Induced pluripotent stem cell-derived cardiomyocytes provide in vivo biological pacemaker function. Circ. Arrhythm. Electrophysiol. 10, e004508 (2017).

  145. 145.

    de Haan, R. L. Differentiation of the atrioventricular conducting system of the heart. Circulation 24, 458–470 (1961).

  146. 146.

    Canale, E. D., Campbell, G. R., Smolich, J. J. & Campbell, J. H. Cardiac Muscle (Springer, 1986).

  147. 147.

    Virágh, S. & Challice, C. E. The development of the conduction system in the mouse embryo heart. III. The development of sinus muscle and sinoatrial node. Dev. Biol. 80, 28–45 (1980).

  148. 148.

    Virágh, S. & Challice, C. E. The development of the conduction system in the mouse embryo heart. IV. Differentiation of the atrioventricular conduction system. Dev. Biol. 89, 25–40 (1982).

  149. 149.

    Evans, S. M., Yelon, D., Conlon, F. L. & Kirby, M. L. Myocardial lineage development. Circ. Res. 107, 1428–1444 (2010).

  150. 150.

    Jongbloed, M. R. et al. Normal and abnormal development of the cardiac conduction system; implications for conduction and rhythm disorders in the child and adult. Differentiation 84, 131–148 (2012).

  151. 151.

    Munshi, N. V. Gene regulatory networks in cardiac conduction system development. Circ. Res. 110, 1525–1537 (2012).

  152. 152.

    van Weerd, J. H. & Christoffels, V. M. The formation and function of the cardiac conduction system. Development 143, 197–210 (2016).

  153. 153.

    Park, D. S. & Fishman, G. I. Development and function of the cardiac conduction system in health and disease. J. Cardiovasc. Dev. Dis. 4, 7 (2017).

  154. 154.

    Buckingham, M., Meilhac, S. & Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6, 826–837 (2005).

  155. 155.

    van den Berg, G. et al. A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ. Res. 104, 179–188 (2009).

  156. 156.

    Jay, P. Y. et al. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J. Clin. Invest. 113, 1130–1137 (2004).

  157. 157.

    Pashmforoush, M. et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117, 373–386 (2004).

  158. 158.

    Takeda, M. et al. Slow progressive conduction and contraction defects in loss of Nkx2-5 mice after cardiomyocyte terminal differentiation. Lab. Invest. 89, 983–993 (2009).

  159. 159.

    Benson, D. W. et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104, 1567–1573 (1999).

  160. 160.

    Schott, J.-J. et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281, 108–111 (1998).

  161. 161.

    Xu, J. H. et al. Prevalence and spectrum of NKX2-5 mutations associated with sporadic adult-onset dilated cardiomyopathy. Int. Heart J. 58, 521–529 (2017).

  162. 162.

    Yu, H. et al. Mutational spectrum of the NKX2-5 gene in patients with lone atrial fibrillation. Int. J. Med. Sci. 11, 554–563 (2014).

  163. 163.

    Yuan, F. et al. A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. Int. J. Mol. Med. 35, 478–486 (2015).

  164. 164.

    den Hoed, M. et al. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45, 621–631 (2013).

  165. 165.

    Pfeufer, A. et al. Genome-wide association study of PR interval. Nat. Genet. 42, 153–159 (2010).

  166. 166.

    Linden, H., Williams, R., King, J., Blair, E. & Kini, U. Ulnar mammary syndrome and TBX3: expanding the phenotype. Am. J. Med. Genet. A 149A, 2809–2812 (2009).

  167. 167.

    Sano, M. et al. Genome-wide association study of absolute QRS voltage identifies common variants of TBX3 as genetic determinants of left ventricular mass in a healthy Japanese population. PLoS ONE 11, e0155550 (2016).

  168. 168.

    Holm, H. et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat. Genet. 42, 177–122 (2010).

  169. 169.

    van der Harst, P. et al. 52 genetic loci influencing myocardial mass. J. Am. Coll. Cardiol. 68, 1435–1448 (2016).

  170. 170.

    Basson, C. T. et al. Mutations in human TBX5 (corrected) cause limb and cardiac malformation in Holt–Oram syndrome. Nat. Genet. 15, 30–35 (1997).

  171. 171.

    Sotoodehnia, N. et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat. Genet. 42, 1068–1076 (2010).

  172. 172.

    Lalani, S. R. et al. 20p12.3 microdeletion predisposes to Wolff–Parkinson–White syndrome with variable neurocognitive deficits. J. Med. Genet. 46, 168–175 (2009).

  173. 173.

    Le, G. L. et al. A 8.26Mb deletion in 6q16 and a 4.95Mb deletion in 20p12 including JAG1 and BMP2 in a patient with Alagille syndrome and Wolff–Parkinson–White syndrome. Eur. J. Med. Genet. 51, 651–657 (2008).

  174. 174.

    Milan, D. J., Giokas, A. C., Serluca, F. C., Peterson, R. T. & MacRae, C. A. Notch1b and neuregulin are required for specification of central cardiac conduction tissue. Development 133, 1125–1132 (2006).

  175. 175.

    Liu, G. X., Remme, C. A., Boukens, B. J., Belardinelli, L. & Rajamani, S. Overexpression of SCN5A in mouse heart mimics human syndrome of enhanced atrioventricular nodal conduction. Heart Rhythm 12, 1036–1045 (2015).

Download references


V.M.C. is supported by Fondation Leducq grant 14CVD01, Netherlands Heart Foundation grant COBRA3, and CVON grant ConcorGenes. G.J.J.B. is supported by personal grants from the Netherlands Foundation for Scientific Research (ZonMW Veni 016.156.162), the Dutch Heart Foundation (Dr Dekker grant no. 2014T065), and the European Research Council (ERC; Starting Grant no. 714866).

Author information


  1. Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, Netherlands

    • Vincent W. W. van Eif
    • , Harsha D. Devalla
    • , Gerard J. J. Boink
    •  & Vincent M. Christoffels
  2. Department of Cardiology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, Netherlands

    • Harsha D. Devalla
    •  & Gerard J. J. Boink


  1. Search for Vincent W. W. van Eif in:

  2. Search for Harsha D. Devalla in:

  3. Search for Gerard J. J. Boink in:

  4. Search for Vincent M. Christoffels in:


All authors contributed substantially to discussions of the article content, writing the manuscript, and review or editing of the manuscript before submission.

Competing interests

G.J.J.B. declares that he has an ownership interest in PacingCure B. V. The other authors declare no competing interests.

Corresponding author

Correspondence to Vincent M. Christoffels.

Glossary terms


Despite great inconsistency in the literature, in this article we have used the currently accepted nomenclature: thus, NKX2.5 is the protein encoded by the Nkx2-5 gene, with capitalization indicating human (all caps) or mouse (first letter capitalized only) gene names.

MinK–lacZ mice

The MinK gene (now named Kcne1) encodes potassium voltage-gated channel subfamily E member 1, also known as MINK. MINK-deficient mice in which the bacterial lacZ gene has been substituted for the MINK coding region express β-galactosidase under the control of Kcne1 regulatory elements. Thus, β-galactosidase staining in postnatal Kcne1−/− hearts is highly restricted to the sinoatrial node, caudal atrial septum, and proximal cardiac conducting system.


The target of a monoclonal antibody (and also the name of the monoclonal antibody itself) initially identified by binding to an extract from the chick ganglion nodosum and later found to bind to the cardiomyocyte subpopulation that develops into the ventricular conduction system, specifically the atrioventricular bundle and bundle branches.


An intronic regulatory element from the mouse Mef2c gene (encoding myocyte enhancer factor 2C) identified in transgenic mice. When used to drive either lacZ or cre expression, this enhancer was found to be active specifically in the anterior second heart field (AHF) during early cardiogenesis and was termed the Mef2c–AHF-enhancer.

MYH6-promoter-based antibiotic selection

In this technique, a plasmid containing an antibiotic selection cassette (an antibiotic resistance gene controlled by the MYH6 promoter) is inserted into the stem cell population of interest. Administration of this antibiotic during T-box transcription factor TBX3-induced cardiac differentiation results in enrichment of pacemaker-like cells.

About this article

Publication history