Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interventions to promote cardiometabolic health and slow cardiovascular ageing

Abstract

Cardiovascular ageing and the atherosclerotic process begin very early in life, most likely in utero. They progress over decades of exposure to suboptimal or abnormal metabolic and hormonal risk factors, eventually culminating in very common, costly, and mostly preventable target-organ pathologies, including coronary heart disease, stroke, heart failure, aortic aneurysm, peripheral artery disease, and vascular dementia. In this Review, we discuss findings from preclinical and clinical studies showing that calorie restriction (CR), intermittent fasting, and adjusted diurnal rhythm of feeding, with adequate intake of specific macronutrients and micronutrients, are powerful interventions not only for the prevention of cardiovascular disease but also for slowing the accumulation of molecular damage leading to cardiometabolic dysfunction. Furthermore, we discuss the mechanisms through which a number of other nondietary interventions, such as regular physical activity, mindfulness-based stress-reduction exercises, and some CR-mimetic drugs that target pro-ageing pathways, can potentiate the beneficial effects of a healthy diet in promoting cardiometabolic health.

Key points

  • Cardiovascular ageing is a biological phenomenon caused by the accumulation over time of damage at the cellular, tissue, and organismal level leading to a progressive decline in function and structure.

  • Unhealthy lifestyle practices (such as poor nutrition, sedentary lifestyle, mental stress, smoking, and pollution) drastically increase the accrual of cellular and tissue damage, leading to cardiovascular disease.

  • Calorie restriction, intermittent fasting, and adjusted diurnal rhythm of feeding are powerful interventions for the prevention of cardiovascular dysfunction and cardiovascular disease.

  • Lowered intake of protein, specific amino acids, and saturated fatty acids (typical of the Mediterranean diet) and nutritional modulation of the gut microbiome can have additional cardioprotective roles.

  • Regular endurance and resistance exercise, mindfulness-based stress reduction programmes, and some calorie-restriction mimetic medications can potentiate the beneficial effects of a healthy diet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unhealthy lifestyles and disease risk.
Fig. 2: Effects of calorie restriction.
Fig. 3: Effects of diet and exercise on cellular damage.
Fig. 4: Calorie restriction, but not endurance exercise, increases maximal lifespan in rats.

Similar content being viewed by others

References

  1. Lavie, C. J., Arena, R., Alpert, M. A., Milani, R. V. & Ventura, H. O. Management of cardiovascular diseases in patients with obesity. Nat. Rev. Cardiol. 15, 45–56 (2018).

    Article  PubMed  Google Scholar 

  2. Fontana, L. & Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106–118 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy lifespan — from yeast to humans. Science 328, 321–326 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ingram, D. K. & de Cabo, R. Calorie restriction in rodents: caveats to consider. Ageing Res. Rev. 39, 15–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ahmet, I., Tae, H. J., de Cabo, R., Lakatta, E. G. & Talan, M. I. Effects of calorie restriction on cardioprotection and cardiovascular health. J. Mol. Cell. Cardiol. 51, 263–271 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Guo, Z. et al. Dietary restriction reduces atherosclerosis and oxidative stress in the aorta of apolipoprotein E-deficient mice. Mech. Ageing Dev. 123, 1121–1131 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Edwards, A. G. et al. Life-long caloric restriction elicits pronounced protection of the aged myocardium: a role for AMPK. Mech. Ageing Dev. 131, 739–742 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Someya, S., Tanokura, M., Weindruch, R., Prolla, T. A. & Yamasoba, T. Effects of caloric restriction on age-related hearing loss in rodents and rhesus monkeys. Curr. Aging Sci. 3, 20–25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yamada, Y. et al. Caloric restriction and healthy life span: frail phenotype of nonhuman primates in the Wisconsin National Primate research center caloric restriction study. J. Gerontol. A Biol. Sci. Med. Sci. 73, 273–278 (2018).

    Article  PubMed  Google Scholar 

  12. Most, J., Tosti, V., Redman, L. M. & Fontana, L. Calorie restriction in humans: an update. Ageing Res. Rev. 39, 36–45 (2017).

    Article  PubMed  Google Scholar 

  13. Fontana, L., Meyer, T. E., Klein, S. & Holloszy, J. O. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc. Natl Acad. Sci. USA 101, 6659–6663 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. Fontana, L. et al. Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. Am. J. Physiol. Endocrinol. Metab. 293, E197–E202 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. Ravussin, E. et al. A 2-Year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1097–1104 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Meyer, T. E. et al. Long-term caloric restriction ameliorates the decline in diastolic function in humans. J. Am. Coll. Cardiol. 47, 398–402 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. Riordan, M. M. et al. The effects of caloric restriction- and exercise-induced weight loss on left ventricular diastolic function. Am. J. Physiol. Heart Circ. Physiol. 294, H1174–H1182 (2008).

    Article  PubMed  CAS  Google Scholar 

  18. Stein, P. K. et al. Caloric restriction may reverse age-related autonomic decline in humans. Aging Cell 11, 644–650 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Meydani, S. N. et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging 8, 1416–1431 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Weiss, E. P. et al. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am. J. Clin. Nutr. 84, 1033–1042 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ruggenenti, P. et al. Renal and systemic effects of calorie restriction in type-2 diabetes patients with abdominal obesity: a randomized controlled trial. Diabetes 66, 75–86 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Hofer, T. et al. Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans. Rejuvenation. Res. 11, 793–799 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Il’yasova, D. et al. Effects of two years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: the CALERIE 2 randomized clinical trial. Aging Cell 17, e12719 (2018).

  24. Mercken, E. M. et al. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell 12, 645–651 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang, L. et al. Long-term calorie restriction enhances cellular quality-control processes in human skeletal muscle. Cell Rep. 14, 422–428 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Griffin, N. W. et al. Gnotobiotic mouse models for identifying consistent effects of different nutritional lifestyles on the gut microbiota of multiple unrelated humans. Cell Host Microbe 21, 84–96 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).

    Article  PubMed  Google Scholar 

  28. Mattson, M. P. et al. Meal frequency and timing in health and disease. Proc. Natl Acad. Sci. USA 111, 16647–16653 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article  PubMed  CAS  Google Scholar 

  30. Rahman, M. et al. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat. Commun. 5, 3944 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Harvie, M. N. et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int. J. Obes. 35, 714–727 (2011).

    Article  CAS  Google Scholar 

  33. Hoddy, K. K. et al. Meal timing during alternate day fasting: impact on body weight and cardiovascular disease risk in obese adults. Obesity 22, 2524–2531 (2014).

    PubMed  CAS  Google Scholar 

  34. Liu, Z. et al. PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep. 7, 1509–1520 (2014).

    Article  PubMed  CAS  Google Scholar 

  35. Jakubowicz, D., Barnea, M., Wainstein, J. & Froy, O. Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome. Clin. Sci. 125, 423–432 (2013).

    Article  PubMed  CAS  Google Scholar 

  36. Simpson, S. J. et al. Dietary protein, aging and nutritional geometry. Ageing Res. Rev. 39, 78–86 (2017).

    Article  PubMed  CAS  Google Scholar 

  37. Yu, D. et al. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. https://doi.org/10.1096/fj.201701211R (2018).

  38. Solon-Biet, S. M. et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 19, 418–430 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Brown-Borg, H. M. & Buffenstein, R. Cutting back on the essentials: can manipulating intake of specific amino acids modulate health and lifespan? Ageing Res. Rev. 39, 87–95 (2017).

    Article  PubMed  CAS  Google Scholar 

  40. Lynch, C. J. & Adams, S. H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10, 723–736 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fontana, L. et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 16, 520–530 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cummings, N. E. et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J. Physiol. 596, 623–645 (2018).

    Article  PubMed  CAS  Google Scholar 

  43. Sargrad, K. R., Homko, C., Mozzoli, M. & Boden, G. Effect of high protein versus high carbohydrate intake on insulin sensitivity, body weight, hemoglobin A1c, and blood pressure in patients with type 2 diabetes mellitus. J. Am. Diet. Assoc. 105, 573–580 (2005).

    Article  PubMed  CAS  Google Scholar 

  44. Hattersley, J. G. et al. Modulation of amino acid metabolic signatures by supplemented isoenergetic diets differing in protein and cereal fiber content. J. Clin. Endocrinol. Metab. 99, E2599–E2609 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Smith, G. I. et al. High protein intake during weight loss therapy eliminates the weight loss-induced improvement in insulin action in postmenopausal women. Cell Rep. 17, 849–861 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Li, Y. et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J. Am. Coll. Cardiol. 66, 1538–1548 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sacks, F. M. et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 136, e1–e23 (2017).

    Article  PubMed  Google Scholar 

  48. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brown, J. M. & Hazen, S. L. Microbial modulation of cardiovascular disease. Nat. Rev. Microbiol. 16, 171–181 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Tosti, V., Bertozzi, B. & Fontana, L. Health benefits of the Mediterranean diet: metabolic and molecular mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 73, 318–326 (2018).

    Article  PubMed  Google Scholar 

  52. Moss, J. W. & Ramji, D. P. Nutraceutical therapies for atherosclerosis. Nat. Rev. Cardiol. 13, 513–532 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. LaRocca, T. J., Martens, C. R. & Seals, D. R. Nutrition and other lifestyle influences on arterial aging. Ageing Res. Rev. 39, 106–119 (2017).

    Article  PubMed  Google Scholar 

  54. Hu, F. B. et al. Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study. BMJ 317, 1341–1345 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jenkins, D. J. et al. Effect of a dietary portfolio of cholesterol-lowering foods given at 2 levels of intensity of dietary advice on serum lipids in hyperlipidemia: a randomized controlled trial. JAMA 306, 831–839 (2011).

    Article  PubMed  CAS  Google Scholar 

  56. Surampudi, P., Enkhmaa, B., Anuurad, E. & Berglund, L. Lipid lowering with soluble dietary fiber. Curr. Atheroscler. Rep. 18, 75 (2016).

    Article  PubMed  CAS  Google Scholar 

  57. Amir Shaghaghi, M., Abumweis, S. S. & Jones, P. J. Cholesterol-lowering efficacy of plant sterols/stanols provided in capsule and tablet formats: results of a systematic review and meta-analysis. J. Acad. Nutr. Diet 113, 1494–1503 (2013).

    Article  PubMed  Google Scholar 

  58. Fitó, M. et al. Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch. Intern. Med. 167, 1195–1203 (2007).

    Article  PubMed  Google Scholar 

  59. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368, 1279–1290 (2013).

    Article  PubMed  CAS  Google Scholar 

  60. Yan, Y. et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38, 1154–1163 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Beauchamp, G. K. et al. Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437, 45–46 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. Hu, F. B. et al. Adiposity as compared with physical activity in predicting mortality among women. N. Engl. J. Med. 351, 2694–2703 (2004).

    Article  PubMed  CAS  Google Scholar 

  63. Blair, S. N. et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 276, 205–210 (1996).

    Article  PubMed  CAS  Google Scholar 

  64. Manson, J. E. et al. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N. Engl. J. Med. 347, 716 (2002).

    Article  PubMed  Google Scholar 

  65. Williams, P. T. Reduced diabetic, hypertensive, and cholesterol medication use with walking. Med. Sci. Sports Exerc. 40, 433 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Biswas, A. et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann. Intern. Med. 162, 123–132 (2015).

    Article  PubMed  Google Scholar 

  67. Holloszy, J. O. Mortality rate and longevity of food-restricted exercising male rats: a reevaluation. J. Appl. Physiol. 82, 399–403 (1997).

    Article  PubMed  CAS  Google Scholar 

  68. Ross, R. et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men: a randomized, controlled trial. Ann. Intern. Med. 133, 92–103 (2000).

    Article  PubMed  CAS  Google Scholar 

  69. Holloszy, J. O. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr. Physiol. 1, 921–940 (2011).

    PubMed  Google Scholar 

  70. Dengel, D. R., Pratley, R. E., Hagberg, J. M., Rogus, E. M. & Goldberg, A. P. Distinct effects of aerobic exercise training & weight loss on glucose homeostasis in obese sedentary men. J. Appl. Physiol. 81, 318–325 (1996).

    Article  PubMed  CAS  Google Scholar 

  71. Weiss, E. P. et al. Washington University School of Medicine CALERIE Group. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am. J. Clin. Nutr. 84, 1033–1042 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Holloszy, J. O., Skinner, J. S., Toro, G. & Cureton, T. K. Effects of a six month program of endurance exercise on the serum lipids of middle-aged men. Am. J. Cardiol. 14, 753–760 (1964).

    Article  PubMed  CAS  Google Scholar 

  73. Gyntelberg, F. et al. Plasma triglyceride lowering by exercise despite increased food intake in patients with type IV hyperlipoproteinemia. J. Clin. Nutr. 30, 716–720 (1977).

    Article  CAS  Google Scholar 

  74. Greiwe, J. S., Holloszy, J. O. & Semenkovich, C. F. Exercise induces lipoprotein lipase and GLUT-4 protein in muscle independent of adrenergic-receptor signaling. J. Appl. Physiol. 89, 176–181 (2000).

    Article  PubMed  CAS  Google Scholar 

  75. Stefanick, M. L. et al. Effects of diet and exercise in men and postmenopausal women with low levels of HDL cholesterol and high levels of LDL cholesterol. N. Eng. J. Med. 339, 12–20 (1998).

    Article  CAS  Google Scholar 

  76. Dengel, D. R. et al. Improvements in blood pressure, glucose metabolism, and lipoprotein lipids after aerobic exercise plus weight loss in obese, hypertensive middle-aged men. Metabolism 47, 1075 (1998).

    Article  PubMed  CAS  Google Scholar 

  77. Wilmore, J. H. et al. Heart rate and blood pressure changes with endurance training: the heritage family study. Med. Sci. Sports Exerc. 33, 107 (2001).

    Article  PubMed  CAS  Google Scholar 

  78. Vukovich, M. D. et al. Changes in insulin action and GLUT-4 with 6 days of inactivity in endurance runners. J. Appl. Physiol. 80, 240–244 (1996).

    Article  PubMed  CAS  Google Scholar 

  79. Nowak, K. L., Rossman, M. J., Chonchol, M. & Seals, D. R. Strategies for achieving healthy vascular aging. Hypertension 71, 389–402 (2018).

    Article  PubMed  CAS  Google Scholar 

  80. Ashor, A. W. et al. Exercise modalities and endothelial function: a systematic review and dose-response meta-analysis of randomized controlled trials. Sports Med. 45, 279–296 (2015).

    Article  PubMed  Google Scholar 

  81. Hambrecht, R. et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N. Engl. J. Med. 342, 454–460 (2000).

    Article  PubMed  CAS  Google Scholar 

  82. Laughlin, M. H., Bowles, D. K. & Duncker, D. J. The coronary circulation in exercise training. Am. J. Physiol. Heart Circ. Physiol. 302, H10–H23 (2012).

    Article  PubMed  CAS  Google Scholar 

  83. Jakovljevic, D. G. Physical activity and cardiovascular aging: physiological and molecular insights. Exp. Gerontol. https://doi.org/10.1016/j.exger.2017.05.016 (2017).

  84. Santos-Parker, J. R., LaRocca, T. J. & Seals, D. R. Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv. Physiol. Educ. 38, 296–307 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ashor, A. W., Lara, J., Siervo, M., Celis-Morales, C. & Mathers, J. C. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 9, e110034 (2014).

    Article  CAS  Google Scholar 

  86. Safar, M. E. Arterial stiffness as a risk factor for clinical hypertension. Nat. Rev. Cardiol. 15, 97–105 (2018).

    Article  PubMed  Google Scholar 

  87. Seals, D. R., Kaplon, R. E., Gioscia-Ryan, R. A. & LaRocca, T. J. You’re only as old as your arteries: translational strategies for preserving vascular endothelial function with aging. Physiology 29, 250–264 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Walker, A. E., Kaplon, R. E., Pierce, G. L., Nowlan, M. J. & Seals, D. R. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB. Clin. Sci. 127, 645–654 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Gaudreault, V. et al. Exercise-induced exaggerated blood pressure response in men with the metabolic syndrome: the role of the autonomous nervous system. Blood Press. Monit. 18, 252–258 (2013).

    Article  PubMed  Google Scholar 

  90. Williams, M. A. et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 116, 572–584 (2007).

    Article  PubMed  Google Scholar 

  91. Villareal, D. T. et al. Aerobic or resistance exercise, or both, in dieting obese older adults. N. Engl. J. Med. 376, 1943–1955 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sparks, L. M. et al. Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes. J. Clin. Endocrinol. Metab. 98, 1694–1702 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Poehlman, E. T., Dvorak, R. V., DeNino, W. F., Brochu, M. & Ades, P. A. Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: a controlled randomized trial. J. Clin. Endocrinol. Metab. 85, 2463–2468 (2000).

    PubMed  CAS  Google Scholar 

  94. Sigal, R. J. et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann. Intern. Med. 147, 357–369 (2007).

    Article  PubMed  Google Scholar 

  95. Deldicque, L. et al. Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle. J. Appl. Physiol. 104, 371–378 (2008).

    Article  PubMed  CAS  Google Scholar 

  96. Cauza, E. et al. The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch. Phys. Med. Rehabil. 86, 1527–1533 (2005).

    Article  PubMed  Google Scholar 

  97. Wallace, M. B. et al. Effects of cross-training on markers of insulin resistance/hyperinsulinemia. Med. Sci. Sports Exerc. 29, 1170 (1997).

    Article  PubMed  CAS  Google Scholar 

  98. Grøntved, A. et al. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch. Intern. Med. 172, 1306 (2012).

    Article  PubMed  Google Scholar 

  99. Jefferson, M. E. et al. Effects of resistance training with and without caloric restriction on arterial stiffness in overweight and obese older adults. Am. J. Hypertens. 29, 494–500 (2016).

    Article  PubMed  Google Scholar 

  100. Spence, A. L., Carter, H. H., Naylor, L. H. & Green, D. J. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans. J. Physiol. 591, 1265–1275 (2013).

    Article  PubMed  Google Scholar 

  101. Miyachi, M. et al. Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation 110, 2858–2863 (2004).

    Article  PubMed  Google Scholar 

  102. Kivimäki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).

    Article  PubMed  CAS  Google Scholar 

  103. Carney, R. M. & Freedland, K. E. Depression and coronary heart disease. Nat. Rev. Cardiol. 14, 145–155 (2017).

    Article  PubMed  Google Scholar 

  104. Lampert, R. Mental stress and ventricular arrhythmias. Curr. Cardiol. Rep. 18, 118 (2016).

    Article  PubMed  Google Scholar 

  105. Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364, 937–952 (2004).

    Article  PubMed  Google Scholar 

  106. Nicholson, A., Kuper, H. & Hemingway, H. Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. Eur. Heart J. 27, 2763–2774 (2006).

    Article  PubMed  Google Scholar 

  107. Chrousos, G. P. & Gold, P. W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267, 1244–1252 (1992).

    Article  PubMed  CAS  Google Scholar 

  108. Raison, C. L., Capuron, L. & Miller, A. H. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 27, 24–31 (2006).

    Article  PubMed  CAS  Google Scholar 

  109. Esler, M. et al. Overflow of catecholamine neurotransmitters to the circulation: source, fateand functions. Physiol. Rev. 70, 963–985 (1990).

    Article  PubMed  CAS  Google Scholar 

  110. Rogers, K. M., Bonar, C. A., Estrella, J. L. & Yang, S. Inhibitory effect of glucocorticoid on coronary artery endothelial function. Am. J. Physiol. Heart Circ. Physiol. 283, H1922–H1928 (2002).

    Article  PubMed  CAS  Google Scholar 

  111. Esler, M. et al. Chronic mental stress is a causal mechanism in essential hypertension. Clin. Exp. Pharm. Physiol. 35, 498–502 (2008).

    Article  CAS  Google Scholar 

  112. Pizzi, C. et al. Effects of selective serotonin reuptake inhibitor therapy on endothelial function and inflammatory markers in patients with coronary heart disease. Clin. Pharmacol. Ther. 86, 527–532 (2009).

    Article  PubMed  CAS  Google Scholar 

  113. Crestani, C. C. Emotional stress and cardiovascular complications in animal models: a review of the influence of stress type. Front. Physiol. 7, 251 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hofmann, S. G. & Gómez, A. F. Mindfulness-based interventions for anxiety and depression. Psychiatr. Clin. North Am. 40, 739–749 (2017).

    Article  PubMed  Google Scholar 

  115. Tang, Y. Y. et al. Short-term meditation training improves attention and self-regulation. Proc. Natl Acad. Sci. USA 104, 17152–17156 (2007).

    Article  PubMed  Google Scholar 

  116. Bernardi, L. et al. Slow breathing reduces chemoreflex response to hypoxia and hypercapnia, and increases baroreflex sensitivity. J. Hypertens. 19, 2221–2229 (2001).

    Article  PubMed  CAS  Google Scholar 

  117. Joseph, C. N. et al. Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension 46, 714–718 (2005).

    Article  PubMed  CAS  Google Scholar 

  118. Bernardi, L. et al. Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation 105, 143–145 (2002).

    Article  PubMed  Google Scholar 

  119. La Rovere, M. T., Bigger, Jr, J. T., Marcus, F. I., Mortara, A. & Schwartz, P. J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351, 478–484 (1998).

    Article  PubMed  Google Scholar 

  120. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    Article  PubMed  CAS  Google Scholar 

  121. Koopman, F. A. et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 113, 8284–8289 (2016).

    Article  PubMed  CAS  Google Scholar 

  122. Bonaz, B. et al. Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterol. Motil. 28, 948–953 (2016).

    Article  PubMed  CAS  Google Scholar 

  123. Miller, R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 66, 191–201 (2011).

    Article  PubMed  CAS  Google Scholar 

  124. Strong, R. et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7, 641–650 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Nadon, N. L., Strong, R., Miller, R. A. & Harrison, D. E. NIA Interventions Testing Program: investigating putative aging intervention agents in a genetically heterogeneous mouse model. EBioMedicine 21, 3–4 (2017).

    Article  PubMed  Google Scholar 

  126. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Miller, R. A. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13, 468–477 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Arriola Apelo, S. I. & Lamming, D. W. Rapamycin: an inhibiTOR of aging emerges from the soil of Easter Island. J. Gerontol. A Biol. Sci. Med. Sci. 71, 841–849 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Strong, R. et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15, 872–884 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Garratt, M., Bower, B., Garcia, G. G. & Miller, R. A. Sex differences in lifespan extension with acarbose and 17-α estradiol: gonadal hormones underlie male-specific improvements in glucose tolerance and mTORC2 signaling. Aging Cell 16, 1256–1266 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Lamming, D. W. et al. Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell 13, 911–917 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Chiasson, J. L. et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290, 486–494 (2003).

    Article  PubMed  CAS  Google Scholar 

  133. Harrison, D. E. et al. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13, 273–282 (2014).

    Article  PubMed  CAS  Google Scholar 

  134. Burns, R. B., Graham, K., Sawhney, M. S. & Reynolds, E. E. Should this patient receive aspirin?: Grand rounds discussion from Beth Israel Deaconess Medical Center. Ann. Intern. Med. 167, 786–793 (2017).

    Article  PubMed  Google Scholar 

  135. Spindler, S. R. et al. Nordihydroguaiaretic acid extends the lifespan of Drosophila and mice, increases mortality-related tumors and hemorrhagic diathesis, and alters energy homeostasis in mice. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1479–1489 (2015).

    Article  PubMed  CAS  Google Scholar 

  136. Liu, R. et al. 17β-estradiol attenuates blood-brain barrier disruption induced by cerebral ischemia-reperfusion injury in female rats. Brain Res. 1060, 55–61 (2005).

    Article  PubMed  CAS  Google Scholar 

  137. Dykens, J. A., Moos, W. H. & Howell, N. Development of 17α-estradiol as a neuroprotective therapeutic agent: rationale and results from a phase I clinical study. Ann. NY Acad. Sci. 1052, 116–135 (2005).

    Article  PubMed  CAS  Google Scholar 

  138. Nelson, S. K., Bose, S. K., Grunwald, G. K., Myhill, P. & McCord, J. M. The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy. Free Radic. Biol. Med. 40, 341–347 (2006).

    Article  PubMed  CAS  Google Scholar 

  139. Velmurugan, K., Alam, J., McCord, J. M. & Pugazhenthi, S. Synergistic induction of heme oxygenase-1 by the components of the antioxidant supplement Protandim. Free Radic. Biol. Med. 46, 430–440 (2009).

    Article  PubMed  CAS  Google Scholar 

  140. Bogaard, H. J. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120, 1951–1960 (2009).

    Article  PubMed  Google Scholar 

  141. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Goldberg, R. et al. Lifestyle and metformin treatment favorably influence lipoprotein subfraction distribution in the Diabetes Prevention Program. J. Clin. Endocrinol. Metab. 98, 3989–3998 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Goldberg, R. B. et al. Effect of long-term metformin and lifestyle in the diabetes prevention program and its outcome study on coronary artery calcium. Circulation 136, 52–64 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998).

    Article  Google Scholar 

  145. Lexis, C. P. et al. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: the GIPS-III randomized clinical trial. JAMA 311, 1526–1535 (2014).

    Article  PubMed  CAS  Google Scholar 

  146. Preiss, D. et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2, 116–124 (2014).

    Article  PubMed  CAS  Google Scholar 

  147. Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G. & Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297, 842–857 (2007).

    Article  PubMed  CAS  Google Scholar 

  148. Martí-Carvajal, A. J., Solà, I., Lathyris, D. & Dayer, M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 8, CD006612 (2017).

    PubMed  Google Scholar 

  149. Benjamin, E. J. et al. Heart disease and stroke statistics — 2017 update: a report from the American Heart Association. Circulation 135, e1–e458 (2017).

    Article  Google Scholar 

  150. Tarry-Adkins, J. L. & Ozanne, S. E. Nutrition in early life and age-associated diseases. Ageing Res. Rev. 39, 96–105 (2017).

    Article  PubMed  CAS  Google Scholar 

  151. Andersson, C. & Vasan, R. S. Epidemiology of cardiovascular disease in young individuals. Nat. Rev. Cardiol. 15, 230–240 (2018).

    Article  PubMed  Google Scholar 

  152. Lloyd-Jones, D. M. et al. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation 113, 791–798 (2006).

    Article  PubMed  Google Scholar 

  153. Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Hackshaw, A., Morris, J. K., Boniface, S., Tang, J. L. & Milenkovic, D. Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports. BMJ 360, j5855 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.F. is supported by grants from the Bakewell Foundation, the Longer Life Foundation (an RGA/Washington University Partnership), the National Center for Research Resources (UL1 RR024992), and the Italian Federation of Sport Medicine (FMSI). The author apologizes for the omission of relevant work owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Fontana.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontana, L. Interventions to promote cardiometabolic health and slow cardiovascular ageing. Nat Rev Cardiol 15, 566–577 (2018). https://doi.org/10.1038/s41569-018-0026-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0026-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing