Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Revascularization in stable coronary disease: evidence and uncertainties

Abstract

Although revascularization has been one of the primary treatment options for obstructive coronary artery disease (CAD) for about 50 years, the evidence base for its use is most robust in the area of acute coronary disease. By contrast, evidence — particularly from clinical trials — supporting the use of revascularization to improve clinical outcomes in stable CAD is in some important respects outdated in that it reflects therapies that predate both contemporary standards for optimal medical therapy and current revascularization techniques and technologies. Despite such limitations, these clinical trials still provide the foundation for many of the current guideline-based indications for coronary revascularization in patients with stable CAD. In this Review, we discuss the major factors underlying the clinical decision to perform revascularization in patients with stable CAD and examine the use and limitations of existing evidence on the choice for, and preferred methods of, revascularization, namely, CABG surgery versus percutaneous coronary intervention.

Key points

  • Medical therapy with agents with proven prognostic benefit is now the cornerstone of therapy for stable coronary artery disease (CAD).

  • Revascularization in addition to medical therapy is appropriate in patients with symptoms refractory to medical therapy, high-risk features, and high coronary disease burden, but the potential incremental benefit of revascularization varies between patient subgroups.

  • Our current understanding of what to do therapeutically is based largely on clinical trials designed to detect significant average treatment differences in major adverse clinical events.

  • The evidence base in revascularization for stable CAD is fragmentary, requiring clinicians to use their learning and judgement to treat individual patients who are not typical representatives of any clinical trial.

  • The treatment recommendation should be formulated by a multidisciplinary approach from interventionalists, cardiac surgeons, and noninvasive cardiologists and from patients themselves.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Factors influencing the choice of revascularization mode in patients with stable, multivessel coronary artery disease.
Fig. 2: Factors favouring CABG surgery over PCI in patients with multivessel disease and diabetes mellitus.
Fig. 3: Proposed algorithm for selection of optimal therapy for patients with stable coronary artery disease.

References

  1. 1.

    Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2013).

    Article  Google Scholar 

  2. 2.

    Ford, E. S. et al. Explaining the decrease in U. S. deaths from coronary disease, 1980–2000. N. Engl. J. Med. 356, 2388–2398 (2007).

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Benjamin, E. J. et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135, e146–e603 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Fanaroff, A. C. et al. Outcomes of PCI in relation to procedural characteristics and operator volumes in the United States. J. Am. Coll. Cardiol. 69, 2913–2924 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Shahian, D. M. et al. Predictors of long-term survival after coronary artery bypass grafting surgery: results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database (the ASCERT study). Circulation 125, 1491–1500 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    VA Coronary Artery Bypass Surgery Cooperative Study Group. Eighteen-year follow-up in the Veterans Affairs Cooperative Study of Coronary Artery Bypass Surgery for stable angina. Circulation 86, 121–130 (1992).

    Article  Google Scholar 

  7. 7.

    Alderman, E. L. et al. Ten-year follow-up of survival and myocardial infarction in the randomized Coronary Artery Surgery Study. Circulation 82, 1629–1646 (1990).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Varnauskas, E. Twelve-year follow-up of survival in the randomized European Coronary Surgery Study. N. Engl. J. Med. 319, 332–337 (1988).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Takaro, T., Hultgren, H. N., Lipton, M. J. & Detre, K. M. The VA cooperative randomized study of surgery for coronary arterial occlusive disease II. Subgroup with significant left main lesions. Circulation 54 (Suppl.), III107–III117 (1976).

    PubMed  CAS  Google Scholar 

  10. 10.

    Yusuf, S. et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet 344, 563–570 (1994).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Davies, R. F. et al. Asymptomatic Cardiac Ischemia Pilot (ACIP) study two-year follow-up: outcomes of patients randomized to initial strategies of medical therapy versus revascularization. Circulation 95, 2037–2043 (1997).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Pfisterer, M. Trial of Invasive versus Medical therapy in Elderly patients Investigators. Long-term outcome in elderly patients with chronic angina managed invasively versus by optimized medical therapy: four-year follow-up of the randomized Trial of Invasive versus Medical therapy in Elderly patients (TIME). Circulation 110, 1213–1218 (2004).

    PubMed  Article  Google Scholar 

  13. 13.

    Erne, P. et al. Effects of percutaneous coronary interventions in silent ischemia after myocardial infarction: the SWISSI II randomized controlled trial. JAMA 297, 1985–1991 (2007).

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    van Nunen, L. X. et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet 386, 1853–1860 (2015).

    PubMed  Article  Google Scholar 

  15. 15.

    Katritsis, D. G. & Ioannidis, J. P. Percutaneous coronary intervention versus conservative therapy in nonacute coronary artery disease: a meta-analysis. Circulation 111, 2906–2912 (2005).

    PubMed  Article  Google Scholar 

  16. 16.

    Katritsis, D. G. & Ioannidis, J. P. PCI for stable coronary disease. N. Engl. J. Med. 357, 414–415 (2007).

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Stergiopoulos, K. & Brown, D. L. Initial coronary stent implantation with medical therapy versus medical therapy alone for stable coronary artery disease: meta-analysis of randomized controlled trials. Arch. Intern. Med. 172, 312–319 (2012).

    PubMed  Article  Google Scholar 

  18. 18.

    Trikalinos, T. A., Alsheikh-Ali, A. A., Tatsioni, A., Nallamothu, B. K. & Kent, D. M. Percutaneous coronary interventions for non-acute coronary artery disease: a quantitative 20-year synopsis and a network meta-analysis. Lancet 373, 911–918 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Stergiopoulos, K. et al. Percutaneous coronary intervention outcomes in patients with stable obstructive coronary artery disease and myocardial ischemia: a collaborative meta-analysis of contemporary randomized clinical trials. JAMA Intern. Med. 174, 232–240 (2014).

    PubMed  Article  Google Scholar 

  20. 20.

    Goff, S. L., Mazor, K. M., Ting, H. H., Kleppel, R. & Rothberg, M. B. How cardiologists present the benefits of percutaneous coronary interventions to patients with stable angina: a qualitative analysis. JAMA Intern. Med. 174, 1614–1621 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Arbab-Zadeh, A. & Fuster, V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J. Am. Coll. Cardiol. 65, 846–855 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Gerber, Y. et al. Atherosclerotic burden and heart failure after myocardial infarction. JAMA Cardiol. 1, 156–162 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Mancini, G. B. et al. Predicting outcome in the COURAGE trial (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation): coronary anatomy versus ischemia. JACC Cardiovasc. Interv. 7, 195–201 (2014).

    PubMed  Article  Google Scholar 

  24. 24.

    Panza, J. A. et al. Extent of coronary and myocardial disease and benefit from surgical revascularization in ischemic LV dysfunction. J. Am. Coll. Cardiol. 64, 553–561 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Windecker, S. et al. 2014 ESC/EACTS guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS): Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 35, 2541–2619 (2014).

    Article  Google Scholar 

  26. 26.

    Fihn, S. D. et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 60, e44–e164 (2012).

    PubMed  Article  Google Scholar 

  27. 27.

    Hillis, L. D. et al. 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124, e652–e735 (2011).

    PubMed  Google Scholar 

  28. 28.

    Brooks, M. M. et al. Clinical and angiographic risk stratification and differential impact on treatment outcomes in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Circulation 126, 2115–2124 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Ikeno, F. et al. SYNTAX score and long-term outcomes: the BARI-2D trial. J. Am. Coll. Cardiol. 69, 395–403 (2017).

    PubMed  Article  Google Scholar 

  30. 30.

    Mancini, G. B. et al. Medical treatment and revascularization options in patients with type 2 diabetes and coronary disease. J. Am. Coll. Cardiol. 68, 985–995 (2016).

    PubMed  Article  Google Scholar 

  31. 31.

    Farooq, V., Brugaletta, S. & Serruys, P. W. Contemporary and evolving risk scoring algorithms for percutaneous coronary intervention. Heart 97, 1902–1913 (2011).

    PubMed  Article  Google Scholar 

  32. 32.

    Hueb, W. et al. Ten-year follow-up survival of the Medicine, Angioplasty, or Surgery Study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation 122, 949–957 (2010).

    PubMed  Article  Google Scholar 

  33. 33.

    Hachamovitch, R. et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization versus medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur. Heart J. 32, 1012–1024 (2011).

    PubMed  Article  Google Scholar 

  34. 34.

    Hachamovitch, R., Hayes, S. W., Friedman, J. D., Cohen, I. & Berman, D. S. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 107, 2900–2907 (2003).

    PubMed  Article  Google Scholar 

  35. 35.

    Mahmarian, J. J. et al. An initial strategy of intensive medical therapy is comparable to that of coronary revascularization for suppression of scintigraphic ischemia in high-risk but stable survivors of acute myocardial infarction. J. Am. Coll. Cardiol. 48, 2458–2467 (2006).

    PubMed  Article  Google Scholar 

  36. 36.

    Panza, J. A. et al. Inducible myocardial ischemia and outcomes in patients with coronary artery disease and left ventricular dysfunction. J. Am. Coll. Cardiol. 61, 1860–1870 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Nishigaki, K. et al. Percutaneous coronary intervention plus medical therapy reduces the incidence of acute coronary syndrome more effectively than initial medical therapy only among patients with low-risk coronary artery disease a randomized, comparative, multicenter study. JACC Cardiovasc. Interv. 1, 469–479 (2008).

    PubMed  Article  Google Scholar 

  38. 38.

    Boden, W. E. et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 356, 1503–1516 (2007).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Sedlis, S. P. et al. Effect of PCI on long-term survival in patients with stable ischemic heart disease. N. Engl. J. Med. 373, 1937–1946 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Shaw, L. J. et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117, 1283–1291 (2008).

    PubMed  Article  Google Scholar 

  41. 41.

    Shaw, L. J. et al. Baseline stress myocardial perfusion imaging results and outcomes in patients with stable ischemic heart disease randomized to optimal medical therapy with or without percutaneous coronary intervention. Am. Heart J. 164, 243–250 (2012).

    PubMed  Article  Google Scholar 

  42. 42.

    Al-Lamee, R. et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet 391, 31–40 (2017).

    PubMed  Article  Google Scholar 

  43. 43.

    Stone, G. W. et al. Medical therapy with versus without revascularization in stable patients with moderate and severe ischemia: the case for community equipoise. J. Am. Coll. Cardiol. 67, 81–99 (2016).

    PubMed  Article  Google Scholar 

  44. 44.

    De Bruyne, B. et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N. Engl. J. Med. 371, 1208–1217 (2014).

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Li, J. et al. Long-term outcomes of fractional flow reserve-guided versus angiography-guided percutaneous coronary intervention in contemporary practice. Eur. Heart J. 34, 1375–1383 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Adjedj, J. et al. Significance of intermediate values of fractional flow reserve in patients with coronary artery disease. Circulation 133, 502–508 (2016).

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Zimmermann, F. M. et al. Deferral versus performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur. Heart J. 36, 3182–3188 (2015).

    PubMed  Article  Google Scholar 

  48. 48.

    Curzen, N. et al. Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain?: the RIPCORD study. Circ. Cardiovasc. Interv. 7, 248–255 (2014).

    PubMed  Article  Google Scholar 

  49. 49.

    Van Belle, E. et al. Outcome impact of coronary revascularization strategy reclassification with fractional flow reserve at time of diagnostic angiography: insights from a large French multicenter fractional flow reserve registry. Circulation 129, 173–185 (2014).

    PubMed  Article  Google Scholar 

  50. 50.

    Johnson, N. P. et al. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J. Am. Coll. Cardiol. 64, 1641–1654 (2014).

    PubMed  Article  Google Scholar 

  51. 51.

    Arbab-Zadeh, A. Fractional flow reserve-guided percutaneous coronary intervention is not a valid concept. Circulation 129, 1871–1878 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Rioufol, G. et al. FUTURE: FFR-guided revascularization vs. angioplasty in CAD patients [abstract]. Presented at the American Heart Association Scientific Sessions (2016).

  53. 53.

    Kennedy, M. W., Fabris, E., Suryapranata, H. & Kedhi, E. Is ischemia the only factor predicting cardiovascular outcomes in all diabetes mellitus patients? Cardiovasc. Diabetol. 16, 51 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Ahmadi, A. et al. Lesion-specific and vessel-related determinants of fractional flow reserve beyond coronary artery stenosis. JACC Cardiovasc. Imaging https://doi.org/10.1016/j.jcmg.2017.11.020 (2018).

  55. 55.

    Cook, C. M. et al. Fractional flow reserve/instantaneous wave-free ratio discordance in angiographically intermediate coronary stenoses: an analysis using doppler-derived coronary flow measurements. JACC Cardiovasc. Interv. 10, 2514–2524 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Davies, J. E. et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N. Engl. J. Med. 376, 1824–1834 (2017).

    PubMed  Article  Google Scholar 

  57. 57.

    Gotberg, M. et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N. Engl. J. Med. 376, 1813–1823 (2017).

    PubMed  Article  Google Scholar 

  58. 58.

    Kobayashi, Y. et al. Agreement of the resting distal to aortic coronary pressure with the instantaneous wave-free ratio. J. Am. Coll. Cardiol. 70, 2105–2113 (2017).

    PubMed  Article  Google Scholar 

  59. 59.

    Mancini, G. B. et al. Angiographic disease progression and residual risk of cardiovascular events while on optimal medical therapy: observations from the COURAGE Trial. Circ. Cardiovasc. Interv. 4, 545–552 (2011).

    PubMed  Article  Google Scholar 

  60. 60.

    Cleland, J. G. et al. The Heart Failure Revascularisation Trial (HEART). Eur. J. Heart Fail. 13, 227–233 (2011).

    PubMed  Article  Google Scholar 

  61. 61.

    Velazquez, E. J. et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 364, 1607–1616 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Velazquez, E. J. et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N. Engl. J. Med. 374, 1511–1520 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Wolff, G. et al. Survival benefits of invasive versus conservative strategies in heart failure in patients with reduced ejection fraction and coronary artery disease: a meta-analysis. Circ. Heart Fail. 10, e003255 (2017).

    PubMed  Article  Google Scholar 

  64. 64.

    Petrie, M. C. et al. Ten-year outcomes after coronary artery bypass grafting according to age in patients with heart failure and left ventricular systolic dysfunction: an analysis of the extended follow-up of the STICH trial (Surgical Treatment for Ischemic Heart Failure). Circulation 134, 1314–1324 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Bonow, R. O. et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N. Engl. J. Med. 364, 1617–1625 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Mc Ardle, B. et al. Long-term follow-up of outcomes with F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction secondary to coronary disease. Circ. Cardiovasc. Imaging 9, e004331 (2016).

    Article  Google Scholar 

  67. 67.

    Anavekar, N. S., Chareonthaitawee, P., Narula, J. & Gersh, B. J. Revascularization in patients with severe left ventricular dysfunction: is the assessment of viability still viable? J. Am. Coll. Cardiol. 67, 2874–2887 (2016).

    PubMed  Article  Google Scholar 

  68. 68.

    Mark, D. B. Assessing quality-of-life outcomes in cardiovascular clinical research. Nat. Rev. Cardiol. 13, 286–308 (2016).

    PubMed  Article  Google Scholar 

  69. 69.

    Windecker, S. et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: network meta-analysis. BMJ 348, g3859 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Bangalore, S., Toklu, B. & Feit, F. Outcomes with coronary artery bypass graft surgery versus percutaneous coronary intervention for patients with diabetes mellitus: can newer generation drug-eluting stents bridge the gap? Circ. Cardiovasc. Interv. 7, 518–525 (2014).

    PubMed  Article  Google Scholar 

  71. 71.

    The Bypass Angioplasty Revascularization Investigation (BARI) Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N. Engl. J. Med. 335, 217–225 (1996).

    Article  Google Scholar 

  72. 72.

    Chaitman, B. R. et al. The Bypass Angioplasty Revascularization Investigation 2 Diabetes randomized trial of different treatment strategies in type 2 diabetes mellitus with stable ischemic heart disease: impact of treatment strategy on cardiac mortality and myocardial infarction. Circulation 120, 2529–2540 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Farkouh, M. E. et al. Strategies for multivessel revascularization in patients with diabetes. N. Engl. J. Med. 367, 2375–2384 (2012).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Dangas, G. D. et al. Long-term outcome of PCI versus CABG in insulin and non-insulin-treated diabetic patients: results from the FREEDOM trial. J. Am. Coll. Cardiol. 64, 1189–1197 (2014).

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Baber, U. et al. Comparative efficacy of coronary artery bypass surgery versus percutaneous coronary intervention in patients with diabetes and multivessel coronary artery disease with or without chronic kidney disease. Eur. Heart J. 37, 3440–3447 (2016).

    PubMed  Article  Google Scholar 

  76. 76.

    Head, S. J. et al. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data. Lancet 391, 939–948 (2018).

  77. 77.

    Mohr, F. W. et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet 381, 629–638 (2013).

    PubMed  Article  Google Scholar 

  78. 78.

    Milojevic, M. et al. Causes of death following PCI versus CABG in complex CAD: 5-year follow-up of SYNTAX. J. Am. Coll. Cardiol. 67, 42–55 (2016).

    PubMed  Article  Google Scholar 

  79. 79.

    Holmes, D. R. Jr & Taggart, D. P. Revascularization in stable coronary artery disease: a combined perspective from an interventional cardiologist and a cardiac surgeon. Eur. Heart J. 37, 1873–1882 (2016).

    PubMed  Article  Google Scholar 

  80. 80.

    Park, S. J. et al. Trial of everolimus-eluting stents or bypass surgery for coronary disease. N. Engl. J. Med. 372, 1204–1212 (2015).

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Yamaji, K. et al. Effects of age and sex on clinical outcomes after percutaneous coronary intervention relative to coronary artery bypass grafting in patients with triple-vessel coronary artery disease. Circulation 133, 1878–1891 (2016).

    PubMed  Article  Google Scholar 

  82. 82.

    Bangalore, S. et al. Everolimus-eluting stents or bypass surgery for multivessel coronary disease. N. Engl. J. Med. 372, 1213–1222 (2015).

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Stone, G. W. et al. Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N. Engl. J. Med. 375, 2223–2235 (2016).

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Makikallio, T. et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): a prospective, randomised, open-label, non-inferiority trial. Lancet 388, 2743–2752 (2016).

    PubMed  Article  Google Scholar 

  85. 85.

    Ahn, J. M. et al. Randomized trial of stents versus bypass surgery for left main coronary artery disease: 5-year outcomes of the PRECOMBAT study. J. Am. Coll. Cardiol. 65, 2198–2206 (2015).

    PubMed  Article  Google Scholar 

  86. 86.

    Buszman, P. E. et al. Left main stenting in comparison with surgical revascularization: 10-year outcomes of the (Left Main Coronary Artery Stenting) LE MANS trial. JACC Cardiovasc. Interv. 9, 318–327 (2016).

    PubMed  Article  Google Scholar 

  87. 87.

    Nerlekar, N. et al. Percutaneous coronary intervention using drug-eluting stents versus coronary artery bypass grafting for unprotected left main coronary artery stenosis: a meta-analysis of randomized trials. Circ. Cardiovasc. Interv. 9, e004729 (2016).

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Giacoppo, D. et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with left main coronary artery stenosis: a systematic review and meta-analysis. JAMA Cardiol. 2, 1079–1088 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Garg, A. et al. Meta-Analysis of randomized controlled trials of percutaneous coronary intervention with drug-eluting stents versus coronary artery bypass grafting in left main coronary artery disease. Am. J. Cardiol. 119, 1942–1948 (2017).

    PubMed  Article  Google Scholar 

  90. 90.

    Bangalore, S., Guo, Y., Samadashvili, Z., Blecker, S. & Hannan, E. L. Revascularization in patients with multivessel coronary artery disease and severe left ventricular systolic dysfunction: everolimus-eluting stents versus coronary artery bypass graft surgery. Circulation 133, 2132–2140 (2016).

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Nagendran, J. et al. Coronary artery bypass surgery improves outcomes in patients with diabetes and left ventricular dysfunction. J. Am. Coll. Cardiol. 71, 819–827 (2018).

  92. 92.

    Hannan, E. L. et al. Coronary artery bypass graft surgery versus drug-eluting stents for patients with isolated proximal left anterior descending disease. J. Am. Coll. Cardiol. 64, 2717–2726 (2014).

    PubMed  Article  Google Scholar 

  93. 93.

    Kapoor, J. R. et al. Isolated disease of the proximal left anterior descending artery comparing the effectiveness of percutaneous coronary interventions and coronary artery bypass surgery. JACC Cardiovasc. Interv. 1, 483–491 (2008).

    PubMed  Article  Google Scholar 

  94. 94.

    Thiele, H. et al. Randomized comparison of minimally invasive direct coronary artery bypass surgery versus sirolimus-eluting stenting in isolated proximal left anterior descending coronary artery stenosis. J. Am. Coll. Cardiol. 53, 2324–2331 (2009).

    PubMed  Article  Google Scholar 

  95. 95.

    Blazek, S. et al. Comparison of sirolimus-eluting stenting with minimally invasive bypass surgery for stenosis of the left anterior descending coronary artery: 7-year follow-up of a randomized trial. JACC Cardiovasc. Interv. 8, 30–38 (2015).

    PubMed  Article  Google Scholar 

  96. 96.

    Hannan, E. L. et al. Patients with chronic total occlusions undergoing percutaneous coronary interventions: characteristics, success, and outcomes. Circ. Cardiovasc. Interv. 9, e003586 (2016).

    PubMed  Article  Google Scholar 

  97. 97.

    Huqi, A., Morrone, D., Guarini, G. & Marzilli, M. Long-term follow-up of elective chronic total coronary occlusion angioplasty: analysis from the UK Central Cardiac Audit Database. J. Am. Coll. Cardiol. 64, 2707–2708 (2014).

    PubMed  Article  Google Scholar 

  98. 98.

    Lee, P. H. et al. Successful recanalization of native coronary chronic total occlusion is not associated with improved long-term survival. JACC Cardiovasc. Interv. 9, 530–538 (2016).

    PubMed  Article  Google Scholar 

  99. 99.

    Park, S.-J. et al. Drug-eluting stent implantation versus optimal medical treatment in patients with chronic total occlusion (DECISION-CTO) [abstract]. Presented at the American College of Cardiology Scientific Sessions (2017).

  100. 100.

    Henriques, J. P. et al. Percutaneous intervention for concurrent chronic total occlusions in patients With STEMI: the EXPLORE trial. J. Am. Coll. Cardiol. 68, 1622–1632 (2016).

    PubMed  Article  Google Scholar 

  101. 101.

    Ioannidis, J. P. & Katritsis, D. G. Percutaneous coronary intervention for late reperfusion after myocardial infarction in stable patients. Am. Heart J. 154, 1065–1071 (2007).

    PubMed  Article  Google Scholar 

  102. 102.

    Menon, V. et al. Lack of benefit from percutaneous intervention of persistently occluded infarct arteries after the acute phase of myocardial infarction is time independent: insights from Occluded Artery Trial. Eur. Heart J. 30, 183–191 (2009).

    PubMed  Article  Google Scholar 

  103. 103.

    Gossl, M., Faxon, D. P., Bell, M. R., Holmes, D. R. & Gersh, B. J. Complete versus incomplete revascularization with coronary artery bypass graft or percutaneous intervention in stable coronary artery disease. Circ. Cardiovasc. Interv. 5, 597–604 (2012).

    PubMed  Article  Google Scholar 

  104. 104.

    Garcia, S. et al. Outcomes after complete versus incomplete revascularization of patients with multivessel coronary artery disease: a meta-analysis of 89,883 patients enrolled in randomized clinical trials and observational studies. J. Am. Coll. Cardiol. 62, 1421–1431 (2013).

    PubMed  Article  Google Scholar 

  105. 105.

    Kleisli, T. et al. In the current era, complete revascularization improves survival after coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 129, 1283–1291 (2005).

    PubMed  Article  Google Scholar 

  106. 106.

    Vander Salm, T. J. et al. What constitutes optimal surgical revascularization? Answers from the Bypass Angioplasty Revascularization Investigation (BARI). J. Am. Coll. Cardiol. 39, 565–572 (2002).

    Article  Google Scholar 

  107. 107.

    Hannan, E. L. et al. Incomplete revascularization in the era of drug-eluting stents: impact on adverse outcomes. JACC Cardiovasc. Interv. 2, 17–25 (2009).

    PubMed  Article  Google Scholar 

  108. 108.

    Kim, Y. H. et al. Impact of angiographic complete revascularization after drug-eluting stent implantation or coronary artery bypass graft surgery for multivessel coronary artery disease. Circulation 123, 2373–2381 (2011).

    PubMed  Article  CAS  Google Scholar 

  109. 109.

    van den Brand, M. J. et al. The effect of completeness of revascularization on event-free survival at one year in the ARTS trial. J. Am. Coll. Cardiol. 39, 559–564 (2002).

    PubMed  Article  Google Scholar 

  110. 110.

    Aldweib, N. et al. Impact of repeat myocardial revascularization on outcome in patients with silent ischemia after previous revascularization. J. Am. Coll. Cardiol. 61, 1616–1623 (2013).

    PubMed  Article  Google Scholar 

  111. 111.

    Toth, G. et al. Fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circulation 128, 1405–1411 (2013).

    PubMed  Article  Google Scholar 

  112. 112.

    Farooq, V. et al. Quantification of incomplete revascularization and its association with five-year mortality in the synergy between percutaneous coronary intervention with taxus and cardiac surgery (SYNTAX) trial validation of the residual SYNTAX score. Circulation 128, 141–151 (2013).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Gersh, B. J., Stone, G. W. & Bhatt, D. L. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with left main and multivessel coronary artery disease: do we have the evidence? Circulation 135, 819–821 (2017).

    PubMed  Article  Google Scholar 

  114. 114.

    Iqbal, J. et al. Optimal medical therapy improves clinical outcomes in patients undergoing revascularization with percutaneous coronary intervention or coronary artery bypass grafting: insights from the Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery (SYNTAX) trial at the 5-year follow-up. Circulation 131, 1269–1277 (2015).

    PubMed  Article  CAS  Google Scholar 

  115. 115.

    Lipinski, M. J. et al. The impact of proprotein convertase subtilisin-kexin type 9 serine protease inhibitors on lipid levels and outcomes in patients with primary hypercholesterolaemia: a network meta-analysis. Eur. Heart J. 37, 536–545 (2016).

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    Nicholls, S. J. et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316, 2373–2384 (2016).

    PubMed  Article  CAS  Google Scholar 

  117. 117.

    Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    PubMed  Article  CAS  Google Scholar 

  118. 118.

    Marx, N. & McGuire, D. K. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur. Heart J. 37, 3192–3200 (2016).

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Escaned, J. et al. Clinical outcomes of state-of-the-art percutaneous coronary revascularization in patients with de novo three vessel disease: 1-year results of the SYNTAX II study. Eur. Heart J. 38, 3124–3134 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Ruttmann, E. et al. Second internal thoracic artery versus radial artery in coronary artery bypass grafting: a long-term, propensity score-matched follow-up study. Circulation 124, 1321–1329 (2011).

    PubMed  Article  Google Scholar 

  122. 122.

    Sabik, J. F. 3rd, Lytle, B. W., Blackstone, E. H., Houghtaling, P. L. & Cosgrove, D. M. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann. Thorac. Surg. 79, 544–551 (2005).

    PubMed  Article  Google Scholar 

  123. 123.

    Medalion, B. et al. Should bilateral internal thoracic artery grafting be used in elderly patients undergoing coronary artery bypass grafting? Circulation 127, 2186–2193 (2013).

    PubMed  Article  Google Scholar 

  124. 124.

    Yi, G., Shine, B., Rehman, S. M., Altman, D. G. & Taggart, D. P. Effect of bilateral internal mammary artery grafts on long-term survival: a meta-analysis approach. Circulation 130, 539–545 (2014).

    PubMed  Article  Google Scholar 

  125. 125.

    Taggart, D. P. et al. Randomized trial to compare bilateral versus single internal mammary coronary artery bypass grafting: 1-year results of the Arterial Revascularisation Trial (ART). Eur. Heart J. 31, 2470–2481 (2010).

    PubMed  Article  Google Scholar 

  126. 126.

    Taggart, D. P. et al. Randomized trial of bilateral versus single internal-thoracic-artery grafts. N. Engl. J. Med. 375, 2540–2549 (2016).

    PubMed  Article  Google Scholar 

  127. 127.

    Brown, M. L., Gersh, B. J., Holmes, D. R., Bailey, K. R. & Sundt, T. M. 3rd. From randomized trials to registry studies: translating data into clinical information. Nat. Clin. Pract. Cardiovasc. Med. 5, 613–620 (2008).

    PubMed  Article  Google Scholar 

  128. 128.

    Farooq, V. et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet 381, 639–650 (2013).

    PubMed  Article  Google Scholar 

  129. 129.

    Patel, M. R. et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart disease: a report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 69, 2212–2241 (2017).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

D.G.K. researched data for the article, and all authors discussed its content. D.G.K. and B.J.G. wrote the manuscript, which was critically reviewed by D.B.M. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Demosthenes G. Katritsis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Cardiology thanks D. Maron, B. Chaitman, and the other anonymous reviewer for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katritsis, D.G., Mark, D.B. & Gersh, B.J. Revascularization in stable coronary disease: evidence and uncertainties. Nat Rev Cardiol 15, 408–419 (2018). https://doi.org/10.1038/s41569-018-0006-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing