Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CAF-induced physical constraints controlling T cell state and localization in solid tumours

Abstract

Solid tumours comprise cancer cells that engage in continuous interactions with non-malignant cells and with acellular components, forming the tumour microenvironment (TME). The TME has crucial and diverse roles in tumour progression and metastasis, and substantial efforts have been dedicated into understanding the functions of different cell types within the TME. These efforts highlighted the importance of non-cell-autonomous signalling in cancer, mediating interactions between the cancer cells, the immune microenvironment and the non-immune stroma. Much of this non-cell-autonomous signalling is mediated through acellular components of the TME, known as the extracellular matrix (ECM), and controlled by the cells that secrete and remodel the ECM — the cancer-associated fibroblasts (CAFs). In this Review, we delve into the complex crosstalk among cancer cells, CAFs and immune cells, highlighting the effects of CAF-induced ECM remodelling on T cell functions and offering insights into the potential of targeting ECM components to improve cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cancer-associated fibroblasts comprise diverse subsets, with shared and unique markers.
Fig. 2: Tumour-promoting consequences of cancer-associated fibroblast-mediated extracellular matrix remodelling in cancer.
Fig. 3: Biomechanical effects of extracellular matrix remodelling on tumour immunity.
Fig. 4: Therapeutic strategies to restore tumour immunity through targeting of the tumour extracellular matrix.

Similar content being viewed by others

References

  1. Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, 1462 (2021).

    Article  Google Scholar 

  3. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807 (2022). This comprehensive review provides thorough information on the phenotype and function of CAF subpopulations across carcinomas.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Geldhof, V. et al. Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast. Nat. Commun. 13, 5511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun, R., Kong, X., Qiu, X., Huang, C. & Wong, P. P. The emerging roles of pericytes in modulating tumor microenvironment. Front. Cell Dev. Biol. 9, 676342 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Curtis, M. et al. Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metab. 29, 141–155 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Friedman, G. et al. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4+ and PDPN+ CAFs to clinical outcome. Nat. Cancer 1, 692–708 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Hwang, W. L. et al. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat. Genet. 54, 1178–1191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaashua, L. et al. BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling. Nat. Commun. 13, 6513 (2022). This study provides insights into cancer-mediated CAF heterogeneity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Timperi, E. et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82, 3291–3306 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Munir, H. et al. Stromal-driven and amyloid β-dependent induction of neutrophil extracellular traps modulates tumor growth. Nat. Commun. 12, 683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, T. X. et al. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut 71, 333–344 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Shani, O. et al. Fibroblast-derived IL33 facilitates breast cancer metastasis by modifying the immune microenvironment and driving type 2 immunity. Cancer Res. 80, 5317–5329 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, V. et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32, 654–668.e5 (2017). This study highlights a tumour-permissive role of CAFs by promoting granulocyte infiltration into the tumour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Affo, S. et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 39, 866–882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, Y. et al. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br. J. Cancer 110, 724–732 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Wishart, A. L. et al. Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci. Adv. 6, eabc3175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mayorca-Guiliani, A. E. et al. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat. Med. 23, 890–898 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Karamanos, N. K. et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 288, 6850–6912 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Rousselle, P., Montmasson, M. & Garnier, C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol. 75–76, 12–26 (2019).

    Article  PubMed  Google Scholar 

  22. Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaukonen, R. et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat. Commun. 7, 12237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saatci, O. et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat. Commun. 11, 2416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maller, O. et al. Tumor-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nat. Mater. 20, 548–559 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Natarajan, S. et al. Collagen remodeling in the hypoxic tumor-mesothelial niche promotes ovarian cancer metastasis. Cancer Res. 79, 2271–2284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fonta, C. M. et al. Infiltrating CD8+ T cells and M2 macrophages are retained in tumor matrix tracks enriched in low tension fibronectin fibers. Matrix Biol. 116, 1–27 (2023). This study shows how tumour-immune exclusion is facilitated by ECM fibres.

    Article  CAS  PubMed  Google Scholar 

  28. Borriello, L. et al. Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Cancer Res. 77, 5142–5157 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Francescone, R. et al. Netrin G1 promotes pancreatic tumorigenesis through cancer associated fibroblast driven nutritional support and immunosuppression. Cancer Discov. 11, 446–479 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Mayer, S. et al. The tumor microenvironment shows a hierarchy of cell–cell interactions dominated by fibroblasts. Nat. Commun. 14, 5810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cords, L. et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat. Commun. 14, 4294 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hutton, C. et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 39, 1227–1244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kerdidani, D. et al. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J. Exp. Med. 219, e20210815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  35. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479 (2018). This study analyses the different T cell-immunomodulatory functions exerted by distinct myCAF subsets in breast cancer.

    Article  CAS  PubMed  Google Scholar 

  37. Niu, N. et al. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell 42, 869–884.e9 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, Y. et al. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell 40, 818–834.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y. et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov. 7, 36 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Broz, M. T. et al. Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas. Nat. Commun. 15, 2498 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, S. Z. et al. Stromal cell diversity associated with immune evasion in human triple‐negative breast cancer. EMBO J. 39, e104063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grout, J. A. et al. Spatial positioning and matrix programs of cancer-associated fibroblasts promote T cell exclusion in human lung tumors. Cancer Discov. 12, 2606–2625 (2022). This study highlights how different spatial localization within the tumour impacts CAF phenotype and immunoregulatory functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018). This study reveals a CAF-related ECM gene signature associated with poor patient prognosis and immunotherapy response.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ford, K. et al. NOX4 inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated CD8 T-cell exclusion from tumors. Cancer Res. 80, 1846–1860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grunberg, N. et al. Cancer-associated fibroblasts promote aggressive gastric cancer phenotypes via heat shock factor 1-mediated secretion of extracellular vesicles. Cancer Res. 81, 1639–1653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dou, D. et al. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front. Immunol. 11, 2026 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Gok Yavuz, B. et al. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci. Rep. 9, 1–15 (2019).

    Article  CAS  Google Scholar 

  51. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 235–747 (2014).

    Article  Google Scholar 

  52. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with diminished survival. Cancer Cell 25, 719–734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McAndrews, K. M. et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discov. 12, 1580–1597 (2022). This study demonstrates that αSMA+ and FAP+ CAFs differently impact tumour progression and immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, Y. et al. Type I collagen deletion in αSMA+ myofibroblasts enhances immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 39, 548–565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Desbois, M. et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer. Nat. Commun. 11, 5583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun, X. et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 599, 673–678 (2021). This study provides mechanistic insights on collagen-mediated CD8+ T cell exclusion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kato, T. et al. Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma. eLife 12, e76520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cohen, N. et al. Breast cancer-secreted factors promote lung metastasis by signaling systemically to induce a fibrotic pre-metastatic niche. Cancer Res. 83, 3354–3367 (2023). This study highlights tumour-induced pro-fibrotic phenotypic changes in fibroblasts at metastatic sites.

    Article  CAS  PubMed  Google Scholar 

  61. Cai, R. et al. Primary breast tumor induced extracellular matrix remodeling in premetastatic lungs. Sci. Rep. 13, 18566 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019). This study shows that aged fibroblasts hinder T cell motility via ECM remodelling, promoting tumour invasion.

    Article  CAS  PubMed  Google Scholar 

  63. Hewitt, R. J. et al. Lung extracellular matrix modulates KRT5+ basal cell activity in pulmonary fibrosis. Nat. Commun. 14, 6039 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Papanicolaou, M. et al. Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nat. Commun. 13, 4587 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cohen, C. et al. WNT-dependent interaction between inflammatory fibroblasts and FOLR2+ macrophages promotes fibrosis in chronic kidney disease. Nat. Commun. 15, 743 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wong, S. W., Lenzini, S., Cooper, M. H., Mooney, D. J. & Shin, J. W. Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Sci. Adv. 6, eaaw0158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reticker-Flynn, N. E. et al. A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat. Commun. 3, 1122 (2012).

    Article  PubMed  Google Scholar 

  68. Bera, K. et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature 611, 365–373 (2022). This study highlights the role of ECM biophysical properties in regulating tumour invasiveness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Levi-Galibov, O. et al. Heat shock factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer. Nat. Commun. 11, 6245 (2020). This study shows that chronic inflammation can impact ECM remodelling to facilitate tumour development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koorman, T. et al. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment. Oncogene 41, 2458–2469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, C. et al. Extracellular matrix-derived mechanical force governs breast cancer cell stemness and quiescence transition through integrin-DDR signaling. Signal Transduct. Target. Ther. 8, 247 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bansaccal, N. et al. The extracellular matrix dictates regional competence for tumour initiation. Nature 623, 828–835 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hsu, K. S. et al. Cancer cell survival depends on collagen uptake into tumor-associated stroma. Nat. Commun. 13, 7078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu, S. et al. The role of collagen in cancer: from bench to bedside. J. Transl. Med. 17, 309 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Su, H. et al. Collagenolysis-dependent DDR1 signalling dictates pancreatic cancer outcome. Nature 610, 366–372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Weiß, M. et al. Adhesion to laminin-1 and collagen IV induces the formation of Ca2+ microdomains that sensitize mouse T cells for activation. Sci. Signal. 16, eabn9405 (2023).

    Article  PubMed  Google Scholar 

  77. Spenle, C. et al. Tenascin-C orchestrates an immune-suppressive tumor microenvironment in oral squamous cell carcinoma. Cancer Immunol. Res. 8, 1122–1138 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Hwang, J. R., Byeon, Y., Kim, D. & Park, S. G. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 52, 750–761 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Berestjuk, I. et al. Targeting discoidin domain receptors DDR1 and DDR2 overcomes matrix‐mediated tumor cell adaptation and tolerance to BRAF‐targeted therapy in melanoma. EMBO Mol. Med. 14, e11814 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Tian, C. et al. Cancer-cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Res. 80, 1461–1474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thomassin, L. et al. The pro-regions of lysyl oxidase and lysyl oxidase-like 1 are required for deposition onto elastic fibers. J. Biol. Chem. 280, 42848–42855 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009). This study is one of the first to mechanistically link matrix stiffness to tumour progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, J. Y. et al. Cancer-associated fibroblasts promote oral squamous cell carcinoma progression through LOX-mediated matrix stiffness. J. Transl. Med. 19, 513 (2021). This study demonstrates a direct connection between CAF-mediated matrix rigidity via collagen crosslinking and tumour progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lewinska, M. et al. Fibroblast-derived lysyl oxidase increases oxidative phosphorylation and stemness in cholangiocarcinoma. Gastroenterology 166, 886–901 (2024).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, X. et al. Carcinoma-associated fibroblast-derived lysyl oxidase-rich extracellular vesicles mediate collagen crosslinking and promote epithelial–mesenchymal transition via p-FAK/p-paxillin/YAP signaling. Int. J. Oral Sci. 15, 32 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, Q. et al. Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. eBioMedicine 49, 157–171 (2019).

    CAS  Google Scholar 

  87. Northey, J. J. et al. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. J. Clin. Invest. 130, 5721–5737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nicolas-Boluda, A. et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 10, e58688 (2021). This study demonstrates the synergistic effects of ECM targeting with anti-PD1, to improve tumour immunity and therapy response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cox, T. R. et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721–1732 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aumiller, V. et al. Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis. Sci. Rep. 7, 149 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ma, H. Y. et al. LOXL4, but not LOXL2, is the critical determinant of pathological collagen cross-linking and fibrosis in the lung. Sci. Adv. 9, eadf0133 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Salvador, F. et al. Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res. 77, 5846–5859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang, H. et al. Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. J. Clin. Invest. 130, 4704–4709 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moore-Smith, L. D., Isayeva, T., Lee, J. H., Frost, A. & Ponnazhagan, S. Silencing of TGF-β1 in tumor cells impacts MMP-9 in tumor microenvironment. Sci. Rep. 7, 8678 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Das, A., Monteiro, M., Barai, A., Kumar, S. & Sen, S. MMP proteolytic activity regulates cancer invasiveness by modulating integrins. Sci. Rep. 7, 14219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lynch, C. C. et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7, 485–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Zhu, G. Q. et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov. 9, 25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qin, G. et al. Reciprocal activation between MMP-8 and TGF-β1 stimulates EMT and malignant progression of hepatocellular carcinoma. Cancer Lett. 374, 85–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, Y. et al. IL-8 activates fibroblasts to promote the invasion of HNSCC cells via STAT3-MMP1. Cell Death Discov. 10, 65 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mathieson, L., Koppensteiner, L., Dorward, D. A., O’Connor, R. A. & Akram, A. R. Cancer-associated fibroblasts expressing fibroblast activation protein and podoplanin in non-small cell lung cancer predict poor clinical outcome. Br. J. Cancer. 130, 1758–1769 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou, Y. et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Invest. 123, 1096–1108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nakasaki, M. et al. The matrix protein Fibulin-5 is at the interface of tissue stiffness and inflammation in fibrosis. Nat. Commun. 6, 8574 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Swiatlowska, P. et al. Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Sci. Adv. 8, eabm2471 (2022).

    Article  Google Scholar 

  105. Liu, Y. et al. Fibrin stiffness mediates dormancy of tumor-repopulating cells via a Cdc42-driven Tet2 epigenetic program. Cancer Res. 78, 3926–3937 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Wei, B. et al. Human colorectal cancer progression correlates with LOX-induced ECM stiffening. Int. J. Biol. Sci. 13, 1450–1457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rice, A. J. et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6, e352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Malik, R. et al. Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biol. 81, 50–69 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Hupfer, A. et al. Matrix stiffness drives stromal autophagy and promotes formation of a protumorigenic niche. Proc. Natl Acad. Sci. USA 118, e2105367118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lander, V. E. et al. Stromal reprogramming by FAK inhibition overcomes radiation resistance to allow for immune priming and response to checkpoint blockade. Cancer Discov. 12, 2774–2799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Canel, M. et al. FAK suppresses antigen processing and presentation to promote immune evasion in pancreatic cancer. Gut 73, 131–155 (2024).

    Article  CAS  Google Scholar 

  112. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Parker, A. L. et al. Extracellular matrix profiles determine risk and prognosis of the squamous cell carcinoma subtype of non-small cell lung carcinoma. Genome Med. 14, 126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ahluwalia, P. et al. Prognostic and therapeutic implications of extracellular matrix associated gene signature in renal clear cell carcinoma. Sci. Rep. 11, 7561 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rafaeva, M. et al. Fibroblast-derived matrix models desmoplastic properties and forms a prognostic signature in cancer progression. Front. Immunol. 14, 1154528 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Reuten, R. et al. Basement membrane stiffness determines metastases formation. Nat. Mater. 20, 892–903 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Jensen, C. et al. Non-invasive biomarkers derived from the extracellular matrix associate with response to immune checkpoint blockade (anti-CTLA-4) in metastatic melanoma patients. J. Immunother. Cancer 6, 152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhang, H. et al. An extracellular matrix-based signature associated with immune microenvironment predicts the prognosis and therapeutic responses of patients with oesophageal squamous cell carcinoma. Front. Mol. Biosci. 8, 598427 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Puttock, E. H. et al. Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat. Commun. 14, 2514 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Triulzi, T. et al. Neoplastic and stromal cells contribute to an extracellular matrix gene expression profile defining a breast cancer subtype likely to progress. PLoS ONE 8, e56761 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sangaletti, S. et al. Mesenchymal transition of high-grade breast carcinomas depends on extracellular matrix control of myeloid suppressor cell activity. Cell Rep. 17, 233–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019). This study highlights the role of matrix density in the modulation of T cell motility.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Pruitt, H. C. et al. Collagen fiber structure guides 3D motility of cytotoxic T lymphocytes. Matrix Biol. 85–86, 147–159 (2020).

    Article  PubMed  Google Scholar 

  124. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012). This is one of the first studies to link ECM fibre density and orientation to T cell motility and infiltration into tumour nests.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tomko, L. A. et al. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma. Sci. Rep. 8, 12941 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Murdamoothoo, D. et al. Tenascin‐C immobilizes infiltrating T lymphocytes through CXCL12 promoting breast cancer progression. EMBO Mol. Med. 13, e13270 (2021). This study demonstrates how tenascin-C-matrix fibres contribute to T cell exclusion in breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Deligne, C. et al. Matrix-targeting immunotherapy controls tumor growth and spread by switching macrophage phenotype. Cancer Immunol. Res. 8, 368–382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kazakova, E. et al. Angiogenesis regulators S100A4, SPARC and SPP1 correlate with macrophage infiltration and are prognostic biomarkers in colon and rectal cancers. Front. Oncol. 21, 1058337 (2023).

    Article  Google Scholar 

  129. Guerrero-Juarez, C. F. et al. Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment. Sci. Adv. 8, eabm7981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, J., Bai, Y. K. & Fan, Z. G. Clinicopathological and prognostic significance of SPARC expression in gastric cancer: a meta-analysis and bioinformatics analysis. Oncol. Lett. 25, 240 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tichet, M. et al. Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nat. Commun. 6, 6993 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Gao, Z. W. et al. SPARC overexpression promotes liver cancer cell proliferation and tumor growth. Front. Mol. Biosci. 8, 775743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Walch-Rückheim, B. et al. Cervical cancer-instructed stromal fibroblasts enhance IL23 expression in dendritic cells to support expansion of Th17 cells. Cancer Res. 79, 1573–1586 (2019).

    Article  PubMed  Google Scholar 

  134. Dubrot, J. et al. Lymph node stromal cells acquire peptide–MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance. J. Exp. Med. 211, 1153–1166 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cheng, J. T. et al. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis 5, e198 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Di Blasio, S. et al. The tumour microenvironment shapes dendritic cell plasticity in a human organotypic melanoma culture. Nat. Commun. 11, 2749 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gupta, Y. H., Khanom, A. & Acton, S. E. Control of dendritic cell function within the tumour microenvironment. Front. Immunol. 10, 733800 (2022).

    Article  Google Scholar 

  138. Ma, S. et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8+ T cells. Nat. Immunol. 24, 255–266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Peranzoni, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc. Natl Acad. Sci. USA 115, E4041–E4050 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cho, H. et al. Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF secretion. Clin. Cancer Res. 24, 5407–5421 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Mazur, A., Holthoff, E., Vadali, S., Kelly, T. & Post, S. R. Cleavage of type I collagen by fibroblast activation protein-α enhances class A scavenger receptor mediated macrophage adhesion. PLoS ONE 11, e0150287 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Qi, J. et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat. Commun. 13, 1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nielsen, S. R. et al. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Biol. 18, 549–560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Savino, W., Mendes-Da-Cruz, D. A., Silva, J. S., Dardenne, M. & Cotta-De-Almeida, V. Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines? Trends Immunol. 23, 305–313 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Bougherara, H. et al. Real-time imaging of resident T cells in human lung and ovarian carcinomas reveals how different tumor microenvironments control T lymphocyte migration. Front. Immunol. 12, 500 (2015).

    Google Scholar 

  146. Li, Q., Huth, S., Adam, D. & Selhuber-Unkel, C. Reinforcement of integrin-mediated T-lymphocyte adhesion by TNF-induced inside-out signaling. Sci. Rep. 28, 30452 (2016).

    Article  Google Scholar 

  147. Hartmann, N. et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin. Cancer Res. 20, 3422–3433 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Sun, Z. et al. Tenascin-C increases lung metastasis by impacting blood vessel invasions. Matrix Biol. 83, 26–47 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Brock, V. J. et al. P2X4 and P2X7 are essential players in basal T cell activity and Ca2+ signaling milliseconds after T cell activation. Sci. Adv. 8, eabl9770 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Diercks, B. P. et al. ORAI1, stromal interaction molecules 1/2, and ryanodine receptor type 1 shape sub-second Ca2+ microdomains upon T cell activation. Sci. Signal. 11, eaat0358 (2019).

    Article  Google Scholar 

  151. Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Jenkins, L. et al. Cancer-associated fibroblasts suppress CD8+ T-cell infiltration and confer resistance to immune-checkpoint blockade. Cancer Res. 82, 2904–2917 (2022). This study highlights the immune-suppressive role of myCAFs and their contribution to immunotherapy resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lakins, M. A., Ghorani, E., Munir, H., Martins, C. P. & Shields, J. D. Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T cells to protect tumour cells. Nat. Commun. 9, 948 (2018). This study gives mechanistic insights on the role of cancer-associated fibroblasts in suppressing CD8+ T cell cytotoxicity.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Arpinati, L. & Scherz-Shouval, R. From gatekeepers to providers: regulation of immune functions by cancer-associated fibroblasts. Trends Cancer 9, 421–443 (2023). This review shows that cancer-associated fibroblasts hinder tumour immunity by suppressing T cell proliferation and inducing T cell exhaustion.

    Article  CAS  PubMed  Google Scholar 

  155. Chen, Q. Y. et al. Tumor fibroblast-derived FGF2 regulates expression of SPRY1 in esophageal tumor-infiltrating T cells and plays a role in T cell exhaustion. Cancer Res. 80, 5583–5596 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Gorchs, L. et al. Human pancreatic carcinoma-associated fibroblasts promote expression of co-inhibitory markers on CD4+ and CD8+ T-cells. Front. Immunol. 10, 847 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Krishnamurty, A. T. et al. LRRC15+myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tsoumakidou, M. The advent of immune stimulating CAFs in cancer. Nat. Rev. Cancer 23, 258–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  159. Huang, H. et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656–673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kato, T. et al. Cancer-associated fibroblasts affect intratumoral CD8+ and FoxP3+ T cells via interleukin 6 in the tumor microenvironment. Clin. Cancer Res. 24, 4820–4833 (2018). This study highlights the tumour-permissive role of CAFs in facilitating regulatory T cell infiltration and promoting CD8+ T cell tumour exclusion.

    Article  CAS  PubMed  Google Scholar 

  161. Adu-Berchie, K. et al. Generation of functionally distinct T-cell populations by altering the viscoelasticity of their extracellular matrix. Nat. Biomed. Eng. 7, 1374–1391 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Peng, D. H. et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nat. Commun. 11, 4520 (2020). This study demonstrates a collagen-induced mechanism regulating immunotherapy resistance in lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Haj-Shomaly, J. et al. T cells promote metastasis by regulating extracellular matrix remodeling following chemotherapy. Cancer Res. 82, 278–291 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Beyer, I. et al. Controlled extracellular matrix degradation in breast cancer tumors improves therapy by trastuzumab. Mol. Ther. 19, 479–489 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Cescon, M. et al. Collagen VI sustains cell stemness and chemotherapy resistance in glioblastoma. Cell. Mol. Life Sci. 80, 233 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Devarajan, R. et al. Targeting collagen XVIII improves the efficiency of ErbB inhibitors in breast cancer models. J. Clin. Invest. 133, e159181 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ramos, M. I. P. et al. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR–collagen interaction. eLife 10, e62927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Maasho, K. et al. The inhibitory leukocyte-associated Ig-like receptor-1 (LAIR-1) is expressed at high levels by human naive T cells and inhibits TCR mediated activation. Mol. Immunol. 42, 1521–1530 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Jansen, C. A. et al. Regulated expression of the inhibitory receptor LAIR-1 on human peripheral T cells during T cell activation and differentiation. Eur. J. Immunol. 37, 914–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Xu, L., Wang, S., Li, J., Li, J. & Li, B. Cancer immunotherapy based on blocking immune suppression mediated by an immune modulator LAIR-1. Oncoimmunology 9, 1740477 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Blair, A. B. et al. Dual stromal targeting sensitizes pancreatic adenocarcinoma for anti-programmed cell death protein 1 therapy. Gastroenterology 163, 1267–1280 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Ishihara, J. et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci. Transl. Med. 9, eaan0401 (2017). This study highlights the potential therapeutic role of ECM targeting to restore proper tumour immunity and to improve immune checkpoint inhibitor efficacy.

    Article  PubMed  Google Scholar 

  173. Martino, M. M. et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343, 885–889 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Huang, Z. et al. Periostin facilitates ovarian cancer recurrence by enhancing cancer stemness. Sci. Rep. 13, 21382 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Furuhashi, S. et al. Tenascin C in pancreatic cancer-associated fibroblasts enhances epithelial mesenchymal transition and is associated with resistance to immune checkpoint inhibitor. Am. J. Cancer Res. 13, 5641–5655 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT04123574 (2019).

  177. Ko, A. H. et al. A phase I study of FOLFIRINOX plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma. Pancreas 45, 370–375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Van Cutsem, E. et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, 3185–3194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Catenacci, D. V. T. et al. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J. Clin. Oncol. 33, 4284–4292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kalli, M., Poskus, M. D., Stylianopoulos, T. & Zervantonakis, I. K. Beyond matrix stiffness: targeting force-induced cancer drug resistance. Trends Cancer 9, 937–954 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT00489710 (2006).

  182. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT04171219 (2020).

  183. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05515783?term=NCT05515783&rank=1 (2022).

  184. Zang, J. et al. Synthesis, preclinical evaluation and radiation dosimetry of a dual targeting PET tracer [68Ga]Ga-FAPI-RGD. Theranostics 12, 7180–7190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Monteran, L. et al. Chemotherapy-induced complement signaling modulates immunosuppression and metastatic relapse in breast cancer. Nat. Commun. 13, 5797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gray, A. L. et al. Chemokine CXCL4 interactions with extracellular matrix proteoglycans mediate widespread immune cell recruitment independent of chemokine receptors. Cell Rep. 42, 111930 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Barbazan, J. et al. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat. Commun. 14, 6966 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ho, N. C. W. et al. Bioengineered hydrogels recapitulate fibroblast heterogeneity in cancer. Adv. Sci. 11, e2307129 (2024).

    Article  Google Scholar 

  189. Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sirniö, P. et al. High-serum MMP-8 levels are associated with decreased survival and systemic inflammation in colorectal cancer. Br. J. Cancer 119, 213–219 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Tang, H., You, T., Sun, Z., Bai, C. & Wang, Y. Extracellular matrix-based gene expression signature defines two prognostic subtypes of hepatocellular carcinoma with different immune microenvironment characteristics. Front. Mol. Biosci. 9, 839806 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pankova, D. et al. Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma. Mol. Cancer Res. 14, 287–295 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Pereira, J. et al. Myofibroblasts and mast cells: influences on biological behavior of odontogenic lesions. Ann. Diagn. Pathol. 34, 66–71 (2018).

    Article  PubMed  Google Scholar 

  194. Hsu, W. H. et al. Oncogenic KRAS drives lipofibrogenesis to promote angiogenesis and colon cancer progression. Cancer Discov. 13, 2652–2673 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fein, D. E. C. et al. Selective inhibition of fibroblast-specific domain discoidin receptor 1 (DDR1) reduces collagen deposition and modulates fibroblast-specific cytokine release within the breast microenvironment. Preprint at bioRxiv https://doi.org/10.1101/2023.08.11 (2023).

  196. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Valpione, S. et al. The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival. Nat. Commun. 12, 4098 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wang, J. T. et al. Intratumoral IL17-producing cells infiltration correlate with antitumor immune contexture and improved response to adjuvant chemotherapy in gastric cancer. Ann. Oncol. 30, 266–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Turnis, M. E. et al. Interleukin-35 limits anti-tumor immunity. Immunity 44, 316–329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sawant, D. V. et al. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat. Immunol. 20, 724–735 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gunderson, A. J. et al. TGFβ suppresses CD8+ T cell expression of CXCR3 and tumor trafficking. Nat. Commun. 11, 1749 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  206. Wing, J. B., Ise, W., Kurosaki, T. & Sakaguchi, S. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity 41, 1013–1025 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Haabeth, O. A. W. et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat. Commun. 2, 240 (2011).

    Article  PubMed  Google Scholar 

  208. Laheurte, C. et al. Distinct prognostic value of circulating anti-telomerase CD4+ Th1 immunity and exhausted PD-1+/TIM-3+ T cells in lung cancer. Br. J. Cancer 121, 405–416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lee, H. L. et al. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci. Rep. 9, 3260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Boieri, M. et al. CD4+ T helper 2 cells suppress breast cancer by inducing terminal differentiation. J. Exp. Med. 219, e20201963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Peng, D. H. et al. Th17 cells contribute to combination MEK inhibitor and anti-PD-L1 therapy resistance in KRAS/p53 mutant lung cancers. Nat. Commun. 12, 2606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bowers, J. S. et al. Th17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion. JCI Insight 2, e90772 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Weigelin, B. et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat. Commun. 12, 5217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Brambilla, E. et al. Prognostic effect of tumor lymphocytic infiltration in resectable non-small-cell lung cancer. J. Clin. Oncol. 34, 1223–1230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Muhammad, S., Fan, T., Hai, Y., Gao, Y. & He, J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol. Cancer 22, 121 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Hu, X. & Ivashkiv, L. B. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Muthuswamy, R. et al. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 68, 5972–5978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Snell, L. M. et al. Dynamic CD4+ T cell heterogeneity defines subset-specific suppression and PD-L1-blockade-driven functional restoration in chronic infection. Nat. Immunol. 22, 1524–1537 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Goods, B. A. et al. Functional differences between PD-1+ and PD-1-CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme. PLoS ONE 12, e0181538 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Scherz-Shouval laboratory members for helpful discussions. L.A. is funded by the Sergio Lombroso Postdoctoral Fellowship programme. R.S.-S. is incumbent of the Robert and Yadelle Sklare Professorial Chair in Biochemistry.

Author information

Authors and Affiliations

Authors

Contributions

L.A. researched data for the article, contributed substantially to discussion of the content and wrote the article. G.C. researched data for the article, prepared the figures and contributed to discussion of the content and to the writing of the article. R.S.-S. researched data for the article, contributed substantially to discussion of the content and to the writing and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ruth Scherz-Shouval.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Mara Sherman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Azoxymethane (AOM)–dextran sodium sulfate (DSS)

A standard mouse model for colitis-associated cancer obtained by the chemical induction of DNA damage (via AOM injection) followed by cyclic administration of DSS to induce colonic epithelial damage.

Cholangiocarcinoma

Rare cancer arising from various areas of the biliary duct epithelium, including the intrahepatic, perihilar and extrahepatic areas.

Desmoplastic ECM

High-density ECM surrounding the tumour that results from an increased production and deposition of ECM fibres.

Discoidin domain receptors

(DDRs). Collagen-binding tyrosine kinase receptors that mediate numerous processes such as wound healing, tissue development and cell growth and migration under physiological and pathological conditions including cancer.

ECM scores

A numerical value derived from the expression of a set of ECM-related genes of interest that can be used as a predictive biomarker.

Fibre alignment

The organized orientation of ECM fibres (such as collagen fibres intersecting each other orthogonally) that can direct an organized cell migration and proper focal adhesion.

Gelatinases

Subgroup of secreted MMPs including MMP2 and MMP9 that easily digest gelatin among other ECM molecules.

Glycoproteins

A class of ECM macromolecules containing carbohydrate chains (monosaccharides or oligosaccharides) covalently bound to amino acid side chains.

KPC

Transgenic mouse model of PDAC bearing a pancreas-specific expression of mutant Kras and mutant Trp53 (KrasG12D; Trp53R172H; Pdx1-cre).

KPPC

Transgenic mouse model of PDAC bearing a pancreas-specific expression of mutant Kras and Trp53 (KrasG12D/+; Trp53R172H/R172H; P48-cre).

KPPF model

Transgenic mouse model of PDAC bearing a pancreas-specific Trp53 knockout and pancreas-specific oncogenic Kras expression (KrasFSF-G12D/+; Trp53frt/frt; Pdx1-Flp).

KTC model

Genetically engineered mouse model of PDAC bearing pancreas-selective Tgfbr2 knockout and mutant (G12D) Kras expression (Tgfbr2flox/wt; KrasLSL-G12D/+; Ptf1a-cre).

Laminins

A family of ECM glycoproteins prominent in the basal lamina of tissues that have a major role in promoting cell adhesion by anchoring cells to the ECM.

Lysyl hydroxylase

(LH). Iron-dependent crosslinking enzymes that catalyse the hydroxylation of lysine residues of collagen.

Lysyl oxidase (LOX)

(LOX). Copper-dependent crosslinking enzyme that oxidizes lysine residues of collagen and elastin.

Matrilysins

Subgroup of secreted MMPs with ECM proteolytic activity, such as MMP7 (matrilysin-1) and MMP26 (matrilysin-2).

Matrix metalloproteinases

(MMPs). Secreted or membrane-anchored zinc-dependent endopeptidases that degrade different ECM components.

M0 macrophages

The use of M0 generally refers to a population of macrophages characterized by a non-activated phenotype.

MMTV-PyMT

Transgenic model that leads to the development of spontaneous mammary tumours as a result of the expression of the polyoma middle T (PyMT) oncogene under the control of the mouse mammary tumour virus (MMTV) promoter.

Omental fibroblasts

Fibroblasts present in the omentum, a fatty tissue layer surrounding intraperitoneal organs such as stomach and small intestine.

Proteoglycans

ECM macromolecules highly present in connective tissues and consist of a protein core covalently bound to glycosaminoglycan chains.

Rigidity

Resistance to deformation in response to an applied force that in the context of cancer occurs as a consequence of dysregulated ECM remodelling and increased collagen crosslinking.

Shear stress

In physiology, shear stress refers to the mechanical stress imposed by tangential forces of the blood flow on blood vessel walls and within the TME; cancer cells can experience shear stress owing to the pressure generated by interstitial fluids.

Stromelysins

Subgroup of stromal-cell-derived secreted MMPs including MMP3 (stromelysin-1) and MMP10 (stromelysin-2) that can degrade various matrix components such as proteoglycans and fibronectin.

Viscoelasticity

The ability of a substance to respond in a time-dependent manner to an applied force or stress that induces its deformation.

Viscosity

Resistance to movement or change in shape owing to internal friction that is enhanced in the tumour ECM, facilitating cancer cell motility and dissemination.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arpinati, L., Carradori, G. & Scherz-Shouval, R. CAF-induced physical constraints controlling T cell state and localization in solid tumours. Nat Rev Cancer 24, 676–693 (2024). https://doi.org/10.1038/s41568-024-00740-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00740-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer