Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

Cancer drug-tolerant persister cells: from biological questions to clinical opportunities

Abstract

The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant ‘persister’ (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The key features of drug-tolerant persister cells.
Fig. 2: Drug-tolerant persister cells rewire their microenvironment to escape immunity and survive.
Fig. 3: Therapeutic strategies to prevent tumour relapse from drug-tolerant persister cells.

Similar content being viewed by others

References

  1. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010). The emergence of DTP cells following drug treatment of cancer cells was described for the first time in this landmark study, which also highlighted the selective sensitivity of DTP cells to inhibition of the KDM5 epigenetic enzyme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shen, S., Vagner, S. & Robert, C. Persistent cancer cells: the deadly survivors. Cell 183, 860–874 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Bigger, J. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244, 497–500 (1944).

    Article  Google Scholar 

  5. Hobby, G. L., Meyer, K. & Chaffee, E. Observations on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. Med. 50, 281–285 (1942).

    Article  CAS  Google Scholar 

  6. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Pontes, M. H. & Groisman, E. A. Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci. Signal. 12, eaax3938 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tape, C. J. Plastic persisters: revival stem cells in colorectal cancer. Trends Cancer 10, 185–195 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Russo, M. et al. A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat. Genet. 54, 976–984 (2022). This work shows that the emergence of DTP cells in CRC is primarily induced by drug treatment and is associated with a substantial increase in the mutation rate, making cancer cells susceptible to the inhibition of mechanisms that provide DNA damage tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oren, Y. et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 596, 576–582 (2021). This work shows that at least a fraction of DTP cells slowly replicate, thus countering the idea that the DTP phenotype perfectly aligns with the dormancy state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016). This work shows that different mechanisms of drug resistance may arise in cancer cells after the drug-tolerant phase and that DTP-derived resistant cells can maintain some of the features of DTP cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pribis, J. P., Zhai, Y., Hastings, P. J. & Rosenberg, S. M. Stress-induced mutagenesis, gambler cells, and stealth targeting antibiotic-induced evolution. mBio 13, e0107422 (2022).

    Article  PubMed  Google Scholar 

  16. Galhardo, R. S., Hastings, P. J. & Rosenberg, S. M. Mutation as a stress response and the regulation of evolvability. Crit. Rev. Biochem. Mol. Biol. 42, 399–435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Russo, M. et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366, 1473–1480 (2019). This work shows that, similar to bacterial cells challenged with antibiotics, cancer cells rely on stress-induced mutagenesis to promote the acquisition of mutations associated with drug resistance.

    Article  CAS  PubMed  Google Scholar 

  18. Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016). This review provides key principles for the definition of resistance, tolerance and persistence in bacteria that should guide research in the oncology field.

    Article  CAS  PubMed  Google Scholar 

  19. Bigger, J. W. The bactericidal action of penicillin on Staphylococcus pyogenes. Ir. J. Med. Sci. 19, 553–568 (1944).

    Article  Google Scholar 

  20. Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Tuomanen, E. Phenotypic tolerance: the search for beta-lactam antibiotics that kill nongrowing bacteria. Rev. Infect. Dis. 8, S279–S291 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan, Y. et al. Observation of universal ageing dynamics in antibiotic persistence. Nature 600, 290–294 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Manuse, S. et al. Bacterial persisters are a stochastically formed subpopulation of low-energy cells. PLoS Biol. 19, e3001194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dörr, T., Vulić, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schuster, C. F. & Bertram, R. Toxin–antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol. Lett. 340, 73–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amato, S. M., Orman, M. A. & Brynildsen, M. P. Metabolic control of persister formation in Escherichia coli. Mol. Cell 50, 475–487 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Korch, S. B., Henderson, T. A. & Hill, T. M. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50, 1199–1213 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Kwan, B. W., Valenta, J. A., Benedik, M. J. & Wood, T. K. Arrested protein synthesis increases persister-like cell formation. Antimicrob. Agents Chemother. 57, 1468–1473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Y. & Zhang, Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother. 51, 2092–2099 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, L. et al. The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms. Microbiology 158, 3014–3019 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Girgis, H. S., Harris, K. & Tavazoie, S. Large mutational target size for rapid emergence of bacterial persistence. Proc. Natl Acad. Sci. USA 109, 12740–12745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418–421 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Sulaiman, J. E. & Lam, H. Evolution of bacterial tolerance under antibiotic treatment and its implications on the development of resistance. Front. Microbiol. 12, 617412 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pu, Y. et al. Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nat. Rev. Clin. Oncol. 20, 799–813 (2023).

    Article  PubMed  Google Scholar 

  36. Noronha, A. et al. AXL and error-prone DNA replication confer drug resistance and offer strategies to treat EGFR-mutant lung cancer. Cancer Discov. 12, 2666–2683 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosano, D. et al. Long-term multimodal recording reveals epigenetic adaptation routes in dormant breast cancer cells. Cancer Discov. 14, 866–889 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Álvarez-Varela, A. et al. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nat. Cancer 3, 1052–1070 (2022).

    Article  PubMed  Google Scholar 

  39. Rehman, S. K. et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242.e21 (2021). This work finds that an embryonic survival phenotype (diapause) is co-opted by cancer cells to promote survival during drug treatment.

    Article  CAS  PubMed  Google Scholar 

  40. Raha, D. et al. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res. 74, 3579–3590 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell 23, 811–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017). This work shows that the emergence of DTPs may be a multistage process involving both selection of pre-existing cells and drug-induced reprogramming.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855.e19 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Karki, P., Angardi, V., Mier, J. C. & Orman, M. A. A transient metabolic state in melanoma persister cells mediated by chemotherapeutic treatments. Front. Mol. Biosci. 8, 780192 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Dhimolea, E. et al. An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. Cancer Cell 39, 240–256.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Echeverria, G. V. et al. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci. Transl. Med. 11, eaav0936 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Merino, D. et al. Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat. Commun. 10, 766 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Boumahdi, S. & de Sauvage, F. J. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 19, 39–56 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Marsolier, J. et al. H3K27me3 conditions chemotolerance in triple-negative breast cancer. Nat. Genet. 54, 459–468 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, C., Tian, C., Hoffman, T. E., Jacobsen, N. K. & Spencer, S. L. Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signalling. Nat. Commun. 12, 1747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoffman, T. E. et al. Multiple cancers escape from multiple MAPK pathway inhibitors and use DNA replication stress signaling to tolerate aberrant cell cycles. Sci. Signal. 16, eade8744 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kinnunen, P. C., Humphries, B. A., Luker, G. D., Luker, K. E. & Linderman, J. J. Characterizing heterogeneous single-cell dose responses computationally and experimentally using threshold inhibition surfaces and dose-titration assays. npj Syst. Biol. Appl. 10, 42 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xue, J. Y. et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 577, 421–425 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jia, D. et al. Drug-tolerant idling melanoma cells exhibit theory-predicted metabolic low-low phenotype. Front. Oncol. 10, 1426 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. França, G. S. et al. Cellular adaptation to cancer therapy along a resistance continuum. Nature 631, 876–883 (2024).

    Article  PubMed  Google Scholar 

  57. Guler, G. D. et al. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure. Cancer Cell 32, 221–237.e13 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Liau, B. B. et al. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20, 233–246.e237 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, S. et al. An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nat. Commun. 10, 5713 (2019). This work shows that translational rewiring may contribute to the emergence of DTP cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao, X. et al. BCL2 amplicon loss and transcriptional remodeling drives ABT-199 resistance in B cell lymphoma models. Cancer Cell 35, 752–766.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aissa, A. F. et al. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat. Commun. 12, 1628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bell, C. C. et al. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat. Commun. 10, 2723 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen, M. et al. Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse. Cell Rep. Med. 5, 101471 (2024). This work identifies epigenetic vulnerabilities of DTPs through CRISPR–Cas9-based genetic screening.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vinogradova, M. et al. An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat. Chem. Biol. 12, 531–538 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Banelli, B. et al. The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma. Cell Cycle 14, 3418–3429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Travnickova, J. et al. Zebrafish MITF-low melanoma subtype models reveal transcriptional subclusters and MITF-independent residual disease. Cancer Res. 79, 5769–5784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Travnickova, J. et al. Fate mapping melanoma persister cells through regression and into recurrent disease in adult zebrafish. Dis. Model. Mech. 15, dmm049566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brombin, A. et al. Tfap2b specifies an embryonic melanocyte stem cell that retains adult multifate potential. Cell Rep. 38, 110234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu, Y. et al. ALDH1A3-acetaldehyde metabolism potentiates transcriptional heterogeneity in melanoma. Cell Rep. 43, 114406 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Luo, Y. et al. ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cell 30, 2100–2113 (2012).

    Article  CAS  Google Scholar 

  72. Sarvi, S. et al. ALDH1 bio-activates nifuroxazide to eradicate ALDH. Cell Chem. Biol. 25, 1456–1469.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Taniguchi, H. et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat. Commun. 10, 259 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Z. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet. 44, 852–860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arasada, R. R. et al. Notch3-dependent β-catenin signaling mediates EGFR TKI drug persistence in EGFR mutant NSCLC. Nat. Commun. 9, 3198 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang, R. et al. Transient IGF-1R inhibition combined with osimertinib eradicates AXL-low expressing EGFR mutated lung cancer. Nat. Commun. 11, 4607 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, H. J. et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell 26, 207–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Priya, B., Ravi, S. & Kirubakaran, S. Targeting ATM and ATR for cancer therapeutics: inhibitors in clinic. Drug Discov. Today 28, 103662 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Prevo, R. et al. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol. Ther. 13, 1072–1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huntoon, C. J. et al. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status. Cancer Res. 73, 3683–3691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, W. J. et al. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res. 73, 1219–1231 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Cerezo, M., Robert, C., Liu, L. & Shen, S. The role of mRNA translational control in tumor immune escape and immunotherapy resistance. Cancer Res. 81, 5596–5604 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Fabbri, L., Chakraborty, A., Robert, C. & Vagner, S. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat. Rev. Cancer 21, 558–577 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Song, K. A. et al. Increased synthesis of MCL-1 protein underlies initial survival of EGFR-mutant lung cancer to EGFR inhibitors and provides a novel drug target. Clin. Cancer Res. 24, 5658–5672 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Calvo, V. et al. A PERK-specific inhibitor blocks metastatic progression by limiting integrated stress response-dependent survival of quiescent cancer cells. Clin. Cancer Res. 29, 5155–5172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sannino, S. et al. Non-essential amino acid availability influences proteostasis and breast cancer cell survival during proteotoxic stress. Mol. Cancer Res. 21, 675–690 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Falletta, P. et al. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 31, 18–33 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vendramin, R. et al. Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. J. Exp. Med. 218, e20210571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Palam, L. R., Gore, J., Craven, K. E., Wilson, J. L. & Korc, M. Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma. Cell Death Dis. 6, e1913 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guan, B. J. et al. A unique ISR program determines cellular responses to chronic stress. Mol. Cell 68, 885–900.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Rouschop, K. M. et al. PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc. Natl Acad. Sci. USA 110, 4622–4627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reich, S. et al. A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nat. Commun. 11, 2936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hu, C. et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm 3, e161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sonia, C. et al. The cancer-specific lncRNA LISR customizes ribosomes to suppress anti-tumour immunity. Preprint at bioRxiv https://doi.org/10.1101/2023.01.06.523012 (2023).

  98. Falletta, P., Goding, C. R. & Vivas-García, Y. Connecting metabolic rewiring with phenotype switching in melanoma. Front. Cell Dev. Biol. 10, 930250 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhang, W. C. et al. miR-147b-mediated TCA cycle dysfunction and pseudohypoxia initiate drug tolerance to EGFR inhibitors in lung adenocarcinoma. Nat. Metab. 1, 460–474 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Goldman, A. et al. Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Sci. Signal. 12, eaas8779 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017). This work finds that DTP cells are dependent on GPX4 activity to counteract ferroptosis and this is connected to the critical role that the antioxidant response plays in DTP cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shen, S. et al. Melanoma persister cells are tolerant to BRAF/MEK inhibitors via ACOX1-mediated fatty acid oxidation. Cell Rep. 33, 108421 (2020). This work identifies peroxisomal fatty acid oxidation as a critical metabolic pathway in DTP cells, as a consequence of the metabolic switch towards oxidative phosphorylation that has been described in DTP cells from multiple tumour types.

    Article  CAS  PubMed  Google Scholar 

  104. Liu, Z. et al. CPT1A-mediated fatty acid oxidation confers cancer cell resistance to immune-mediated cytolytic killing. Proc. Natl Acad. Sci. USA 120, e2302878120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Redondo-Muñoz, M. et al. Metabolic rewiring induced by ranolazine improves melanoma responses to targeted therapy and immunotherapy. Nat. Metab. 5, 1544–1562 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mohiuddin, S. G., Nguyen, T. V. & Orman, M. A. Pleiotropic actions of phenothiazine drugs are detrimental to Gram-negative bacterial persister cells. Commun. Biol. 5, 217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McDonald, P. C. & Dedhar, S. Persister cell plasticity in tumour drug resistance. Semin. Cell Dev. Biol. 156, 1–10 (2024).

    Article  CAS  PubMed  Google Scholar 

  108. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Weng, C. H. et al. Epithelial–mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 38, 455–468 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Chung, J. H. et al. Clinical and molecular evidences of epithelial to mesenchymal transition in acquired resistance to EGFR-TKIs. Lung Cancer 73, 176–182 (2011).

    Article  PubMed  Google Scholar 

  111. Risom, T. et al. Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nat. Commun. 9, 3815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sahoo, S. et al. A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. NAR Cancer 3, zcab027 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lupo, B. et al. Colorectal cancer residual disease at maximal response to EGFR blockade displays a druggable Paneth cell-like phenotype. Sci. Transl. Med. 12, eaax8313 (2020). This work shows that in CRC the emergence of DTP cells may be associated with transdifferentiation, as has been observed in other tumour types.

    Article  CAS  PubMed  Google Scholar 

  114. Davies, A. H., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15, 271–286 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Lee, J. K. et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J. Clin. Oncol. 35, 3065–3074 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Biehs, B. et al. A cell identity switch allows residual BCC to survive hedgehog pathway inhibition. Nature 562, 429–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Chan, J. M. et al. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science 377, 1180–1191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Deng, S. et al. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. Nat. Cancer 3, 1071–1087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Moorman, A. R. et al. Progressive plasticity during colorectal cancer metastasis. Preprint at bioRxiv https://doi.org/10.1101/2023.08.18.553925 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chan, J. M. et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 39, 1479–1496.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Raghavan, S. et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 184, 6119–6137.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Burdziak, C. et al. Epigenetic plasticity cooperates with cell–cell interactions to direct pancreatic tumorigenesis. Science 380, eadd5327 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chang, C. A. et al. Ontogeny and vulnerabilities of drug-tolerant persisters in HER2+ breast cancer. Cancer Discov. 12, 1022–1045 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Goyal, Y. et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. Nature 620, 651–659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Anand, U. et al. Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 10, 1367–1401 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Duy, C. et al. Chemotherapy induces senescence-like resilient cells capable of initiating AML recurrence. Cancer Discov. 11, 1542–1561 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Paudel, B. B. et al. A nonquiescent ‘idling’ population state in drug-treated, BRAF-mutated melanoma. Biophys. J. 114, 1499–1511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marin-Bejar, O. et al. Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell 39, 1135–1149.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Zhou, X. et al. Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. Nat. Cancer 4, 1362–1381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zou, J., Peng, B., Qu, J. & Zheng, J. Are bacterial persisters dormant cells only? Front. Microbiol. 12, 708580 (2021).

    Article  PubMed  Google Scholar 

  133. Kalkavan, H. et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356–3374.e22 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Solé, L. et al. p53 wild-type colorectal cancer cells that express a fetal gene signature are associated with metastasis and poor prognosis. Nat. Commun. 13, 2866 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ramos Zapatero, M. et al. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 186, 5606–5619.e24 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Fenelon, J. C., Banerjee, A. & Murphy, B. D. Embryonic diapause: development on hold. Int. J. Dev. Biol. 58, 163–174 (2014).

    Article  PubMed  Google Scholar 

  137. Fenelon, J. C. & Renfree, M. B. The history of the discovery of embryonic diapause in mammals. Biol. Reprod. 99, 242–251 (2018).

    Article  PubMed  Google Scholar 

  138. Boroviak, T. et al. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Iyer, D. P. et al. Delay of human early development via in vitro diapause. Preprint at bioRxiv https://doi.org/10.1101/2023.05.29.541316 (2023).

  140. Bulut-Karslioglu, A. et al. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119–123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Scognamiglio, R. et al. Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164, 668–680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Omuro, A. M. et al. High incidence of disease recurrence in the brain and leptomeninges in patients with nonsmall cell lung carcinoma after response to gefitinib. Cancer 103, 2344–2348 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Smalley, I. et al. Single-cell characterization of the immune microenvironment of melanoma brain and leptomeningeal metastases. Clin. Cancer Res. 27, 4109–4125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Priego, N. et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 24, 1024–1035 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Mancini, C., Lori, G., Pranzini, E. & Taddei, M. L. Metabolic challengers selecting tumor-persistent cells. Trends Endocrinol. Metab. 35, 263–276 (2024).

    Article  CAS  PubMed  Google Scholar 

  147. Wicks, E. E. & Semenza, G. L. Hypoxia-inducible factors: cancer progression and clinical translation. J. Clin. Invest. 132, e159839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ravindran Menon, D. et al. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34, 4448–4459 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Endo, H. et al. The induction of MIG6 under hypoxic conditions is critical for dormancy in primary cultured lung cancer cells with activating EGFR mutations. Oncogene 36, 2824–2834 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Fluegen, G. et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat. Cell Biol. 19, 120–132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Baldominos, P. et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell 185, 1694–1708.e19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Poillet-Perez, L., Sarry, J. E. & Joffre, C. Autophagy is a major metabolic regulator involved in cancer therapy resistance. Cell Rep. 36, 109528 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Russell, R. C. & Guan, K. L. The multifaceted role of autophagy in cancer. EMBO J. 41, e110031 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vera-Ramirez, L., Vodnala, S. K., Nini, R., Hunter, K. W. & Green, J. E. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat. Commun. 9, 1944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Obenauf, A. C. et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520, 368–372 (2015). This work suggests that the survival of DTP cells can be promoted by the effect of the therapy-induced secretome on the tumour microenvironment and that this interaction offers potential drug targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sun, X. et al. Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. Sci. Adv. 8, eabi7711 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schmitt, M. et al. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation. Nature 612, 347–353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nilsson, M. B. et al. CD70 is a therapeutic target upregulated in EMT-associated EGFR tyrosine kinase inhibitor resistance. Cancer Cell 41, 340–355.e6 (2023). This work is an example of how DTP cells can activate the same mechanism to promote both drug tolerance and immune evasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Flieswasser, T. et al. The CD70–CD27 axis in oncology: the new kids on the block. J. Exp. Clin. Cancer Res. 41, 12 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27, 574–588 (2015). This work is an example of how reciprocal communication between cancer cells and tumour microenvironment cells can foster the emergence of drug resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mikubo, M., Inoue, Y., Liu, G. & Tsao, M. S. Mechanism of drug tolerant persister cancer cells: the landscape and clinical implication for therapy. J. Thorac. Oncol. 16, 1798–1809 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Heynen, G. J., Fonfara, A. & Bernards, R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle 13, 3808–3817 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yano, S. et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res. 68, 9479–9487 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Ohta, Y. et al. Cell–matrix interface regulates dormancy in human colon cancer stem cells. Nature 608, 784–794 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Rehman, S. K. & O’Brien, C. A. Persister cells that survive chemotherapy are pinpointed. Nature 608, 675–676 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Walens, A. et al. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. eLife 8, e436653 (2019).

    Article  Google Scholar 

  168. Cerezo-Wallis, D. et al. Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state. Nat. Med. 26, 1865–1877 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012). This work shows that cancer cell plasticity may also contribute to the emergence of resistance to immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  170. Mehta, A. et al. Immunotherapy resistance by inflammation-induced dedifferentiation. Cancer Discov. 8, 935–943 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. van Weverwijk, A. & de Visser, K. E. Mechanisms driving the immunoregulatory function of cancer cells. Nat. Rev. Cancer 23, 193–215 (2023).

    Article  PubMed  Google Scholar 

  172. Goddard, E. T. et al. Immune evasion of dormant disseminated tumor cells is due to their scarcity and can be overcome by T cell immunotherapies. Cancer Cell 42, 119–134.e12 (2024).

    Article  CAS  PubMed  Google Scholar 

  173. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Miao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177, 1172–1186.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cerezo, M. et al. Translational control of tumor immune escape via the eIF4F–STAT1–PD-L1 axis in melanoma. Nat. Med. 24, 1877–1886 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Xu, Y. et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25, 301–311 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Suresh, S. et al. eIF5B drives integrated stress response-dependent translation of PD-L1 in lung cancer. Nat. Cancer 1, 533–545 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pozniak, J. et al. A TCF4-dependent gene regulatory network confers resistance to immunotherapy in melanoma. Cell 187, 166–183.e25 (2024).

    Article  CAS  PubMed  Google Scholar 

  179. Sehgal, K. et al. Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade. J. Clin. Invest. 131, e135038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fitzgerald, D. M., Hastings, P. J. & Rosenberg, S. M. Stress-induced mutagenesis: implications in cancer and drug resistance. Annu. Rev. Cancer Biol. 1, 119–140 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Bhandari, V. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat. Genet. 51, 308–318 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Torkelson, J. et al. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 16, 3303–3311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pribis, J. P. et al. Gamblers: an antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced general stress response. Mol. Cell 74, 785–800.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ram, Y. & Hadany, L. Stress-induced mutagenesis and complex adaptation. Proc. Biol. Sci. 281, 20141025 (2014).

    PubMed  PubMed Central  Google Scholar 

  185. Ponder, R. G., Fonville, N. C. & Rosenberg, S. M. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol. Cell 19, 791–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Paniagua, I. & Jacobs, J. J. L. Freedom to err: the expanding cellular functions of translesion DNA polymerases. Mol. Cell 83, 3608–3621 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cipponi, A. et al. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science 368, 1127–1131 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Isozaki, H. et al. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature 620, 393–401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Diaz, L. A. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Salgia, R. & Kulkarni, P. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends Cancer 4, 110–118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Russo, M. Genetic and non-genetic drug resistance: Darwin or Lamarck? Mol. Oncol. 18, 241–244 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Koh, G., Degasperi, A., Zou, X., Momen, S. & Nik-Zainal, S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat. Rev. Cancer 21, 619–637 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Jacob Berger, A. et al. IRS1 phosphorylation underlies the non-stochastic probability of cancer cells to persist during EGFR inhibition therapy. Nat. Cancer 2, 1055–1070 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Price, C. C., Mathur, J., Boerckel, J. D., Pathak, A. & Shenoy, V. B. Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory. Biophys. J. 120, 5074–5089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jain, P. et al. Epigenetic memory acquired during long-term EMT induction governs the recovery to the epithelial state. J. R. Soc. Interface 20, 20220627 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Choi, J. et al. A time-resolved, multi-symbol molecular recorder via sequential genome editing. Nature 608, 98–107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chen, W. et al. Symbolic recording of signalling and cis-regulatory element activity to DNA. Nature https://doi.org/10.1038/s41586-024-07706-4 (2024).

  201. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Quinn, J. J. et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science 371, eabc1944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Weng, C. et al. Deciphering cell states and genealogies of human haematopoiesis. Nature 627, 389–398 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fennell, K. A. et al. Non-genetic determinants of malignant clonal fitness at single-cell resolution. Nature 601, 125–131 (2022).

    Article  CAS  PubMed  Google Scholar 

  205. Umkehrer, C. et al. Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters. Nat. Biotechnol. 39, 174–178 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Harmange, G. et al. Disrupting cellular memory to overcome drug resistance. Nat. Commun. 14, 7130 (2023). This work is an example of how innovative technologies, such as those combining cellular barcoding and single-cell RNA sequencing, can be used to improve our understanding of DTP cell biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Badia-I-Mompel, P. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739–754 (2023).

    Article  CAS  PubMed  Google Scholar 

  209. Schmitt, M. J. et al. Phenotypic mapping of pathologic cross-talk between glioblastoma and innate immune cells by synthetic genetic tracing. Cancer Discov. 11, 754–777 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Taskiran, I. I. et al. Cell-type-directed design of synthetic enhancers. Nature 626, 212–220 (2024).

    Article  CAS  PubMed  Google Scholar 

  211. Kim, S., Kamarulzaman, L. & Taniguchi, Y. Recent methodological advances towards single-cell proteomics. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 99, 306–327 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Rosenberger, F. A., Thielert, M. & Mann, M. Making single-cell proteomics biologically relevant. Nat. Methods 20, 320–323 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Planque, M., Igelmann, S., Ferreira Campos, A. M. & Fendt, S. M. Spatial metabolomics principles and application to cancer research. Curr. Opin. Chem. Biol. 76, 102362 (2023).

    Article  CAS  PubMed  Google Scholar 

  214. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  215. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    Article  CAS  PubMed  Google Scholar 

  216. Alieva, M., Wezenaar, A. K. L., Wehrens, E. J. & Rios, A. C. Bridging live-cell imaging and next-generation cancer treatment. Nat. Rev. Cancer 23, 731–745 (2023).

    Article  CAS  PubMed  Google Scholar 

  217. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Morris, J. A., Sun, J. S. & Sanjana, N. E. Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis. Trends Genet. 40, 118–133 (2024).

    Article  CAS  PubMed  Google Scholar 

  219. Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rodriguez, R., Schreiber, S. L. & Conrad, M. Persister cancer cells: iron addiction and vulnerability to ferroptosis. Mol. Cell 82, 728–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  221. Zhang, Z., Tan, Y., Huang, C. & Wei, X. Redox signaling in drug-tolerant persister cells as an emerging therapeutic target. eBioMedicine 89, 104483 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Talebi, A. et al. Pharmacological induction of membrane lipid poly-unsaturation sensitizes melanoma to ROS inducers and overcomes acquired resistance to targeted therapy. J. Exp. Clin. Cancer Res. 42, 92 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Talebi, A. et al. Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nat. Commun. 9, 2500 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Nakamura, T. et al. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371–377 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wang, W. et al. CD8. Nature 569, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kim, R. et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wu, J. et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 572, 402–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Rodencal, J. et al. Sensitization of cancer cells to ferroptosis coincident with cell cycle arrest. Cell Chem. Biol. 31, 234–248.e13 (2024).

    Article  CAS  PubMed  Google Scholar 

  229. Sánchez-Danés, A. et al. A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy. Nature 562, 434–438 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. Nat. Med. 22, 128–134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Rusan, M. et al. Suppression of adaptive responses to targeted cancer therapy by transcriptional repression. Cancer Discov. 8, 59–73 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Wojtaszek, J. L. et al. A small molecule targeting mutagenic translesion synthesis improves chemotherapy. Cell 178, 152–159.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ali, M. et al. Small-molecule targeted therapies induce dependence on DNA double-strand break repair in residual tumor cells. Sci. Transl. Med. 14, eabc7480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhai, Y. et al. Drugging evolution of antibiotic resistance at a regulatory network hub. Sci. Adv. 9, eadg0188 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Wang, L. et al. cFLIP suppression and DR5 activation sensitize senescent cancer cells to senolysis. Nat. Cancer 3, 1284–1299 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Yao, Z. et al. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc. Natl Acad. Sci. USA 107, 15535–15540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Moghal, N. et al. Single-cell analysis reveals transcriptomic features of drug-tolerant persisters and stromal adaptation in a patient-derived EGFR-mutated lung adenocarcinoma xenograft model. J. Thorac. Oncol. 18, 499–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  238. Hu, J. et al. STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma. Nature 616, 806–813 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Song, C. et al. Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPKi-induced melanoma regression and early adaptation. Cancer Discov. 7, 1248–1265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Haderk, F. et al. Focal adhesion kinase-YAP signaling axis drives drug-tolerant persister cells and residual disease in lung cancer. Nat. Commun. 15, 3741 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Cañellas-Socias, A. et al. Metastatic recurrence in colorectal cancer arises from residual EMP1. Nature 611, 603–613 (2022).

    Article  PubMed  Google Scholar 

  243. Sutmuller, R. P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Santegoets, S. J. et al. T cell profiling reveals high CD4+ CTLA-4+ T cell frequency as dominant predictor for survival after prostate GVAX/ipilimumab treatment. Cancer Immunol. Immunother. 62, 245–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  247. Pico de Coaña, Y. et al. Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their arginase1 production. Cancer Immunol. Res. 1, 158–162 (2013).

    Article  PubMed  Google Scholar 

  248. Rizvi, N. A. et al. Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial. JAMA Oncol. 6, 661–674 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Gandara, D. R. et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat. Med. 24, 1441–1448 (2018).

    Article  CAS  PubMed  Google Scholar 

  250. Sezer, A. et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 397, 592–604 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Kruger, S. et al. Repeated mutKRAS ctDNA measurements represent a novel and promising tool for early response prediction and therapy monitoring in advanced pancreatic cancer. Ann. Oncol. 29, 2348–2355 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. He, J., Tan, W., Tang, X. & Ma, J. Variations in EGFR ctDNA correlates to the clinical efficacy of afatinib in non small cell lung cancer with acquired resistance. Pathol. Oncol. Res. 23, 307–315 (2017).

    Article  CAS  PubMed  Google Scholar 

  253. Fürstenau, M., De Silva, N., Eichhorst, B. & Hallek, M. Minimal residual disease assessment in CLL: ready for use in clinical routine? Hemasphere 3, e287 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Terpos, E. et al. Impact of minimal residual disease detection by next-generation flow cytometry in multiple myeloma patients with sustained complete remission after frontline therapy. Hemasphere 3, e300 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Wouters, J. et al. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nat. Cell Biol. 22, 986–998 (2020).

    Article  CAS  PubMed  Google Scholar 

  256. Emert, B. L. et al. Variability within rare cell states enables multiple paths toward drug resistance. Nat. Biotechnol. 39, 865–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Li, X. et al. Disseminated melanoma cells transdifferentiate into endothelial cells in intravascular niches at metastatic sites. Cell Rep. 31, 107765 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. Zhang, M., Yang, L., Chen, D. & Heisterkamp, N. Drug-tolerant persister B-cell precursor acute lymphoblastic leukemia cells. Preprint at bioRxiv https://doi.org/10.1101/2023.02.28.530540 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Bevill, S. M., Zawistowski, J. S. & Johnson, G. L. Enhancer remodeling regulates epigenetic adaptation and resistance to MEK1/2 inhibition in triple-negative breast cancer. Mol. Cell Oncol. 4, e1300622 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors (post-doctoral scientists and principal investigators) are listed in the alphabetical order. The research leading to these results has received funding from: European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (TARGET, grant agreement no. 101020342) (A.B.); AIRC under 5 per Mille 2018 — ID 21091 programme — prinicipal investigator Bardelli Alberto (A.B.); IMI contract no. 101007937 PERSIST-SEQ (A.B., E.B., R.B. and M.J.G.); AIRC under IG 2023 — ID 28922 project — prinicipal investigator Bardelli Alberto (A.B.); AIRC under MFAG 2021-ID 26439 project (M.R.); Generalitat de Calatonia AGAUR 2021 SGR 001278 (E.B.); ERC advanced grant 884623 (E.B.); AECC — GEACC19006BAT (E.B.); Medical Research Council (MC_UU_00035/13) and Melanoma Research Alliance and Rosetrees Trust (MRA awards 687306 and 917226) (E.E.P.); Cancer Research UK Scotland Centre (CTRQQR-2021/100006) (E.E.P.); National Natural Science Foundation of China 82172794, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Y2022JC002 (S.S.); AIRC ‘Professoressa Fiamma Nicolodi’ Postdoc Fellowship for Italy, project 28518 (A.S.); Wellcome Trust grant 206194 (M.J.G.); Wellcome Sanger Institute Quinquennial Review 2021–2026, Wellcome Core 220540/Z/20/A (T.S.T.); FWO G0B3620N KU Leuven (E.L.); KU Leuven C1 grant 3M190246 (E.L.); DOD CDMRP Melanoma Research Program awards ME220037 and ME230211, Curebound Foundation Discovery Grant (M.H.); Canadian Institutes of Health Research (PJT 175232), the Canadian Cancer Society (707484) and Canada Research Chair in Translational Colorectal Cancer Research (CRCP) (C.A.O.); Canadian Institutes of Health Research (ED0 190701) (S.K.R.); US NIH R01-CA250905 (S.M.R.) and NIH Director’s Pioneer Award DP1-AG072751 (S.M.R.); Worldwide Cancer Research (22-0052) (J.-C.M.); the VIB Grand Challenges Program (POINTILLISM 2.0) (J.-C.M.); FWO (G0C530N and G070622N) (J.-C.M.); Stichting tegen kanker (FAF-F/2018/1265) (J.-C.M.); the Belgian Excellence of Science (EOS) and Interuniversity BOF (iBOF) programmes (J.-C.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.R., E.M., S.K.R., E.S., A.S., T.S.T., M.C., H.P. and A.B. researched data for the article. M.R., N.Q.B., E.B., R.B., M.J.G., M.H., E.L., J.-C.M., C.A.O., Y.O., E.E.P., C.R., S.M.R., S.S. and A.B. contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Mariangela Russo or Alberto Bardelli.

Ethics declarations

Competing interests

A.B. reports receipt of grants/research supports from Neophore, AstraZeneca and Boehringer Ingelheim and honoraria/consultation fees from Guardant Health and Inivata. A.B. is a stock shareholder of Neophore and Kither Biotech. A.B. is an advisory boards member for Inivata, Neophore and Roche/Genentech. E.B. provides consultancy services to Roche, and his laboratory has entered into sponsored research agreements and received funding from Merus NL, Incyte and Revolution Medicines. S.S. reports personal fees from Agence nationale de la recherche (France), Krebsliga Schweiz (Switzerland), KWF Kankerbestrijding (The Netherlands) and Shenzhen Medical Academy of Research and Translation (China). M.J.G. has received research grants from AstraZeneca, GlaxoSmithKline and Astex Pharmaceuticals and is a consultant for and holds equity in Mosaic Therapeutics. M.H. is a cofounder and consultant for, and has received research grant funding from, Ferro Therapeutics (BridgeBio). M.R., M.C., E.M., H.P., S.K.R., E.S., A.S., T.S.T., N.Q.B., R.B., E.L., J.-C.M., C.A.O., Y.O., E.E.P., C.R. and S.M.R. declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Mohit Kumar Jolly, Mehmet Orman and Sydney Shaffer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European PERSIST-SEQ consortium: https://persist-seq.org/

Glossary

Artificial-intelligence-designed enhancers

Starting from a collection of random sequences, deep learning models are used to design synthetic sequences that act as cell-type-specific enhancers to better understand the regulatory logic of enhancers and, ultimately, how they can be altered to manipulate cell states.

Autophagic flux

The process measuring autophagosome formation, fusion with lysosomes and degradation of autophagic cargo.

Glycocalyx

A carbohydrate layer on cell surfaces, aiding cellular protection and communication.

Homology-directed repair

An error-free mechanism by which cells repair DNA double-stranded breaks using a sister DNA molecule as a template.

Mismatch repair

A DNA repair pathway that allows cells to detect and correct the insertion, deletion and misincorporation of nucleotides that can occur in the newly synthesized strand during DNA replication.

Oxidative phosphorylation

(OXPHOS). The process of ATP production by the mitochondrial electron transport chain.

Quorum sensing

A process of cell–cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly.

Retrotransposons

Repetitive DNA sequences that can self-propagate in the human genome by using a ‘copy-and-paste’ mechanism in which an intermediate RNA molecule is reverse-transcribed to make a new genomic insertion.

Synthetic locus control regions

Reporter systems that can be designed to reflect which transcriptional programmes and signalling pathways are active in cancer cells.

The toxin–antitoxin system

A gene pair ubiquitous in prokaryotes which may mediate growth arrest when the toxin is expressed in excess of its cognate antitoxin, leading to tolerance.

Translesion synthesis

A DNA damage tolerance mechanism that uses error-prone DNA polymerases to proceed with DNA replication, despite the presence of unrepaired DNA lesions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, M., Chen, M., Mariella, E. et al. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. Nat Rev Cancer 24, 694–717 (2024). https://doi.org/10.1038/s41568-024-00737-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00737-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer