Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in PET imaging of cancer

Abstract

Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET–CT or PET–MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice. Multiparametric in vivo imaging data not only are highly quantitative but also can provide invaluable information about pathophysiology, receptor expression, metabolism, or morphological and functional features of tumours, such as pH, oxygenation or tissue density, as well as pharmacodynamic properties of drugs, to measure drug response with a contrast agent. It can further quantitatively map and spatially resolve the intertumoural and intratumoural heterogeneity, providing insights into tumour vulnerabilities for target-specific therapeutic interventions. Failure to exploit and integrate the full potential of such powerful imaging data may lead to a lost opportunity in which patients do not receive the best possible care. With the desire to implement personalized medicine in the cancer clinic, the full comprehensive diagnostic power of multiplexed imaging should be utilized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The next generation of total-body PET scanners.
Fig. 2: PET–MRI of a patient with glioblastoma after combined anticancer treatment with external beam radiation and immune checkpoint inhibitor therapy.
Fig. 3: Towards converging in vitro and in vivo data for cancer diagnosis.
Fig. 4: Clinically established and next-generation PET tracers under development to image tumour immunity, stress responses, the microenvironment and metabolism.
Fig. 5: A proposed strategy for advanced multimodal cancer imaging.

Similar content being viewed by others

References

  1. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).

    CAS  Google Scholar 

  2. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  4. Saunders, N. A. et al. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol. Med. 4, 675–684 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  5. Hyman, D. M., Taylor, B. S. & Baselga, J. Implementing genome-driven oncology. Cell 168, 584–599 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  6. Keller, L. & Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 19, 553–567 (2019). This review discusses how tumour heterogeneity can be analysed by profiling tumour cells in circulation.

    Article  CAS  Google Scholar 

  7. Joosse, S. A. & Pantel, K. Circulating DNA and liquid biopsies in the management of patients with cancer. Cancer Res. 82, 2213–2215 (2022).

    Article  CAS  Google Scholar 

  8. Mannheim, J. G. et al. PET/MRI hybrid systems. Semin. Nucl. Med. 48, 332–347 (2018). This review summarizes the different PET–MRI systems for multimodal preclinical and clinical imaging.

    Article  Google Scholar 

  9. Seifert, R. et al. Clinical use of PET/MR in oncology: an update. Semin. Nucl. Med. 52, 356–364 (2022).

    Article  Google Scholar 

  10. Wehrl, H. F., Sauter, A. W., Divine, M. R. & Pichler, B. J. Combined PET/MR: a technology becomes mature. J. Nucl. Med. 56, 165–168 (2015).

    Article  PubMed  Google Scholar 

  11. Herrmann, K. et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 21, e146–e156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weissleder, R., Schwaiger, M. C., Gambhir, S. S. & Hricak, H. Imaging approaches to optimize molecular therapies. Sci. Transl. Med. 8, 355ps316 (2016).

    Article  Google Scholar 

  13. Divine, M. R. et al. A population-based Gaussian mixture model incorporating 18F-FDG PET and diffusion-weighted MRI quantifies tumor tissue classes. J. Nucl. Med. 57, 473–479 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Katiyar, P. et al. Spectral clustering predicts tumor tissue heterogeneity using dynamic 18F-FDG PET: a complement to the standard compartmental modeling approach. J. Nucl. Med. 58, 651–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Katiyar, P. et al. A novel unsupervised segmentation approach quantifies tumor tissue populations using multiparametric MRI: first results with histological validation. Mol. Imaging Biol. 19, 391–397 (2017).

    Article  PubMed  Google Scholar 

  16. Zaharchuk, G. & Davidzon, G. Artificial intelligence for optimization and interpretation of PET/CT and PET/MR images. Semin. Nucl. Med. 51, 134–142 (2021). This review describes the use of MI and AI for multimodal imaging.

    Article  PubMed  Google Scholar 

  17. Beyer, T. et al. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41, 1369–1379 (2000).

    CAS  PubMed  Google Scholar 

  18. Judenhofer, M. S. et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14, 459–465 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Shao, Y. et al. Simultaneous PET and MR imaging. Phys. Med. Biol. 42, 1965–1970 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Wehrl, H. F. et al. Preclinical and translational PET/MR imaging. J. Nucl. Med. 55, 11S–18S (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Provost, J. et al. Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging. Nat. Biomed. Eng. 2, 85–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Wehrl, H. F. et al. Assessment of MR compatibility of a PET insert developed for simultaneous multiparametric PET/MR imaging on an animal system operating at 7 T. Magn. Reson. Med. 65, 269–279 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Judenhofer, M. S. & Cherry, S. R. Applications for preclinical PET/MRI. Semin. Nucl. Med. 43, 19–29 (2013).

    Article  PubMed  Google Scholar 

  24. Sauter, A. W., Wehrl, H. F., Kolb, A., Judenhofer, M. S. & Pichler, B. J. Combined PET/MRI: one step further in multimodality imaging. Trends Mol. Med. 16, 508–515 (2010).

    Article  PubMed  Google Scholar 

  25. Asa, S. et al. Hybrid Ga-68 prostate-specific membrane antigen PET/MRI in the detection of skeletal metastasis in patients with newly diagnosed prostate cancer: contribution of each part to the diagnostic performance. Nucl. Med. Commun. 44, 65–73 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Wehrl, H. F. et al. Multimodal elucidation of choline metabolism in a murine glioma model using magnetic resonance spectroscopy and 11C-choline positron emission tomography. Cancer Res. 73, 1470–1480 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Andreou, C., Weissleder, R. & Kircher, M. F. Multiplexed imaging in oncology. Nat. Biomed. Eng. 6, 527–540 (2022).

    Article  PubMed  Google Scholar 

  28. Disselhorst, J. A. et al. Linking imaging to omics utilizing image-guided tissue extraction. Proc. Natl Acad. Sci. USA 115, E2980–E2987 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trautwein, C. et al. Tissue metabolites in diffuse glioma and their modulations by IDH1 mutation, histology, and treatment. JCI Insight https://doi.org/10.1172/jci.insight.153526 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mu, W. et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat. Commun. 11, 5228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stumpo, V. et al. Feasibility of glioblastoma tissue response mapping with physiologic BOLD imaging using precise oxygen and carbon dioxide challenge. MAGMA 35, 29–44 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L. et al. Lanthanide-based T2ex and CEST complexes provide insights into the design of pH sensitive MRI agents. Angew. Chem. Int. Ed. Engl. 56, 16626–16630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giger, M. L. Machine learning in medical imaging. J. Am. Coll. Radiol. 15, 512–520 (2018).

    Article  PubMed  Google Scholar 

  34. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: images are more than pictures, they are data. Radiology 278, 563–577 (2016). This review provides an overview of radiomics — the convergence of imaging and genetic profiling.

    Article  PubMed  Google Scholar 

  36. Tomaszewski, M. R. & Gillies, R. J. The biological meaning of radiomic features. Radiology 298, 505–516 (2021).

    Article  PubMed  Google Scholar 

  37. Mu, W., Schabath, M. B. & Gillies, R. J. Images are data: challenges and opportunities in the clinical translation of radiomics. Cancer Res. 82, 2066–2068 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Sharma, A., Lelic, D., Brock, C., Paine, P. & Aziz, Q. New technologies to investigate the brain–gut axis. World J. Gastroenterol. 15, 182–191 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rosen, S. D. & Camici, P. G. The brain–heart axis in the perception of cardiac pain: the elusive link between ischaemia and pain. Ann. Med. 32, 350–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Badawi, R. D. et al. First human imaging studies with the EXPLORER Total-Body PET scanner. J. Nucl. Med. 60, 299–303 (2019). This study is one of the first publications of total-body human PET imaging.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lammertsma, A. A. Quantification of PET studies. J. Nucl. Cardiol. 26, 2045–2047 (2019).

    Article  PubMed  Google Scholar 

  42. Cherry, S. R. et al. Total-body imaging: transforming the role of positron emission tomography. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaf6169 (2017). This review describes total-body PET, from initial ideas to applications.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Prenosil, G. A. et al. Performance characteristics of the biograph vision quadra PET/CT system with long axial field of view using the NEMA NU 2-2018 standard. J. Nucl. Med. https://doi.org/10.2967/jnumed.121.261972 (2021).

    Article  PubMed  Google Scholar 

  44. Ibaraki, M. et al. Brain partial volume correction with point spreading function reconstruction in high-resolution digital PET: comparison with an MR-based method in FDG imaging. Ann. Nucl. Med. 36, 717–727 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grimm, J., Kiessling, F. & Pichler, B. J. Quo vadis, molecular imaging? J. Nucl. Med. 61, 1428–1434 (2020). This review describes molecular imaging methods in general and provides an overview of imaging PET tracers, from small molecules to biologicals.

    Article  CAS  PubMed  Google Scholar 

  46. Boellaard, R. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur. J. Nucl. Med. Mol. Imaging 42, 328–354 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Jadvar, H. Is there use for FDG-PET in prostate cancer? Semin. Nucl. Med. 46, 502–506 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sharma, P. et al. Comparison of the prognostic values of 68Ga-DOTANOC PET/CT and 18F-FDG PET/CT in patients with well-differentiated neuroendocrine tumor. Eur. J. Nucl. Med. Mol. Imaging 41, 2194–2202 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Kayani, I. et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer 112, 2447–2455 (2008).

    Article  PubMed  Google Scholar 

  50. Schuster, D. M., Nanni, C. & Fanti, S. PET tracers beyond FDG in prostate cancer. Semin. Nucl. Med. 46, 507–521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Buteau, J. P. et al. PSMA and FDG-PET as predictive and prognostic biomarkers in patients given [177Lu]Lu-PSMA-617 versus cabazitaxel for metastatic castration-resistant prostate cancer (TheraP): a biomarker analysis from a randomised, open-label, phase 2 trial. Lancet Oncol. 23, 1389–1397 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Squires, M. H. 3rd et al. Octreoscan versus FDG-PET for neuroendocrine tumor staging: a biological approach. Ann. Surg. Oncol. 22, 2295–2301 (2015).

    Article  PubMed  Google Scholar 

  53. Alevroudis, E. et al. Clinical utility of 18F-FDG PET in neuroendocrine tumors prior to peptide receptor radionuclide therapy: a systematic review and meta-analysis. Cancers https://doi.org/10.3390/cancers13081813 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bhandari, V. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat. Genet. 51, 308–318 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, T. et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J. Hematol. Oncol. 12, 86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G. & Amelio, I. The hypoxic tumour microenvironment. Oncogenesis 7, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Masaki, Y. et al. The accumulation mechanism of the hypoxia imaging probe ‘FMISO’ by imaging mass spectrometry: possible involvement of low-molecular metabolites. Sci. Rep. 5, 16802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reischl, G. et al. Preparation of the hypoxia imaging PET tracer [18F]FAZA: reaction parameters and automation. Appl. Radiat. Isot. 62, 897–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Fleming, I. N. et al. Imaging tumour hypoxia with positron emission tomography. Br. J. Cancer 112, 238–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Busk, M., Overgaard, J. & Horsman, M. R. Imaging of tumor hypoxia for radiotherapy: current status and future directions. Semin. Nucl. Med. 50, 562–583 (2020).

    Article  PubMed  Google Scholar 

  62. Anemone, A., Consolino, L., Arena, F., Capozza, M. & Longo, D. L. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metast. Rev. 38, 25–49 (2019).

    Article  CAS  Google Scholar 

  63. Noman, M. Z. et al. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 309, C569–C579 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lopes, S., Ferreira, S. & Caetano, M. PET/CT in the evaluation of hypoxia for radiotherapy planning in head and neck tumors: systematic literature review. J. Nucl. Med. Technol. 49, 107–113 (2021).

    Article  PubMed  Google Scholar 

  65. Gerard, M. et al. Hypoxia imaging and adaptive radiotherapy: a state-of-the-art approach in the management of glioma. Front. Med. 6, 117 (2019).

    Article  Google Scholar 

  66. Dirix, P. et al. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with 18F-FDG PET, 18F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J. Nucl. Med. 50, 1020–1027 (2009).

    Article  PubMed  Google Scholar 

  67. Melsens, E. et al. Hypoxia imaging with 18F-FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma xenografts. Radiat. Oncol. 13, 39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Carmona-Bozo, J. C. et al. Hypoxia and perfusion in breast cancer: simultaneous assessment using PET/MR imaging. Eur. Radiol. 31, 333–344 (2021).

    Article  PubMed  Google Scholar 

  69. Stegmayr, C. et al. Current trends in the use of O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET) in neurooncology. Nucl. Med. Biol. 92, 78–84 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Stegmayr, C., Willuweit, A., Lohmann, P. & Langen, K. J. O-(2-[18F]-fluoroethyl)-l-tyrosine (FET) in neurooncology: a review of experimental results. Curr. Radiopharm. 12, 201–210 (2019).

    Article  CAS  Google Scholar 

  71. Zanoni, L. et al. Role of 18F-FLT PET/CT in suspected recurrent or residual lymphoma: final results of a pilot prospective trial. Eur. J. Nucl. Med. Mol. Imaging 46, 1661–1671 (2019).

    Article  CAS  Google Scholar 

  72. Bashir, A. et al. PET imaging of meningioma with 18F-FLT: a predictor of tumour progression. Brain 143, 3308–3317 (2020).

    Article  Google Scholar 

  73. Buck, A. K. et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J. Nucl. Med. 44, 1426–1431 (2003).

    CAS  Google Scholar 

  74. Vesselle, H. et al. In vivo validation of 3′deoxy-3′-[18F]fluorothymidine ([18F]FLT) as a proliferation imaging tracer in humans: correlation of [18F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin. Cancer Res. 8, 3315–3323 (2002).

    CAS  Google Scholar 

  75. Shinomiya, A. et al. Evaluation of 3′-deoxy-3′-[18F]-fluorothymidine (18F-FLT) kinetics correlated with thymidine kinase-1 expression and cell proliferation in newly diagnosed gliomas. Eur. J. Nucl. Med. Mol. Imaging 40, 175–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Brockenbrough, J. S. et al. Tumor 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) uptake by PET correlates with thymidine kinase 1 expression: static and kinetic analysis of 18F-FLT PET studies in lung tumors. J. Nucl. Med. 52, 1181–1188 (2011).

    Article  PubMed  Google Scholar 

  77. Schwenck, J. et al. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur. J. Nucl. Med. Mol. Imaging 44, 92–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Ambrosini, V., Campana, D., Tomassetti, P. & Fanti, S. 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur. J. Nucl. Med. Mol. Imaging 39, S52–S60 (2012).

    Article  PubMed  Google Scholar 

  79. Sartor, O. & de Bono, J. S. Metastatic prostate cancer. N. Engl. J. Med. 378, 1653–1654 (2018).

    Article  PubMed  Google Scholar 

  80. Oberg, K., Knigge, U., Kwekkeboom, D., Perren, A. & Group, E. G. W. Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23, vii124–vii130 (2012).

    Article  Google Scholar 

  81. Langbein, T., Weber, W. A. & Eiber, M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J. Nucl. Med. 60, 13S–19S (2019). Together with Hermann et al. (2020), this review discusses theranostics in nuclear medicine and precision oncology.

    Article  CAS  Google Scholar 

  82. Hofman, M. S. et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397, 797–804 (2021).

    Article  CAS  Google Scholar 

  83. Sartor, O. et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  84. Strosberg, J. et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-dotatate in the phase III NETTER-1 trial. J. Clin. Oncol. 36, 2578–2584 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  85. Hofman, M. S. et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 19, 825–833 (2018).

    Article  CAS  Google Scholar 

  86. Strosberg, J. et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  87. Backhaus, P. et al. Targeting PSMA by radioligands in non-prostate disease-current status and future perspectives. Eur. J. Nucl. Med. Mol. Imaging 45, 860–877 (2018).

    Article  CAS  Google Scholar 

  88. Gao, Y. et al. Prostate-specific membrane antigen (PSMA) promotes angiogenesis of glioblastoma through interacting with ITGB4 and regulating NF-κB signaling pathway. Front. Cell Dev. Biol. 9, 598377 (2021).

    Article  PubMed Central  Google Scholar 

  89. Silver, D. A., Pellicer, I., Fair, W. R., Heston, W. D. & Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3, 81–85 (1997).

    CAS  Google Scholar 

  90. Schwenck, J. et al. In vivo visualization of prostate-specific membrane antigen in glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 42, 170–171 (2015).

    Article  PubMed  Google Scholar 

  91. Wernicke, A. G. et al. Prostate-specific membrane antigen as a potential novel vascular target for treatment of glioblastoma multiforme. Arch. Pathol. Lab. Med. 135, 1486–1489 (2011).

    Article  PubMed  Google Scholar 

  92. Wernicke, A. G. et al. Prostate-specific membrane antigen expression in tumor-associated vasculature of breast cancers. APMIS 122, 482–489 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Sollini, M. et al. PSMA expression level predicts differentiated thyroid cancer aggressiveness and patient outcome. EJNMMI Res. 9, 93 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Schmidt, L. H. et al. Prostate specific membrane antigen (PSMA) expression in non-small cell lung cancer. PLoS ONE 12, e0186280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hirmas, N. et al. 68Ga-PSMA-11 PET/CT improves tumor detection and impacts management in patients with hepatocellular carcinoma. J. Nucl. Med. 62, 1235–1241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kesler, M. et al. 68Ga-PSMA is a novel PET-CT tracer for imaging of hepatocellular carcinoma: a prospective pilot study. J. Nucl. Med. 60, 185–191 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Jiao, D. et al. Expression of prostate-specific membrane antigen in tumor-associated vasculature predicts poor prognosis in hepatocellular carcinoma. Clin. Transl. Gastroenterol. 10, e00041 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Conway, R. E. et al. Prostate specific membrane antigen produces pro-angiogenic laminin peptides downstream of matrix metalloprotease-2. Angiogenesis 16, 847–860 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Conway, R. E. et al. Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis 19, 487–500 (2016).

    Article  CAS  Google Scholar 

  100. Papetti, M. & Herman, I. M. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol. 282, C947–C970 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Holzgreve, A. et al. PSMA expression in glioblastoma as a basis for theranostic approaches: a retrospective, correlational panel study including immunohistochemistry, clinical parameters and PET imaging. Front. Oncol. 11, 646387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rizzo, A. et al. Can PSMA-targeting radiopharmaceuticals be useful for detecting hepatocellular carcinoma using positron emission tomography? An updated systematic review and meta-analysis. Pharmaceuticals 15, 1368 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Derlin, T., Kreipe, H. H., Schumacher, U. & Soudah, B. PSMA expression in tumor neovasculature endothelial cells of follicular thyroid adenoma as identified by molecular imaging using 68Ga-PSMA ligand PET/CT. Clin. Nucl. Med. 42, e173–e174 (2017).

    Article  PubMed  Google Scholar 

  104. Kunikowska, J. et al. Tumor uptake in glioblastoma multiforme after IV injection of [177Lu]Lu-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 47, 1605–1606 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Uijen, M. J. M. et al. PSMA radioligand therapy for solid tumors other than prostate cancer: background, opportunities, challenges, and first clinical reports. Eur. J. Nucl. Med. Mol. Imaging 48, 4350–4368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schulz, G. et al. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 44, 5914–5920 (1984).

    CAS  PubMed  Google Scholar 

  107. Schmitt, J. et al. Translational immunoPET imaging using a radiolabeled GD2-specific antibody in neuroblastoma. Theranostics https://doi.org/10.7150/thno.56736 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Butch, E. R. et al. Positron emission tomography detects in vivo expression of disialoganglioside GD2 in mouse models of primary and metastatic osteosarcoma. Cancer Res. 79, 3112–3124 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Trautwein, N. F. et al. First in human PET/MRI imaging of in vivo GD2 expression in osteosarcoma. J. Nucl. Med. https://doi.org/10.2967/jnumed.122.264626 (2022).

    Article  PubMed  Google Scholar 

  110. Navid, F., Santana, V. M. & Barfield, R. C. Anti-GD2 antibody therapy for GD2-expressing tumors. Curr. Cancer Drug Targets 10, 200–209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ploessl, C., Pan, A., Maples, K. T. & Lowe, D. K. Dinutuximab: an anti-GD2 monoclonal antibody for high-risk neuroblastoma. Ann. Pharmacother. 50, 416–422 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Schumacher-Kuckelkorn, R. et al. Lack of immunocytological GD2 expression on neuroblastoma cells in bone marrow at diagnosis, during treatment, and at recurrence. Pediatr. Blood Cancer 64, 46–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Kim, I., Choi, S., Yoo, S., Lee, M. & Kim, I. S. Cancer-associated fibroblasts in the hypoxic tumor microenvironment. Cancers https://doi.org/10.3390/cancers14143321 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Madsen, C. D. et al. Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep. 16, 1394–1408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pure, E. & Blomberg, R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 37, 4343–4357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Loktev, A. et al. A tumor-imaging method targeting cancer-associated fibroblasts. J. Nucl. Med. 59, 1423–1429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lindner, T. et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med. 59, 1415–1422 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Kratochwil, C. et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J. Nucl. Med. 60, 801–805 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Koerber, S. A. et al. The role of 68Ga-FAPI PET/CT for patients with malignancies of the lower gastrointestinal tract: first clinical experience. J. Nucl. Med. 61, 1331–1336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Komek, H. et al. Comparison of [68Ga]Ga-DOTA-FAPI-04 PET/CT and [18F]FDG PET/CT in colorectal cancer. Eur. J. Nucl. Med. Mol. Imaging 49, 3898–3909 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Gu, B. et al. Head-to-head evaluation of [18F]FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT in recurrent soft tissue sarcoma. Eur. J. Nucl. Med. Mol. Imaging 49, 2889–2901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lindner, T. et al. Design and development of 99mTc-labeled FAPI tracers for SPECT imaging and 188Re therapy. J. Nucl. Med. 61, 1507–1513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ballal, S. et al. A theranostic approach of [68Ga]Ga-DOTA.SA.FAPi PET/CT-guided [177Lu]Lu-DOTA.SA.FAPi radionuclide therapy in an end-stage breast cancer patient: new frontier in targeted radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-020-04990-w (2020).

    Article  PubMed  Google Scholar 

  126. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22, 340–355 (2022). This review discusses tumour senescence and novel treatment options based on this phenomenon.

    Article  CAS  PubMed  Google Scholar 

  128. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  130. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liao, E. C. et al. Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis. 5, e1255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chang, B. D. et al. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18, 4808–4818 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Birch, J. & Gil, J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565–1576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer — role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Faheem, M. M. et al. Convergence of therapy-induced senescence (TIS) and EMT in multistep carcinogenesis: current opinions and emerging perspectives. Cell Death Discov. 6, 51 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Zhao, B. et al. Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence. Nat. Commun. 11, 908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang, L., Pitcher, L. E., Prahalad, V., Niedernhofer, L. J. & Robbins, P. D. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J. https://doi.org/10.1111/febs.16350 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Laberge, R. M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wolter, K. & Zender, L. Therapy-induced senescence — an induced synthetic lethality in liver cancer? Nat. Rev. Gastroenterol. Hepatol. 17, 135–136 (2020).

    Article  PubMed  Google Scholar 

  148. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lawson, D. A., Kessenbrock, K., Davis, R. T., Pervolarakis, N. & Werb, Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat. Cell Biol. 20, 1349–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Krueger, M. A. et al. Abstract 1146: [18F]FPyGal: a novel ß-galactosidase specific PET tracer for in vivo imaging of tumor senescence. Cancer Res. 79, 1146–1146 (2019).

    Article  Google Scholar 

  153. Lee, B. Y. et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Short, S., Fielder, E., Miwa, S. & von Zglinicki, T. Senolytics and senostatics as adjuvant tumour therapy. eBioMedicine 41, 683–692 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pommier, Y., O’Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 8, 362ps317 (2016).

    Article  Google Scholar 

  157. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Maughan, B. L. & Antonarakis, E. S. Olaparib and rucaparib for the treatment of DNA repair-deficient metastatic castration-resistant prostate cancer. Exp. Opin. Pharmacother. 22, 1625–1632 (2021).

    Article  CAS  Google Scholar 

  160. Rose, M., Burgess, J. T., O’Byrne, K., Richard, D. J. & Bolderson, E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front. Cell Dev. Biol. 8, 564601 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ashworth, A. & Lord, C. J. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat. Rev. Clin. Oncol. 15, 564–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Michels, J. et al. Cisplatin resistance associated with PARP hyperactivation. Cancer Res. 73, 2271–2280 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Lord, C. J., Tutt, A. N. & Ashworth, A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 66, 455–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Yi, M. et al. Advances and perspectives of PARP inhibitors. Exp. Hematol. Oncol. 8, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Banerjee, S. et al. First-line PARP inhibitors in ovarian cancer: summary of an ESMO open — cancer horizons round-table discussion. ESMO Open 5, e001110 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Tu, Z. et al. Synthesis and in vivo evaluation of [11C]PJ34, a potential radiotracer for imaging the role of PARP-1 in necrosis. Nucl. Med. Biol. 32, 437–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Makvandi, M. et al. A PET imaging agent for evaluating PARP-1 expression in ovarian cancer. J. Clin. Invest. 128, 2116–2126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Carney, B., Kossatz, S. & Reiner, T. Molecular imaging of PARP. J. Nucl. Med. 58, 1025–1030 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Carney, B. et al. Target engagement imaging of PARP inhibitors in small-cell lung cancer. Nat. Commun. 9, 176 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. McDonald, E. S. et al. Positron emission tomography imaging of poly-(adenosine diphosphate-ribose) polymerase 1 expression in breast cancer: a nonrandomized clinical trial. JAMA Oncol. 6, 921–923 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Schoder, H. et al. Safety and feasibility of PARP1/2 imaging with 18F-PARPi in patients with head and neck cancer. Clin. Cancer Res. 26, 3110–3116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Michel, L. S. et al. PET of poly (ADP-ribose) polymerase activity in cancer: preclinical assessment and first in-human studies. Radiology 282, 453–463 (2017).

    Article  PubMed  Google Scholar 

  173. Fan, Y. et al. Progress of immune checkpoint therapy in the clinic (Review). Oncol. Rep. 41, 3–14 (2019).

    CAS  PubMed  Google Scholar 

  174. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Freise, A. C. & Wu, A. M. In vivo imaging with antibodies and engineered fragments. Mol. Immunol. 67, 142–152 (2015). This review discusses PET imaging of the immune system with biologicals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bensch, F. et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 24, 1852–1858 (2018). This study presents PET immune imaging of PDL1.

    Article  CAS  PubMed  Google Scholar 

  177. Kristensen, L. K. et al. CD4+ and CD8a+ PET imaging predicts response to novel PD-1 checkpoint inhibitor: studies of Sym021 in syngeneic mouse cancer models. Theranostics 9, 8221–8238 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tavaré, R. et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc. Natl Acad. Sci. USA 111, 1108–1113 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Tavaré, R. et al. Immuno-PET of murine T cell reconstitution postadoptive stem cell transplantation using anti-CD4 and anti-CD8 Cys-diabodies. J. Nucl. Med. 56, 1258–1264 (2015).

    Article  PubMed  Google Scholar 

  180. Lecocq, Q. et al. Theranostics in immuno-oncology using nanobody derivatives. Theranostics 9, 7772–7791 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  181. van der Linden, R. H. et al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim. Biophys. Acta 1431, 37–46 (1999).

    Article  Google Scholar 

  182. Rashidian, M. & Ploegh, H. Nanobodies as non-invasive imaging tools. Immuno-Oncol. Technol. 7, 2–14 (2020).

    Article  CAS  Google Scholar 

  183. Gide, T. N. et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell 35, 238–255.e6 (2019).

    Article  CAS  Google Scholar 

  184. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Klein, O. et al. Melan-A-specific cytotoxic T cells are associated with tumor regression and autoimmunity following treatment with anti-CTLA-4. Clin. Cancer Res. 15, 2507–2513 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Tavare, R. et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 76, 73–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Rashidian, M. et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J. Exp. Med. 214, 2243–2255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Freise, A. C. et al. ImmunoPET imaging of murine CD4+ T cells using anti-CD4 Cys-diabody: effects of protein dose on T cell function and imaging. Mol. Imaging Biol. 19, 599–609 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Griessinger, C. M. et al. The PET-tracer 89Zr-Df-IAB22M2C enables monitoring of intratumoral CD8 T-cell infiltrates in tumor-bearing humanized mice after T-cell bispecific antibody treatment. Cancer Res. 80, 2903 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Pandit-Taskar, N. et al. First in human phase I imaging study with 89Zr-IAB22M2C anti-CD8 minibody in patients with solid tumors. J. Nucl. Med. 59, 596 (2018).

    Google Scholar 

  192. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT03802123 (2019).

  193. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT05397171 (2022).

  194. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT05744128 (2023).

  195. EU Clinical Trials Register. https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-004328-004313/DE (2022).

  196. Kist de Ruijter, L. et al. Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial. Nat. Med. 28, 2601–2610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ahrends, T. & Borst, J. The opposing roles of CD4+ T cells in anti-tumour immunity. Immunology 154, 582–592 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  198. Di Mascio, M. et al. Noninvasive in vivo imaging of CD4 cells in simian-human immunodeficiency virus (SHIV)-infected nonhuman primates. Blood 114, 328–337 (2009).

    Article  PubMed Central  Google Scholar 

  199. Kanwar, B. et al. In vivo imaging of mucosal CD4+ T cells using single photon emission computed tomography in a murine model of colitis. J. Immunol. Methods 329, 21–30 (2008).

    Article  CAS  Google Scholar 

  200. Rubin, R. H., Baltimore, D., Chen, B. K., Wilkinson, R. A. & Fischman, A. J. In vivo tissue distribution of CD4 lymphocytes in mice determined by radioimmunoscintigraphy with an 111In-labeled anti-CD4 monoclonal antibody. Proc. Natl Acad. Sci. USA 93, 7460–7463 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Choy, E. H. et al. Repeat-cycle study of high-dose intravenous 4162W94 anti-CD4 humanized monoclonal antibody in rheumatoid arthritis. A randomized placebo-controlled trial. Rheumatology 41, 1142–1148 (2002).

    Article  CAS  PubMed  Google Scholar 

  202. Harmand, T. J., Islam, A., Pishesha, N. & Ploegh, H. L. Nanobodies as in vivo, non-invasive, imaging agents. RSC Chem. Biol. 2, 685–701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Moreland, L. W. et al. Double-blind, placebo-controlled multicenter trial using chimeric monoclonal anti-CD4 antibody, cM-T412, in rheumatoid arthritis patients receiving concomitant methotrexate. Arthritis Rheum. 38, 1581–1588 (1995).

    Article  CAS  PubMed  Google Scholar 

  204. Traenkle, B. et al. Single-domain antibodies for targeting, detection, and in vivo imaging of human CD4+ cells. Front. Immunol. 12, 799910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wilde, D. B., Marrack, P., Kappler, J., Dialynas, D. P. & Fitch, F. W. Evidence implicating L3T4 in class II MHC antigen reactivity; monoclonal antibody GK1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding by cloned murine helper T lymphocyte lines. J. Immunol. 131, 2178–2183 (1983).

    Article  CAS  PubMed  Google Scholar 

  206. Kochenderfer, J. N. et al. Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol. Ther. 25, 2245–2253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Simonetta, F. et al. Molecular imaging of chimeric antigen receptor T cells by ICOS-ImmunoPET. Clin. Cancer Res. 27, 1058 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Weist, M. R. et al. PET of adoptively transferred chimeric antigen receptor T cells with 89Zr-oxine. J. Nucl. Med. 59, 1531–1537 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Minn, I. et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci. Adv. 5, eaaw5096 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sellmyer, M. A. et al. Imaging CAR T cell trafficking with eDHFR as a PET reporter gene. Mol. Ther. 28, 42–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Volpe, A. et al. Spatiotemporal PET imaging reveals differences in CAR-T tumor retention in triple-negative breast cancer models. Mol. Ther. 28, 2271–2285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Keu, K. V. et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci. Transl. Med. 9, eaag2196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Di Gialleonardo, V., Signore, A., Glaudemans, A. W., Dierckx, R. A. & De Vries, E. F. N-(4-18F-fluorobenzoyl)interleukin-2 for PET of human-activated T lymphocytes. J. Nucl. Med. 53, 679–686 (2012).

    Article  PubMed  Google Scholar 

  215. Larimer, B. M. et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 77, 2318–2327 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Gibson, H. M. et al. IFNgamma PET imaging as a predictive tool for monitoring response to tumor immunotherapy. Cancer Res. 78, 5706–5717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Radu, C. G. et al. Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2’-deoxycytidine analog. Nat. Med. 14, 783–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Salas, J. R. et al. 18F-FAC PET selectively images hepatic infiltrating CD4 and CD8 T cells in a mouse model of autoimmune hepatitis. J. Nucl. Med. https://doi.org/10.2967/jnumed.118.210328 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Alam, I. S. et al. Imaging activated T cells predicts response to cancer vaccines. J. Clin. Invest. 128, 2569–2580 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Pan, Y., Yu, Y., Wang, X. & Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 11, 583084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Xiang, X., Wang, J., Lu, D. & Xu, X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal. Transduct. Target. Ther. 6, 75 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Mukherjee, S., Sonanini, D., Maurer, A. & Daldrup-Link, H. E. The yin and yang of imaging tumor associated macrophages with PET and MRI. Theranostics 9, 7730–7748 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Blykers, A. et al. PET imaging of macrophage mannose receptor–expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments. J. Nucl. Med. 56, 1265–1271 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Movahedi, K. et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 72, 4165 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Galli, F. et al. In vivo imaging of natural killer cell trafficking in tumors. J. Nucl. Med. 56, 1575–1580 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. Griss, J. et al. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat. Commun. 10, 4186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Krasniqi, A. et al. Theranostic radiolabeled anti-CD20 sdAb for targeted radionuclide therapy of non-Hodgkin’s lymphoma. Mol. Cancer Ther. 16, 2828 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. Perez, C. R. & De Palma, M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Commun. 10, 5408 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Ambrosini, V. et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur. J. Cancer 146, 56–73 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Maffey-Steffan, J. et al. The 68Ga/177Lu-theragnostic concept in PSMA-targeting of metastatic castration-resistant prostate cancer: impact of post-therapeutic whole-body scintigraphy in the follow-up. Eur. J. Nucl. Med. Mol. Imaging 47, 695–712 (2020).

    Article  CAS  PubMed  Google Scholar 

  231. Agdeppa, E. D. & Spilker, M. E. A review of imaging agent development. AAPS J. 11, 286–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Farsad, M. FDG PET/CT in the staging of lung cancer. Curr. Radiopharm. 13, 195–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Gandy, N., Arshad, M. A., Park, W. E., Rockall, A. G. & Barwick, T. D. FDG-PET imaging in cervical cancer. Semin. Nucl. Med. 49, 461–470 (2019).

    Article  PubMed  Google Scholar 

  234. Groheux, D. et al. 18F-FDG PET/CT for staging and restaging of breast cancer. J. Nucl. Med. 57, 17S–26S (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Weber, W. A. Use of PET for monitoring cancer therapy and for predicting outcome. J. Nucl. Med. 46, 983–995 (2005). This review discusses PET imaging in oncology.

    CAS  PubMed  Google Scholar 

  236. Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Schwenck, J. et al. Cancer immunotherapy is accompanied by distinct metabolic patterns in primary and secondary lymphoid organs observed by non-invasive in vivo 18F-FDG-PET. Theranostics 10, 925–937 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lee, S. & Schmitt, C. A. The dynamic nature of senescence in cancer. Nat. Cell Biol. 21, 94–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  239. Schmitz, J. et al. Decoding intratumoral heterogeneity of breast cancer by multiparametric in vivo imaging: a translational study. Cancer Res. 76, 5512–5522 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hallqvist, A. et al. Positron emission tomography and computed tomographic imaging (PET/CT) for dose planning purposes of thoracic radiation with curative intent in lung cancer patients: a systematic review and meta-analysis. Radiother. Oncol. 123, 71–77 (2017).

    Article  PubMed  Google Scholar 

  241. Gehler, B. et al. [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiat. Oncol. 4, 56 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Rogowski, P. et al. Radiotherapy of oligometastatic prostate cancer: a systematic review. Radiat. Oncol. 16, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Bashir, A. et al. Recurrent glioblastoma versus late posttreatment changes: diagnostic accuracy of O-(2-[18F]fluoroethyl)-l-tyrosine positron emission tomography (18F-FET PET). Neuro Oncol. 21, 1595–1606 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Langen, K. J., Galldiks, N., Hattingen, E. & Shah, N. J. Advances in neuro-oncology imaging. Nat. Rev. Neurol. 13, 279–289 (2017).

    Article  PubMed  Google Scholar 

  245. Pyka, T. et al. Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. Eur. J. Radiol. 103, 32–37 (2018).

    Article  PubMed  Google Scholar 

  246. Waaijer, S. J. H. et al. Molecular imaging in cancer drug development. J. Nucl. Med. 59, 726–732 (2018).

    Article  CAS  PubMed  Google Scholar 

  247. Matthews, P. M., Rabiner, E. A., Passchier, J. & Gunn, R. N. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol. 73, 175–186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Bahce, I. et al. Effects of erlotinib therapy on [11C]erlotinib uptake in EGFR mutated, advanced NSCLC. EJNMMI Res. 6, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Oosting, S. F. et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J. Nucl. Med. 56, 63–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  250. Contractor, K. B. & Aboagye, E. O. Monitoring predominantly cytostatic treatment response with 18F-FDG PET. J. Nucl. Med. 50, 97S–105S (2009).

    Article  CAS  PubMed  Google Scholar 

  251. Pandit-Taskar, N. et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J. Nucl. Med. 61, 512–519 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Goggi, J. L. et al. Granzyme B PET imaging of combined chemotherapy and immune checkpoint inhibitor therapy in colon cancer. Mol. Imaging Biol. 23, 714–723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — EXC 2180-390900677: Cluster of Excellence iFIT ‘Image-Guided and Functionally Instructed Tumour Therapies’.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. B.J.P. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Bernd J. Pichler.

Ethics declarations

Competing interests

J.M.C., J.S., C.la F., L.Z. and B.J.P. hold a patent for the senescence tracer mentioned in this Review. It has not been licensed yet. The Department of Preclinical Imaging and Radiopharmacy (B.J.P.), as well as the Department of Nuclear Medicine (C.la F.) and Department of Radiology at the University of Tübingen, have scientific collaborations with ImaginAb on CD8 imaging. The Department of Preclinical Imaging and Radiopharmacy (B.J.P.) performs contractual productions of the CD8+ tracer (sponsor: ImaginAb). D.S. and H.-G.R. have no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Abass Alavi, Sandip Basu and Rakesh Kumar for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Axial field of view

The active imaging field of view of a scanner where, for example, radiation is detected in PET.

Base excision repair pathway

A DNA repair pathway that replaces missing or modified DNA bases, such as those produced by alkylating agents or in spontaneously degraded DNA, with the correct DNA base.

Chemical exchange saturation transfer

MRI method based on protons of a targeted tissue exchanging with molecules of surrounding protons to enhance the MRI contrast.

Computed tomography

(CT). X-ray-based tomographic imaging system.

Dynamic contrast-enhanced (DCE)-MRI

Quantitative temporal measurement of the in vivo distribution of a contrast agent by MRI.

Hyperpolarized imaging

MRI method to probe metabolic information in vivo by using exogenous labelled 13C substrates.

Magnetic resonance imaging

(MRI). Non-radiation-based imaging using the contrast of proton density.

Megabecquerels

Refers to one million becquerel; a becquerel is a unit of measurement of radioactivity equivalent to one nucleus decaying every second.

Multiplexed imaging

Combining different in vivo and ex vivo imaging information.

Nuclear magnetic resonance (NMR) spectroscopy

In vivo detection system revealing the distribution endogenous metabolites in tissue.

Partial volume effect

Refers to an error or underestimation in absolute quantification if the object to be detected is smaller or at the same range of the pixel size of the detector.

Positron emission tomography

(PET). Tomographic in vivo imaging system detecting quantitatively the distribution of an intravenously injected radiolabelled compound to reveal molecular information up to a picomolar sensitivity.

PET–CT

Combination of PET and X-ray CT in one single device enabling image fusion of high spatial accuracy.

PET–MRI

Combination of PET and MRI in one single device enabling simultaneous data acquisition to reveal metabolic, functional, morphological and anatomical parameters at high spatial and temporal fusion accuracy.

Pharmacokinetics

Distribution dynamic of a pharmaceutical, for example, in PET, the kinetics of the radiolabelled tracer.

Radiomics

Quantitative analysis of imaging features such as sphericity, shape and size.

Raman imaging

Inelastic scattering of laser light on matter to reveal spectroscopic information.

Spectral clustering

Analysis of multiparametric images using the spectrum of a similarity matrix.

T1-weighted (T1W) contrast-enhanced (CE) MRI

Uses gadolinium-based contrast agents to enable a more detailed and accurate representation of patho-physiological change, for example, the disruption of the blood–brain barrier and thus helps in differential diagnoses.

T2-weighted (T2W) axial MRI

Used to differentiate between water-bound protons and fat-bound protons providing a strong anatomical contrast in the brain.

Theranostic approaches

The principle of combining diagnostics with therapy, ideally by using one molecule for therapy and diagnosis.

Tracers

Radiolabelled biologically active compounds such as the radiolabelled glucose analogue [18F]FDG.

Ultrasound

(US). Imaging system applying ultrasound waves to reveal soft tissue contrasts in vivo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwenck, J., Sonanini, D., Cotton, J.M. et al. Advances in PET imaging of cancer. Nat Rev Cancer 23, 474–490 (2023). https://doi.org/10.1038/s41568-023-00576-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00576-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer