Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissecting metastasis using preclinical models and methods

Abstract

Metastasis has long been understood to lead to the overwhelming majority of cancer-related deaths. However, our understanding of the metastatic process, and thus our ability to prevent or eliminate metastases, remains frustratingly limited. This is largely due to the complexity of metastasis, which is a multistep process that likely differs across cancer types and is greatly influenced by many aspects of the in vivo microenvironment. In this Review, we discuss the key variables to consider when designing assays to study metastasis: which source of metastatic cancer cells to use and where to introduce them into mice to address different questions of metastasis biology. We also examine methods that are being used to interrogate specific steps of the metastatic cascade in mouse models, as well as emerging techniques that may shed new light on previously inscrutable aspects of metastasis. Finally, we explore approaches for developing and using anti-metastatic therapies, and how mouse models can be used to test them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The metastatic cascade through lymphatic and haematogenous spread.
Fig. 2: Metastatic models enable study of various aspects of the metastatic cascade.
Fig. 3: Different experimental methods allow interrogation of various aspects of tumour progression and metastasis.

Similar content being viewed by others

References

  1. Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pereira, E. R., Jones, D., Jung, K. & Padera, T. P. The lymph node microenvironment and its role in the progression of metastatic cancer. Semin. Cell Dev. Biol. 38, 98–105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pereira, E. R. et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359, 1403–1407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359, 1408–1411 (2018). Together with Pereira et al. (2018), this study uses different approaches to demonstrate that cancer cells can spread to lymph nodes before going on to colonize distant organs.

    Article  CAS  PubMed  Google Scholar 

  5. Riihimäki, M., Thomsen, H., Sundquist, K., Sundquist, J. & Hemminki, K. Clinical landscape of cancer metastases. Cancer Med. 7, 5534–5542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  8. Giacobbe, A. & Abate-Shen, C. Modeling metastasis in mice: a closer look. Trends Cancer 7, 916–929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chambers, A. F., Shafir, R. & Ling, V. A model system for studying metastasis using the embryonic chick. Cancer Res. 42, 4018–4025 (1982).

    CAS  PubMed  Google Scholar 

  10. Zijlstra, A. et al. A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res. 62, 7083–7092 (2002).

    CAS  PubMed  Google Scholar 

  11. Heilmann, S. et al. A quantitative system for studying metastasis using transparent zebrafish. Cancer Res. 75, 4272–4282 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Follain, G. et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev. Cell 45, 33–52.e12 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Benjamin, D. C. et al. YAP enhances tumor cell dissemination by promoting intravascular motility and reentry into systemic circulation. Cancer Res. 80, 3867–3879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pagliarini, R. A. & Xu, T. A genetic screen in Drosophila for metastatic behavior. Science 302, 1227–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Hirabayashi, S., Baranski, T. J. & Cagan, R. L. Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell 154, 664–675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cagan, R. L., Zon, L. I. & White, R. M. Modeling cancer with flies and fish. Dev. Cell 49, 317–324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grzelak, C. A. et al. Elimination of fluorescent protein immunogenicity permits modeling of metastasis in immune-competent settings. Cancer Cell 40, 1–2 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Rong, S. et al. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol. Cell. Biol. 12, 5152–5158 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeffers, M., Rong, S. & Vande Woude, G. F. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis. J. Mol. Med. 74, 505–513 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Fidler, I. J. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J. Natl Cancer Inst. 45, 773–782 (1970). This foundational study in the field of metastasis research follows the fate of radiolabelled melanoma cells after injection into circulation.

    CAS  PubMed  Google Scholar 

  21. Hart, I. R. & Fidler, I. J. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40, 2281–2287 (1980).

    CAS  PubMed  Google Scholar 

  22. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Ebright, R. Y. et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 367, 1468–1473 (2020). This work presents a genome-wide CRISPRa overexpression screen on circulating tumour cells from patients with breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan, S. et al. Global regulation of the histone mark H3K36me2 underlies epithelial plasticity and metastatic progression. Cancer Discov. 10, 854–871 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, J. et al. A systematic CRISPR screen reveals an IL-20/IL20RA-mediated immune crosstalk to prevent the ovarian cancer metastasis. eLife 10, e66222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020). This work profiles the metastatic dissemination and growth patterns of a large panel of cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Staveren, W. C. G. et al. Human cancer cell lines: experimental models for cancer cells in situ? For cancer stem cells? Biochim. Biophys. Acta 1795, 92–103 (2009).

    PubMed  Google Scholar 

  31. Sandberg, R. & Ernberg, I. Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). Proc. Natl Acad. Sci. USA 102, 2052–2057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daniel, V. C. et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 69, 3364–3373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paz, M. F. et al. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res. 63, 1114–1121 (2003).

    CAS  PubMed  Google Scholar 

  35. Zhu, X. G. et al. Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells. Cell Metab. 33, 211–221.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Olive, K. P. et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Roschke, A. V. et al. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res. 63, 8634–8647 (2003).

    CAS  PubMed  Google Scholar 

  40. Ben-David, U. et al. The landscape of chromosomal aberrations in breast cancer mouse models reveals driver-specific routes to tumorigenesis. Nat. Commun. 7, 12160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schönhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med. 20, 1340–1347 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Robles-Oteiza, C. et al. Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat. Commun. 6, 8783 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Ursini-Siegel, J. et al. ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J. 27, 910–920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Denny, S. K. et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell 166, 328–342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pierce, S. E. et al. LKB1 inactivation modulates chromatin accessibility to drive metastatic progression. Nat. Cell Biol. 23, 915–924 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grasset, E. M. et al. Triple-negative breast cancer metastasis involves complex epithelial–mesenchymal transition dynamics and requires vimentin. Sci. Transl Med. 14, eabn7571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. LaFave, L. M. et al. Epigenomic state transitions characterize tumor progression in mouse lung adenocarcinoma. Cancer Cell 38, 212–228.e13 (2020). This work presents single-cell epigenomic profiling of mouse primary lung adenocarcinoma cells to define cell states associated with metastatic progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, M. P. et al. Oncogenic KRAS recruits an expansive transcriptional network through mutant p53 to drive pancreatic cancer metastasis. Cancer Discov. 11, 2094–2111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shen, M. et al. Therapeutic targeting of metadherin suppresses colorectal and lung cancer progression and metastasis. Cancer Res. 81, 1014–1025 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Chiou, S.-H. et al. BLIMP1 induces transient metastatic heterogeneity in pancreatic cancer. Cancer Discov. 7, 1184–1199 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yamagiwa, K. & Ichikawa, K. Experimental study of the pathogenesis of carcinoma. J. Cancer Res. 3, 1–29 (1918).

    Google Scholar 

  53. McCreery, M. Q. & Balmain, A. Chemical carcinogenesis models of cancer: back to the future. Annu. Rev. Cancer Biol. 1, 295–312 (2017).

    Article  Google Scholar 

  54. Wong, C. E. et al. Inflammation and Hras signaling control epithelial–mesenchymal transition during skin tumor progression. Genes Dev. 27, 670–682 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Teoh, N. et al. Induction of p53 renders ATM-deficient mice refractory to hepatocarcinogenesis. Gastroenterology 138, 1155–1165.e2 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Derry, M. M., Raina, K., Agarwal, R. & Agarwal, C. Characterization of azoxymethane-induced colon tumor metastasis to lung in a mouse model relevant to human sporadic colorectal cancer and evaluation of grape seed extract efficacy. Exp. Toxicol. Pathol. 66, 235–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Balmain, A. The critical roles of somatic mutations and environmental tumor-promoting agents in cancer risk. Nat. Genet. 52, 1139–1143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klotz, R. et al. Circulating tumor cells exhibit metastatic tropism and reveal brain metastasis drivers. Cancer Discov. 10, 86–103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Hodgkinson, C. L. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 20, 897–903 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Krepler, C. et al. A comprehensive patient-derived xenograft collection representing the heterogeneity of melanoma. Cell Rep. 21, 1953–1967 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hiroshima, Y. et al. Establishment of a patient-derived orthotopic xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS ONE 10, e0117417 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Obradović, M. M. S. et al. Glucocorticoids promote breast cancer metastasis. Nature 567, 540–544 (2019). This work presents transcriptomic and proteomic profiling of PDX primary tumours and their derived metastases to uncover brain metastasis-specific adaptations.

    Article  PubMed  Google Scholar 

  67. Einarsdottir, B. O. et al. Melanoma patient-derived xenografts accurately model the disease and develop fast enough to guide treatment decisions. Oncotarget 5, 9609–9618 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Karkampouna, S. et al. Patient-derived xenografts and organoids model therapy response in prostate cancer. Nat. Commun. 12, 1117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eyre, R. et al. Patient-derived mammosphere and xenograft tumour initiation correlates with progression to metastasis. J. Mammary Gland Biol. Neoplasia 21, 99–109 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hoffman, R. M. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Dai, L., Lu, C., Yu, X. I., Dai, L.-J. & Zhou, J. X. Construction of orthotopic xenograft mouse models for human pancreatic cancer. Exp. Ther. Med. 10, 1033–1038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Du, Q. et al. Establishment of and comparison between orthotopic xenograft and subcutaneous xenograft models of gallbladder carcinoma. Asian Pac. J. Cancer Prev. 15, 3747–3752 (2014).

    Article  PubMed  Google Scholar 

  73. Delitto, D. et al. Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements. Am. J. Pathol. 185, 1297–1303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hulton, C. H. et al. Direct genome editing of patient-derived xenografts using CRISPR–Cas9 enables rapid in vivo functional genomics. Nat. Cancer 1, 359–369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grunblatt, E. et al. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev. 34, 1210–1226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carlet, M. et al. In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets. Nat. Commun. 12, 5655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. LeSavage, B. L., Suhar, R. A., Broguiere, N., Lutolf, M. P. & Heilshorn, S. C. Next-generation cancer organoids. Nat. Mater. 21, 143–159 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Luo, Z. et al. Reconstructing the tumor architecture into organoids. Adv. Drug Deliv. Rev. 176, 113839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. O’Rourke, K. P. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Fumagalli, A. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl Acad. Sci. USA 114, E2357–E2364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Sousa e Melo, F. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).

    Article  PubMed  Google Scholar 

  86. Padmanaban, V. et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573, 439–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Na, F. et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming. Nat. Cancer 3, 753–767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bleijs, M., Wetering, M. V. D., Clevers, H. & Drost, J. Xenograft and organoid model systems in cancer research. EMBO J. 38, e101654 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bos, P. D., Nguyen, D. X. & Massagué, J. Modeling metastasis in the mouse. Curr. Opin. Pharmacol. 10, 571–577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kerbel, R. S., Cornil, I. & Theodorescu, D. Importance of orthotopic transplantation procedures in assessing the effects of transfected genes on human tumor growth and metastasis. Cancer Metastasis Rev. 10, 201–215 (1991).

    Article  CAS  PubMed  Google Scholar 

  93. Khanna, C., Jaboin, J. J., Drakos, E., Tsokos, M. & Thiele, C. J. Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. Vivo 16, 77–85 (2002).

    Google Scholar 

  94. Manzotti, C., Audisio, R. A. & Pratesi, G. Importance of orthotopic implantation for human tumors as model systems: relevance to metastasis and invasion. Clin. Exp. Metastasis 11, 5–14 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Kubota, T. Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J. Cell Biochem. 56, 4–8 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Harms, J. F. & Welch, D. R. MDA-MB-435 human breast carcinoma metastasis to bone. Clin. Exp. Metastasis 20, 327–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Lu, X. & Kang, Y. Organotropism of breast cancer metastasis. J. Mammary Gland Biol. Neoplasia 12, 153 (2007).

    Article  PubMed  Google Scholar 

  98. Zhang, W. et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 184, 2471–2486.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hebert, J. D. et al. Proteomic profiling of the ECM of xenograft breast cancer metastases in different organs reveals distinct metastatic niches. Cancer Res. 80, 1475–1485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miki, T., Yano, S., Hanibuchi, M. & Sone, S. Bone metastasis model with multiorgan dissemination of human small-cell lung cancer (SBC-5) cells in natural killer cell-depleted SCID mice. Oncol. Res. 12, 209–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Roe, J.-S. et al. Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 170, 875–888.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ren, D. et al. Targeting brain-adaptive cancer stem cells prohibits brain metastatic colonization of triple-negative breast cancer. Cancer Res. 78, 2052–2064 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, X. et al. Loss of TGF-β responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions. Mol. Cancer Res. 10, 494–503 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Onn, A. et al. Development of an orthotopic model to study the biology and therapy of primary human lung cancer in nude mice. Clin. Cancer Res. 9, 5532–5539 (2003).

    CAS  PubMed  Google Scholar 

  107. Zhang, L. et al. EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat. Commun. 13, 2543 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van der Weyden, L. et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541, 233–236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Orosz, P. et al. Enhancement of experimental metastasis by tumor necrosis factor. J. Exp. Med. 177, 1391–1398 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Kobayashi, M., Kobayashi, H., Pollard, R. B. & Suzuki, F. A pathogenic role of TH2 cells and their cytokine products on the pulmonary metastasis of murine B16 melanoma. J. Immunol. 160, 5869–5873 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Thies, K. A. et al. Stromal platelet-derived growth factor receptor-β signaling promotes breast cancer metastasis in the brain. Cancer Res. 81, 606–618 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Wu, A. M. L. et al. Aging and CNS myeloid cell depletion attenuate breast cancer brain metastasis. Clin. Cancer Res. 27, 4422–4434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Naba, A., Clauser, K. R., Lamar, J. M., Carr, S. A. & Hynes, R. O. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife 3, e01308 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Reticker-Flynn, N. E. et al. Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell 185, 1924–1942.e23 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Ellenbroek, S. I. J. & van Rheenen, J. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer 14, 406–418 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Campagnola, P. J. et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82, 493–508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Oudin, M. J. et al. Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression. Cancer Discov. 6, 516–531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sharma, V. P. et al. Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination. Nat. Commun. 12, 7300 (2021). This work investigates cancer cell invasive behaviours and cell–cell associations within the primary tumour microenvironment using intravital microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Karagiannis, G. S. et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci. Transl Med. 9, eaan0026 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Alieva, M., Ritsma, L., Giedt, R. J., Weissleder, R. & van Rheenen, J. Imaging windows for long-term intravital imaging. IntraVital 3, e29917 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Headley, M. B. et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531, 513–517 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Strilic, B. & Offermanns, S. Intravascular survival and extravasation of tumor cells. Cancer Cell 32, 282–293 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Yu, M. et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487, 510–513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Micalizzi, D. S., Maheswaran, S. & Haber, D. A. A conduit to metastasis: circulating tumor cell biology. Genes Dev. 31, 1827–1840 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl Med. 5, 179ra47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hamza, B. et al. Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Proc. Natl Acad. Sci. USA 116, 2232–2236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Suvilesh, K. N. et al. Tumorigenic circulating tumor cells from xenograft mouse models of non-metastatic NSCLC patients reveal distinct single cell heterogeneity and drug responses. Mol. Cancer 21, 73 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Keller, L. & Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer 19, 553–567 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Hamza, B. et al. Measuring kinetics and metastatic propensity of CTCs by blood exchange between mice. Nat. Commun. 12, 5680 (2021). This study uses parabiosis between mice, combined with optofluidic cell detectors, to evaluate rates of cancer cell shedding from primary tumours and durations in circulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Labelle, M., Begum, S. & Hynes, R. O. Direct signaling between platelets and cancer cells induces an epithelial–mesenchymal-like transition and promotes metastasis. Cancer Cell 20, 576–590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gao, H. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dorsch, M. et al. Statins affect cancer cell plasticity with distinct consequences for tumor progression and metastasis. Cell Rep. 37, 110056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fane, M. E. et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature 606, 396–405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Correia, A. L. et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature 594, 566–571 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Winters, I. P., Murray, C. W. & Winslow, M. M. Towards quantitative and multiplexed in vivo functional cancer genomics. Nat. Rev. Genet. 19, 741–755 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Soloway, P. D., Alexander, C. M., Werb, Z. & Jaenisch, R. Targeted mutagenesis of Timp-1 reveals that lung tumor invasion is influenced by Timp-1 genotype of the tumor but not by that of the host. Oncogene 13, 2307–2314 (1996).

    CAS  PubMed  Google Scholar 

  147. Ren, Y. et al. TALENs-directed knockout of the full-length transcription factor Nrf1α that represses malignant behaviour of human hepatocellular carcinoma (HepG2) cells. Sci. Rep. 6, 23775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Park, W.-Y., Hong, B.-J., Lee, J., Choi, C. & Kim, M.-Y. H3K27 demethylase JMJD3 employs the NF-κB and BMP signaling pathways to modulate the tumor microenvironment and promote melanoma progression and metastasis. Cancer Res. 76, 161–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Pritchard, J. R. et al. Bcl-2 family genetic profiling reveals microenvironment-specific determinants of chemotherapeutic response. Cancer Res. 71, 5850–5858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Li, W. et al. Deubiquitinase USP20 promotes breast cancer metastasis by stabilizing SNAI2. Genes Dev. 34, 1310–1315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhou, F. et al. Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-β signalling. Nat. Commun. 5, 3388 (2014).

    Article  PubMed  Google Scholar 

  152. Dow, L. E. Modeling disease in vivo with CRISPR/Cas9. Trends Mol. Med. 21, 609–621 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Evers, B. et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34, 631–633 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Chow, R. D. et al. In vivo profiling of metastatic double knockouts through CRISPR–Cpf1 screens. Nat. Methods 16, 405–408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cai, H. et al. A functional taxonomy of tumor suppression in oncogenic KRAS-driven lung cancer. Cancer Discov. 11, 1754–1773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Loganathan, S. K. et al. Rare driver mutations in head and neck squamous cell carcinomas converge on NOTCH signaling. Science 367, 1264–1269 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Rogers, Z. N. et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat. Methods 14, 737–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rogers, Z. N. et al. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat. Genet. 50, 483–486 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Grüner, B. M. et al. An in vivo multiplexed small-molecule screening platform. Nat. Methods 13, 883–889 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Bhang, H. C. et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21, 440–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Wroblewska, A. et al. Protein barcodes enable high-dimensional single-cell CRISPR screens. Cell 175, 1141–1155.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rovira-Clavé, X. et al. Spatial epitope barcoding reveals clonal tumor patch behaviors. Cancer Cell 40, 1423–1439.e11 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  164. Lamprecht, S. et al. Multicolor lineage tracing reveals clonal architecture and dynamics in colon cancer. Nat. Commun. 8, 1406 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Reeves, M. Q., Kandyba, E., Harris, S., Del Rosario, R. & Balmain, A. Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20, 699–709 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Weber, K. et al. RGB marking facilitates multicolor clonal cell tracking. Nat. Med. 17, 504–509 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Kalhor, R., Mali, P. & Church, G. M. Rapidly evolving homing CRISPR barcodes. Nat. Methods 14, 195–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Quinn, J. J. et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science 371, eabc1944 (2021). This study of xenograft metastases employs evolving DNA barcodes and extensive computational methods to deconvolute clonal cell lineages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hughes, N. W. et al. Machine-learning-optimized Cas12a barcoding enables the recovery of single-cell lineages and transcriptional profiles. Mol. Cell 82, 3103–3118.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Simeonov, K. P. et al. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 39, 1150–1162.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923.e25 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Alonso-Curbelo, D. et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Chi, Y. et al. Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science 369, 276–282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Karras, P. et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature 610, 190–198 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022). This work presents the development of slide-DNA-seq, a method for spatial DNA sequencing, and its application to a mouse model of lung adenocarcinoma.

    Article  CAS  PubMed  Google Scholar 

  183. Socovich, A. M. & Naba, A. The cancer matrisome: from comprehensive characterization to biomarker discovery. Semin. Cell Dev. Biol. 89, 157–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Jailkhani, N. et al. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc. Natl Acad. Sci. USA 116, 14181–14190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Xie, Y. J. et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl Acad. Sci. USA 116, 7624–7631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Moldoveanu, D. et al. Spatially mapping the immune landscape of melanoma using imaging mass cytometry. Sci. Immunol. 7, eabi5072 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2020). This work discusses in vivo metabolic characterization of melanoma cells with low or high metastatic ability.

    Article  CAS  PubMed  Google Scholar 

  193. Elia, I. et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568, 117–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Schild, T., Low, V., Blenis, J. & Gomes, A. P. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer Cell 33, 347–354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bergers, G. & Fendt, S.-M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Parida, P. K. et al. Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness. Cell Metab. 34, 90–105.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nascentes Melo, L. M., Lesner, N. P., Sabatier, M., Ubellacker, J. M. & Tasdogan, A. Emerging metabolomic tools to study cancer metastasis. Trends Cancer 8, 988–1001 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Pan, C. et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell 179, 1661–1676.e19 (2019). This work develops a deep learning algorithm to enhance fluorescent cancer cell signals during imaging to improve metastasis detection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 588–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Klein, C. A. Cancer progression and the invisible phase of metastatic colonization. Nat. Rev. Cancer 20, 681–694 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Behrenbruch, C. et al. Surgical stress response and promotion of metastasis in colorectal cancer: a complex and heterogeneous process. Clin. Exp. Metastasis 35, 333–345 (2018).

    Article  PubMed  Google Scholar 

  205. Alieva, M., van Rheenen, J. & Broekman, M. L. D. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin. Exp. Metastasis 35, 319–331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Jakab, M. et al. Lung endothelium instructs dormancy of susceptible metastatic tumour cells. Preprint at bioXriv https://doi.org/10.1101/2022.06.18.496680 (2022).

    Article  Google Scholar 

  207. Altorki, N. K. et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat. Rev. Cancer 19, 9–31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Shen, Y. et al. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell 37, 800–817.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. Blasco, M. T., Espuny, I. & Gomis, R. R. Ecology and evolution of dormant metastasis. Trends Cancer 8, 570–582 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Cackowski, F. C. & Heath, E. I. Prostate cancer dormancy and recurrence. Cancer Lett. 524, 103–108 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Zheng, H. et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell 32, 731–747.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Alečković, M., McAllister, S. S. & Polyak, K. Metastasis as a systemic disease: molecular insights and clinical implications. Biochim. Biophys. Acta Rev. Cancer 1872, 89–102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Doglioni, G., Parik, S. & Fendt, S.-M. Interactions in the (pre)metastatic niche support metastasis formation. Front. Oncol. 9, 219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Grossberg, A. J. et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J. Clin. 70, 375–403 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Wu, Y.-L. et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. 383, 1711–1723 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tohme, S., Simmons, R. L. & Tsung, A. Surgery for cancer: a trigger for metastases. Cancer Res. 77, 1548–1552 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022). This work presents a targeted DNA sequencing study of metastases from more than 25,000 patients across all cancer types, the largest such data set generated thus far.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Walsh, N. C. et al. Humanized mouse models of clinical disease. Annu. Rev. Pathol. 12, 187–215 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Damo, M. et al. Inducible de novo expression of neoantigens in tumor cells and mice. Nat. Biotechnol. 39, 64–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ma, X. et al. Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity. Nat. Genet. 54, 996–1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Birkbak, N. J. & McGranahan, N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37, 8–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  228. Black, J. R. M. & McGranahan, N. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer 21, 379–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Jackson, E. L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    Article  CAS  PubMed  Google Scholar 

  230. Caswell, D. R. et al. Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov. 4, 781–789 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Meuwissen, R. et al. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell 4, 181–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  232. Schaffer, B. E. et al. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res. 70, 3877–3883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  234. Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kirsch, D. G. et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat. Med. 13, 992–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  236. Sachdeva, M. et al. microRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. J. Clin. Invest. 124, 4305–4319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Herschkowitz, J. I. et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8, R76 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R. & Leder, P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54, 105–115 (1988).

    Article  CAS  PubMed  Google Scholar 

  240. Lin, S.-C. J. et al. Somatic mutation of p53 leads to estrogen receptor α-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res. 64, 3525–3532 (2004).

    Article  CAS  PubMed  Google Scholar 

  241. Gingrich, J. R. et al. Metastatic prostate cancer in a transgenic mouse1. Cancer Res. 56, 4096–4102 (1996).

    CAS  PubMed  Google Scholar 

  242. Zhou, Z. et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66, 7889–7898 (2006).

    Article  CAS  PubMed  Google Scholar 

  243. Aytes, A. et al. ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer. Proc. Natl Acad. Sci. USA 110, E3506–E3515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Arriaga, J. M. et al. A MYC and RAS co-activation signature in localized prostate cancer drives bone metastasis and castration resistance. Nat. Cancer 1, 1082–1096 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Hung, K. E. et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc. Natl Acad. Sci. USA 107, 1565–1570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Boutin, A. T. et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 31, 370–382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ackermann, J. et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 65, 4005–4011 (2005).

    Article  CAS  PubMed  Google Scholar 

  250. Damsky, W. E. et al. β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20, 741–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Perets, R. et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell 24, 751–765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Kim, J. et al. High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc. Natl Acad. Sci. USA 109, 3921–3926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Dinulescu, D. M. et al. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat. Med. 11, 63–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  254. Puzio-Kuter, A. M. et al. Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev. 23, 675–680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to those whose excellent work could not be highlighted owing to space limitations. The authors thank N.E. Reticker-Flynn and members of the Winslow laboratory for helpful comments. J.D.H. was supported by an American Cancer Society postdoctoral fellowship (PF-21-112-01-MM) and a Tobacco-Related Disease Research Program (TRDRP) fellowship (T31FT1619). J.D.H. and M.M.W. were supported by National Institutes of Health (NIH) R01-CA234349, NIH R01-CA230919 and a grant from the Cancer League.

Author information

Authors and Affiliations

Authors

Contributions

J.D.H. researched data for the article. All authors contributed substantially to discussion of the content. J.D.H. and M.M.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Monte M. Winslow.

Ethics declarations

Competing interests

J.W.N. has received research support from Genentech/Roche, Merck, Novartis, Boehringer Ingelheim, Exelixis, Nektar Therapeutics, Takeda Pharmaceuticals, Adaptimmune, GSK, Janssen and AbbVie; has served in a consulting or advisory role for AstraZeneca, Genentech/Roche, Exelixis, Jounce Therapeutics, Takeda Pharmaceuticals, Eli Lilly and Company, Calithera Biosciences, Amgen, Iovance Biotherapeutics, Blueprint Pharmaceuticals, Regeneron Pharmaceuticals, Natera, Sanofi/Regeneron, D2G Oncology, Surface Oncology, Turning Point Therapeutics, Mirati Therapeutics, Gilead Sciences and AbbVie; and has received honoraria from CME Matters, Clinical Care Options CME, Research to Practice CME, Medscape CME, Biomedical Learning Institute CME, MLI Peerview CME, Prime Oncology CME, Projects in Knowledge CME, Rockpointe CME, MJH Life Sciences CME, Medical Educator Consortium and HMP Education. M.M.W. is a co-founder of and holds equity in D2G Oncology. J.D.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Meera Murgai and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Allogeneic

Tissues or cells shared between non-genetically identical members of the same species, as in transplantation of mouse cell lines into mice of a different strain.

Anoikis

A type of programmed cell death induced by lack of attachment to the extracellular matrix (ECM).

Autochthonous models

Models in which cancer arises de novo in its natural site from normal, transformed cells, rather than through transplantation of already cancerous cells.

Experimental metastases

The process of metastatic colonization in animal models in which cancer cells are injected into circulation.

Extravasation

The exit of cancer cells from the vasculature into the surrounding tissue.

Ferroptosis

An iron-dependent type of programmed cell death characterized by build-up of reactive oxygen species.

Intralymphatic microinfusion

The injection of cells into afferent lymph vessels to transplant them into a lymph node.

Intravasation

The entry of cancer cells into the vasculature.

Karyotypic abnormalities

Cells, tissues or individuals possessing an unusual number of chromosomes, either through the gain or loss of individual chromosomes (aneuploidy) or the gain of entire sets of chromosomes (whole genome duplication).

Macrometastases

Sizeable metastatic tumours that can be detected by imaging.

Micrometastases

Very small metastatic tumours that are difficult to detect by imaging.

Spontaneous metastasis

Metastasis of cancer cells that disseminate from an existing primary tumour.

Syngeneic

Cells, tissues or individuals that are genetically identical and compatible for transplantation without immune rejection.

Tumour mutational burden

(TMB). A metric of the overall number of mutations present in a tumour.

Xenogeneic

Tissue or cells that are from different species, such as the transplantation of human cells into mice.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebert, J.D., Neal, J.W. & Winslow, M.M. Dissecting metastasis using preclinical models and methods. Nat Rev Cancer 23, 391–407 (2023). https://doi.org/10.1038/s41568-023-00568-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00568-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer