Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

STAT proteins in cancer: orchestration of metabolism

This article has been updated

Abstract

Reprogrammed metabolism is a hallmark of cancer. However, the metabolic dependency of cancer, from tumour initiation through disease progression and therapy resistance, requires a spectrum of distinct reprogrammed cellular metabolic pathways. These pathways include aerobic glycolysis, oxidative phosphorylation, reactive oxygen species generation, de novo lipid synthesis, fatty acid β-oxidation, amino acid (notably glutamine) metabolism and mitochondrial metabolism. This Review highlights the central roles of signal transducer and activator of transcription (STAT) proteins, notably STAT3, STAT5, STAT6 and STAT1, in orchestrating the highly dynamic metabolism not only of cancer cells but also of immune cells and adipocytes in the tumour microenvironment. STAT proteins are able to shape distinct metabolic processes that regulate tumour progression and therapy resistance by transducing signals from metabolites, cytokines, growth factors and their receptors; defining genetic programmes that regulate a wide range of molecules involved in orchestration of metabolism in cancer and immune cells; and regulating mitochondrial activity at multiple levels, including energy metabolism and lipid-mediated mitochondrial integrity. Given the central role of STAT proteins in regulation of metabolic states, they are potential therapeutic targets for altering metabolic reprogramming in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of STAT proteins in cancer progression.
Fig. 2: The role of STAT proteins in tumour cell glycolysis and mitochondrial oxidative phosphorylation.
Fig. 3: The role of STAT proteins in energy metabolism.
Fig. 4: STAT proteins regulate lipid-mediated cancer cell growth and resistance to therapy.
Fig. 5: The role of STAT proteins in glutamine metabolism.
Fig. 6: STAT proteins are involved in metabolic reprogramming of tumour-associated immune cells.

Similar content being viewed by others

Change history

  • 16 May 2023

    In the version of this article initially published, there was an error in the spelling of Richard Moriggl’s name in the peer reviewer acknowledgements, which is now amended in the HTML and PDF versions of the article.

References

  1. Darnell, J. E. Jr, Kerr, I. M. & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. O’Shea, J. J., Gadina, M. & Schreiber, R. D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109, S121–S131 (2002).

    Article  PubMed  Google Scholar 

  3. Yu, H. & Jove, R. The STATs of cancer—new molecular targets come of age. Nat. Rev. Cancer 4, 97–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer 14, 736–746 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Guschin, D. et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 14, 1421–1429 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10, 48–54 (2004).

    Article  PubMed  Google Scholar 

  10. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 11, 1314–1321 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Jones, S. A. & Jenkins, B. J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 18, 773–789 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Kang, S., Tanaka, T., Narazaki, M. & Kishimoto, T. Targeting interleukin-6 signaling in clinic. Immunity 50, 1007–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Erdogan, F. et al. JAK-STAT core cancer pathway: an integrative cancer interactome analysis. J. Cell Mol. Med. 26, 2049–2062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghoshal Gupta, S., Baumann, H. & Wetzler, M. Epigenetic regulation of signal transducer and activator of transcription 3 in acute myeloid leukemia. Leuk. Res. 32, 1005–1014 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wingelhofer, B. et al. Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia 32, 1713–1726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maurer, B. et al. High activation of STAT5A drives peripheral T-cell lymphoma and leukemia. Haematologica 105, 435–447 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schepers, H., Wierenga, A. T., Vellenga, E. & Schuringa, J. J. STAT5-mediated self-renewal of normal hematopoietic and leukemic stem cells. JAKSTAT 1, 13–22 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Subramaniam, D. et al. Suppressing STAT5 signaling affects osteosarcoma growth and stemness. Cell Death Dis. 11, 149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chou, P. H. et al. A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J. Biomed. Sci. 29, 20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, F., Zhang, L., Liu, J., Zhang, J. & Xu, G. Highly expressed STAT1 contributes to the suppression of stemness properties in human paclitaxel-resistant ovarian cancer cells. Aging 12, 11042–11060 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qadir, A. S. et al. CD95/Fas increases stemness in cancer cells by inducing a STAT1-dependent type I interferon response. Cell Rep. 18, 2373–2386 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, C. et al. STAT1-mediated inhibition of FOXM1 enhances gemcitabine sensitivity in pancreatic cancer. Clin. Sci. 133, 645–663 (2019).

    Article  CAS  Google Scholar 

  25. Croker, B. A., Kiu, H. & Nicholson, S. E. SOCS regulation of the JAK/STAT signalling pathway. Semin. Cell Dev. Biol. 19, 414–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song, M. M. & Shuai, K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35056–35062 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Krebs, D. L. & Hilton, D. J. SOCS proteins: negative regulators of cytokine signaling. Stem Cell 19, 378–387 (2001).

    Article  CAS  Google Scholar 

  28. Rani, A. & Murphy, J. J. STAT5 in cancer and immunity. J. Interferon Cytokine Res. 36, 226–237 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Inghirami, G. et al. New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle 4, 1131–1133 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Weniger, M. A. et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25, 2679–2684 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Lennerz, J. K. et al. Suppressor of cytokine signaling 1 gene mutation status as a prognostic biomarker in classical Hodgkin lymphoma. Oncotarget 6, 29097–29110 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ogata, H. et al. Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-β1 production. Oncogene 25, 2520–2530 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. He, B. et al. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc. Natl Acad. Sci. USA 100, 14133–14138 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    Article  CAS  PubMed  Google Scholar 

  35. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  37. Liberti, M. V. & Locasale, J. W. The Warburg effect: how does it benefit cancer cells. Trends Biochem. Sci. 41, 211–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evans, K. W. et al. Oxidative phosphorylation is a metabolic vulnerability in chemotherapy-resistant triple-negative breast cancer. Cancer Res. 81, 5572–5581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chandra, D. & Singh, K. K. Genetic insights into OXPHOS defect and its role in cancer. Biochim. Biophys. Acta 1807, 620–625 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Ashton, T. M., McKenna, W. G., Kunz-Schughart, L. A. & Higgins, G. S. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 24, 2482–2490 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Nayak, A. P., Kapur, A., Barroilhet, L. & Patankar, M. S. Oxidative phosphorylation: a target for novel therapeutic strategies against ovarian cancer. Cancers https://doi.org/10.3390/cancers10090337 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Leone, R. D. & Powell, J. D. Metabolism of immune cells in cancer. Nat. Rev. Cancer 20, 516–531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 54, 1561–1577 e1567 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mehla, K. & Singh, P. K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5, 822–834 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poznanski, S. M. et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab. 33, 1205–1220 e1205 (2021). This article shows that STAT3-mediated metabolic reprogramming of NK cells in the tumour microenvironment can augment their tumour cell-killing activity.

    Article  CAS  PubMed  Google Scholar 

  47. Yao, C. H. et al. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. Elife https://doi.org/10.7554/eLife.41351 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med. 22, 427–432 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carracedo, A., Cantley, L. C. & Pandolfi, P. P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227–232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang, N. et al. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat. Commun. 13, 1511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, C. et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fan, J. et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9, 712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Demaria, M. et al. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging 2, 823–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, Y. et al. Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells. Oncotarget 8, 25372–25383 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang, L. et al. Mitochondrial STAT5A promotes metabolic remodeling and the Warburg effect by inactivating the pyruvate dehydrogenase complex. Cell Death Dis. 12, 634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, S. B. et al. Autocrine INSL5 promotes tumor progression and glycolysis via activation of STAT5 signaling. EMBO Mol. Med. 12, e12050 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qin, X. et al. Extracellular matrix protein Reelin promotes myeloma progression by facilitating tumor cell proliferation and glycolysis. Sci. Rep. 7, 45305 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanlon, M. M. et al. STAT3 mediates the differential effects of oncostatin M and TNFα on RA synovial fibroblast and endothelial cell function. Front. Immunol. 10, 2056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shi, T. et al. B7-H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2. Cell Death Dis. 10, 308 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang, H. L. et al. Blocking preferential glucose uptake sensitizes liver tumor-initiating cells to glucose restriction and sorafenib treatment. Cancer Lett. 388, 1–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sasaki, T. et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice. J. Biol. Chem. 296, 100131 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Guo, C. et al. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) suppresses gastric cancer cell proliferation and migration through antagonizing STAT3 signaling pathway. Oncotarget 6, 34402–34413 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fatrai, S., Wierenga, A. T., Daenen, S. M., Vellenga, E. & Schuringa, J. J. Identification of HIF2α as an important STAT5 target gene in human hematopoietic stem cells. Blood 117, 3320–3330 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Dey, P. et al. Oncogenic KRAS-driven metabolic reprogramming in pancreatic cancer cells utilizes cytokines from the tumor microenvironment. Cancer Discov. 10, 608–625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Corcoran, R. B. et al. STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res. 71, 5020–5029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeng, H. et al. Feedback activation of leukemia inhibitory factor receptor limits response to histone deacetylase inhibitors in breast cancer. Cancer Cell 30, 459–473 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, S. et al. Mutant KRAS downregulates the receptor for leukemia inhibitory factor (LIF) to enhance a signature of glycolysis in pancreatic cancer and lung cancer. Mol. Cancer Res. 19, 1283–1295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo, W. & Semenza, G. L. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol. Metab. 23, 560–566 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hamabe, A. et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial–mesenchymal transition. Proc. Natl Acad. Sci. USA 111, 15526–15531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, J., Kim, H. K., Han, Y. M. & Kim, J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int. J. Biochem. Cell Biol. 40, 1043–1054 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Yang, W. W. et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295–1304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao, X., Wang, H., Yang, J. J., Liu, X. & Liu, Z. R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598–609 (2012). This study shows that, in addition to being a glycolytic enzyme, PKM2 localizes to the cell nucleus, where it phosphorylates STAT3 at Tyr705, leading to increased proliferation of tumour cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, Q. et al. Nuclear PKM2 contributes to gefitinib resistance via upregulation of STAT3 activation in colorectal cancer. Sci. Rep. 5, 16082 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma, R. et al. PKM2-regulated STAT3 promotes esophageal squamous cell carcinoma progression via TGF-β1-induced EMT. J. Cell Biochem. https://doi.org/10.1002/jcb.28434 (2019).

    Article  PubMed  Google Scholar 

  77. Xia, Y. et al. PKM2 is essential for bladder cancer growth and maintenance. Cancer Res. 82, 571–585 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bi, Y. H. et al. Signal transducer and activator of transcription 3 promotes the Warburg effect possibly by inducing pyruvate kinase M2 phosphorylation in liver precancerous lesions. World J. Gastroenterol. 25, 1936–1949 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, Z., Wang, D. & Tang, Y. PKM2 promotes cell metastasis and inhibits autophagy via the JAK/STAT3 pathway in hepatocellular carcinoma. Mol. Cell Biochem. 476, 2001–2010 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Park, Y. S. et al. AKT-induced PKM2 phosphorylation signals for IGF-1-stimulated cancer cell growth. Oncotarget 7, 48155–48167 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sajic, T. et al. STAT6 promotes bi-directional modulation of PKM2 in liver and adipose inflammatory cells in rosiglitazone-treated mice. Sci. Rep. 3, 2350 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tammineni, P. et al. The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. J. Biol. Chem. 288, 4723–4732 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Peron, M. et al. Y705 and S727 are required for the mitochondrial import and transcriptional activities of STAT3, and for regulation of stem cell proliferation. Development https://doi.org/10.1242/dev.199477 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gough, D. J., Marie, I. J., Lobry, C., Aifantis, I. & Levy, D. E. STAT3 supports experimental K-RasG12D-induced murine myeloproliferative neoplasms dependent on serine phosphorylation. Blood 124, 2252–2261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu, Y. S. et al. STAT3 undergoes acetylation-dependent mitochondrial translocation to regulate pyruvate metabolism. Sci. Rep. 6, 39517 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, Q. et al. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J. Biol. Chem. 288, 31280–31288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gough, D. J. et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Elschami, M., Scherr, M., Philippens, B. & Gerardy-Schahn, R. Reduction of STAT3 expression induces mitochondrial dysfunction and autophagy in cardiac HL-1 cells. Eur. J. Cell Biol. 92, 21–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Bernier, M. et al. Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J. Biol. Chem. 286, 19270–19279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vassilev, A. O., Lorenz, D. R., Tibbles, H. E. & Uckun, F. M. Role of the leukemia-associated transcription factor STAT3 in platelet physiology. Leuk. Lymphoma 43, 1461–1467 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Chueh, F. Y., Leong, K. F. & Yu, C. L. Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem. Biophys. Res. Commun. 402, 778–783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Richard, A. J., Hang, H. & Stephens, J. M. Pyruvate dehydrogenase complex (PDC) subunits moonlight as interaction partners of phosphorylated STAT5 in adipocytes and adipose tissue. J. Biol. Chem. 292, 19733–19742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chueh, F. Y. et al. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription. Cell Signal. 23, 1170–1178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Perillo, B. et al. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miwa, S., Kashyap, S., Chini, E. & von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. https://doi.org/10.1172/JCI158447 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yang, H. et al. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 37, 266 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cao, Y., Wang, J. L., Tian, H. & Fu, G. H. Mitochondrial ROS accumulation inhibiting JAK2/STAT3 pathway is a critical modulator of CYT997-induced autophagy and apoptosis in gastric cancer. J. Exp. Clin. Canc. Res. 39, 119 (2020).

    Article  CAS  Google Scholar 

  100. Lee, J. K. et al. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 133, 1637–1648 (2007). This article shows that ROS produced by NOX4 mediates upregulation of phosphorylated JAK2 by inhibiting PTP, and upregulated pJAK2 increases STAT1 and STAT3 signalling, leading to anti-apoptotic effects in pancreatic cancer cells.

    Article  CAS  PubMed  Google Scholar 

  101. Sun, N. et al. Glutamine affects T24 bladder cancer cell proliferation by activating STAT3 through ROS and glutaminolysis. Int. J. Mol. Med. 44, 2189–2200 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu, Q. et al. Osteopontin promotes hepatocellular carcinoma progression through inducing JAK2/STAT3/NOX1-mediated ROS production. Cell Death Dis. 13, 341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Simon, A. R., Rai, U., Fanburg, B. L. & Cochran, B. H. Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol. 275, C1640–C1652 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Jayavelu, A. K. et al. NOX4-driven ROS formation mediates PTP inactivation and cell transformation in FLT3ITD-positive AML cells. Leukemia 30, 473–483 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Bourgeais, J. et al. Oncogenic STAT5 signaling promotes oxidative stress in chronic myeloid leukemia cells by repressing antioxidant defenses. Oncotarget 8, 41876–41889 (2017).

    Article  PubMed  Google Scholar 

  106. Dho, S. H. et al. STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells. Exp. Cell Res. 351, 51–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Gao, X. et al. RNAi-mediated silencing of NOX4 inhibited the invasion of gastric cancer cells through JAK2/STAT3 signaling. Am. J. Transl. Res. 9, 4440–4449 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sattler, M. et al. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93, 2928–2935 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Iiyama, M., Kakihana, K., Kurosu, T. & Miura, O. Reactive oxygen species generated by hematopoietic cytokines play roles in activation of receptor-mediated signaling and in cell cycle progression. Cell Signal. 18, 174–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Rigacci, S., Talini, D. & Berti, A. LMW-PTP associates and dephosphorylates STAT5 interacting with its C-terminal domain. Biochem. Biophys. Res. Commun. 312, 360–366 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Irie-Sasaki, J. et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, T. et al. Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J. Biol. Chem. 279, 2461–2469 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Garama, D. J. et al. A synthetic lethal interaction between glutathione synthesis and mitochondrial reactive oxygen species provides a tumor-specific vulnerability dependent on STAT3. Mol. Cell Biol. 35, 3646–3656 (2015). This study shows that mitochondrial STAT3 is essential for the γ-glutamyl cycle and synthesis of glutathione in Ras-transformed cells; blocking STAT3 decreases glutathione, which increases ROS and leads to oxidative DNA damage and cell death in Ras-transformed cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xie, C. et al. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J. Exp. Clin. Cancer Res. 40, 266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mantel, C. et al. Mouse hematopoietic cell-targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype. Blood 120, 2589–2599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Szczepanek, K. et al. Mitochondrial-targeted signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J. Biol. Chem. 286, 29610–29620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Totten, S. P. et al. STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer. Nat. Commun. 12, 3299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, Y. et al. IL-4 and IL-17A cooperatively promote hydrogen peroxide production, oxidative DNA damage, and upregulation of dual oxidase 2 in human colon and pancreatic cancer cells. J. Immunol. 203, 2532–2544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xie, Y., Kole, S., Precht, P., Pazin, M. J. & Bernier, M. S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling. Endocrinology 150, 1122–1131 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Butturini, E. et al. Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs. Free Radic. Biol. Med. 65, 1322–1330 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Butturini, E. et al. S-glutathionylation at Cys328 and Cys542 impairs STAT3 phosphorylation. ACS Chem. Biol. 9, 1885–1893 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, J., Won, J. S., Singh, A. K., Sharma, A. K. & Singh, I. STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxid. Redox Signal. 20, 2514–2527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, L., Cheung, S. H., Evans, E. L. & Shaw, P. E. Modulation of gene expression and tumor cell growth by redox modification of STAT3. Cancer Res. 70, 8222–8232 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Carballo, M. et al. Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J. Biol. Chem. 274, 17580–17586 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Wang, W. et al. Decreased NAD activates STAT3 and integrin pathways to drive epithelial-mesenchymal transition. Mol. Cell Proteom. 17, 2005–2017 (2018).

    Article  CAS  Google Scholar 

  126. Igelmann, S. et al. A hydride transfer complex reprograms NAD metabolism and bypasses senescence. Mol. Cell 81, 3848–3865 e3819 (2021). In some cancer cells, mitochondria are damaged and ATP production is impaired; to compensate for the corresponding energy deficiency, STAT3 senses ATP production impairment and supports a hydride transfer complex that catalyses a metabolic cycle that transfers H from NADH to NADP+, thus regenerating NAD+ and supplying NADP.

    Article  CAS  PubMed  Google Scholar 

  127. Ohanna, M. et al. Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype. Genes Dev. 32, 448–461 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lv, H. et al. NAD+ metabolism maintains inducible PD-L1 expression to drive tumor immune evasion. Cell Metab. 33, 110–127 e115 (2021). This study shows that NAMPT, a rate-limiting enzyme in the NAD+ metabolic pathway, promotes tumour immune evasion by upregulating PDL1 expression through IFNγ-activated STAT1.

    Article  CAS  PubMed  Google Scholar 

  129. Hoy, A. J., Nagarajan, S. R. & Butler, L. M. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat. Rev. Cancer 21, 753–766 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Liang, Y. et al. CD36 plays a critical role in proliferation, migration and tamoxifen-inhibited growth of ER-positive breast cancer cells. Oncogenesis 7, 98 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Pan, J. et al. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway. J. Exp. Clin. Cancer Res. 38, 52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rozovski, U. et al. STAT3-activated CD36 facilitates fatty acid uptake in chronic lymphocytic leukemia cells. Oncotarget 9, 21268–21280 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Deng, M. et al. CD36 promotes the epithelial-mesenchymal transition and metastasis in cervical cancer by interacting with TGF-β. J. Transl. Med. 17, 352 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang, Y. et al. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia. Exp. Cell Res. 415, 113112 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Gyamfi, J. et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer 7, 129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sp, N. et al. Nobiletin Inhibits CD36-dependent tumor angiogenesis, migration, invasion, and sphere formation through the Cd36/Stat3/Nf-κB signaling axis. Nutrients https://doi.org/10.3390/nu10060772 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dogra, S. et al. Adipokine apelin/APJ pathway promotes peritoneal dissemination of ovarian cancer cells by regulating lipid metabolism. Mol. Cancer Res. 19, 1534–1545 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Yu, C. et al. IL-17A promotes fatty acid uptake through the IL-17A/IL-17RA/p-STAT3/FABP4 axis to fuel ovarian cancer growth in an adipocyte-rich microenvironment. Cancer Immunol. Immunother. 69, 115–126 (2020). This study shows that IL-17A mediates cellular fatty acid uptake by ovarian cancer cells, promoting ovarian cancer growth and metastasis, and that STAT3 is activated by the IL-17A–IL-17RA signalling axis, leading to upregulation of FABP4 without involving CD36.

    Article  CAS  PubMed  Google Scholar 

  141. Dong, S. R., Ju, X. L. & Yang, W. Z. STAT5A reprograms fatty acid metabolism and promotes tumorigenesis of gastric cancer cells. Eur. Rev. Med. Pharm. 23, 8360–8370 (2019).

    Google Scholar 

  142. Fayngerts, S. A. et al. TIPE3 is the transfer protein of lipid second messengers that promote cancer. Cancer Cell 26, 465–478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bordoloi, D. et al. Loss of TIPE3 reduced the proliferation, survival and migration of lung cancer cells through inactivation of Akt/mTOR, NF-κB, and STAT-3 signaling cascades. Life Sci. 293, 120332 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Mashima, T., Seimiya, H. & Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer 100, 1369–1372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rysman, E. et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70, 8117–8126 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Vasseur, S. & Guillaumond, F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 11, 46 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Su, P. et al. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res. 80, 1438–1450 (2020). This study shows that lipid uptake by CD36, and FAO but not glycolysis, is required for the differentiation and activation of TAMs; increased FAO promotes mitochondrial oxidative phosphorylation, ROS production and phosphorylation of JAK1, and dephosphorylation of SHP1, upregulating STAT6 activation and transcription of genes that underlie the generation and functions of TAMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Maan, M., Peters, J. M., Dutta, M. & Patterson, A. D. Lipid metabolism and lipophagy in cancer. Biochem. Biophys. Res. Commun. 504, 582–589 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Swinnen, J. V., Dehairs, J. & Talebi, A. Membrane lipid remodeling takes center stage in growth factor receptor-driven cancer development. Cell Metab. 30, 407–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Bian, X. et al. Lipid metabolism and cancer. J. Exp. Med. https://doi.org/10.1084/jem.20201606 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122, 4–22 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Gao, P. et al. Dihydroartemisinin inhibits endothelial cell tube formation by suppression of the STAT3 signaling pathway. Life Sci. 242, 117221 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Menendez, J. A. & Lupu, R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert. Opin. Ther. Targets 21, 1001–1016 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Kumar-Sinha, C., Ignatoski, K. W., Lippman, M. E., Ethier, S. P. & Chinnaiyan, A. M. Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Res. 63, 132–139 (2003).

    CAS  PubMed  Google Scholar 

  155. Menendez, J. A., Vellon, L. & Lupu, R. Targeting fatty acid synthase-driven lipid rafts: a novel strategy to overcome trastuzumab resistance in breast cancer cells. Med. Hypotheses 64, 997–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Wu, J. et al. Iciartin, a novel FASN inhibitor, exerts anti-melanoma activities through IGF-1R/STAT3 signaling. Oncotarget 7, 51251–51269 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Li, T. et al. mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma. Cell Death Dis. 10, 619 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kim, H. Y. et al. Comparative metabolic and lipidomic profiling of human breast cancer cells with different metastatic potentials. Oncotarget 7, 67111–67128 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Mika, A. et al. Decreased triacylglycerol content and elevated contents of cell membrane lipids in colorectal cancer tissue: a lipidomic study. J. Clin. Med. https://doi.org/10.3390/jcm9041095 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Dubey, R. & Saini, N. STAT6 silencing up-regulates cholesterol synthesis via miR-197/FOXJ2 axis and induces ER stress-mediated apoptosis in lung cancer cells. Biochim. Biophys. Acta 1849, 32–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, T. et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27, 136–150 (2018). This publication reveals that JAK–STAT3 signalling increases lipid metabolism in chemoresistant breast cancer cells. 

    Article  CAS  PubMed  Google Scholar 

  162. Han, S. et al. CPT1A/2-mediated FAO enhancement-a metabolic target in radioresistant breast cancer. Front. Oncol. 9, 1201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Chen, C. L. et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab. 23, 206–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Kuo, C. Y. & Ann, D. K. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun. 38, 47 (2018).

    Article  Google Scholar 

  165. Tan, Z. et al. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Theranostics 8, 2329–2347 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li, R. et al. Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation. Theranostics 12, 976–998 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Li, Y. J. et al. Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep. 39, 110870 (2022). This article describes a mechanism by which STAT3-mediated FAO protects tumour cells from apoptosis. 

    Article  CAS  PubMed  Google Scholar 

  168. Rozovski, U. et al. Aberrant LPL expression, driven by STAT3, mediates free fatty acid metabolism in CLL cells. Mol. Cancer Res. 13, 944–953 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dirat, B. et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Umar, M. I. et al. the adipokine component in the molecular regulation of cancer cell survival, proliferation and metastasis. Pathol. Oncol. Res. 27, 1609828 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gyamfi, J., Lee, Y. H., Eom, M. & Choi, J. Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci. Rep. 8, 8859 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Baumann, H. et al. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Natl Acad. Sci. USA 93, 8374–8378 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Deng, T., Lyon, C. J., Bergin, S., Caligiuri, M. A. & Hsueh, W. A. Obesity, inflammation, and cancer. Annu. Rev. Pathol. 11, 421–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Gurzov, E. N. et al. Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab. 20, 85–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Krishnan, M. & McCole, D. F. T cell protein tyrosine phosphatase prevents STAT1 induction of claudin-2 expression in intestinal epithelial cells. Ann. N. Y. Acad. Sci. 1405, 116–130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Heinonen, K. M., Bourdeau, A., Doody, K. M. & Tremblay, M. L. Protein tyrosine phosphatases PTP-1B and TC-PTP play nonredundant roles in macrophage development and IFN-γ signaling. Proc. Natl Acad. Sci. USA 106, 9368–9372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shields, B. J. et al. TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers. Mol. Cell Biol. 33, 557–570 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fukushima, A. et al. T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes 59, 1906–1914 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Grohmann, M. et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell 175, 1289–1306 e1220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kwan, H. Y. et al. Signal transducer and activator of transcription-3 drives the high-fat diet-associated prostate cancer growth. Cell Death Dis. 10, 637 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Zhang, C. et al. STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab. 31, 148–161 e145 (2020). This study shows that STAT3 in CD8+ T effector cells responds to leptin from adipocytes, leading to increased FAO activity and reduced T cell glycolysis and antitumour effector functions. 

    Article  PubMed  Google Scholar 

  182. Su, T. et al. Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity. Pharmacol. Res. 152, 104586 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Reilly, S. M. et al. Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nat. Metab. 2, 620–634 (2020). This study describes a role of STAT3 in adipocytes in lipolysis-driven FAO, which contributes to decreased adiposity in mice receiving a high-fat diet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. McGillicuddy, F. C. et al. Interferon γ attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J. Biol. Chem. 284, 31936–31944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Richard, A. J. & Stephens, J. M. The role of JAK-STAT signaling in adipose tissue function. Biochim. Biophys. Acta 1842, 431–439 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Kaltenecker, D. et al. Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice. Diabetologia 60, 296–305 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Hogan, J. C. & Stephens, J. M. The regulation of fatty acid synthase by STAT5A. Diabetes 54, 1968–1975 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Coulter, A. A. & Stephens, J. M. STAT5 activators modulate acyl CoA oxidase (AOX) expression in adipocytes and STAT5A binds to the AOX promoter in vitro. Biochem. Biophys. Res. Commun. 344, 1342–1345 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Pan, L. et al. Fatty acid binding protein 5 promotes tumor angiogenesis and activates the IL6/STAT3/VEGFA pathway in hepatocellular carcinoma. Biomed. Pharmacother. 106, 68–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Yan, F. et al. Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells. Leukemia 31, 1434–1442 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Lee, H. et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat. Med. 16, 1421–1428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Deng, J. et al. S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21, 642–654 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nagahashi, M. et al. Targeting the SphK1/S1P/S1PR1 axis that links obesity, chronic inflammation, and breast cancer metastasis. Cancer Res. 78, 1713–1725 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Spiegel, S. & Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11, 403–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Doll, F., Pfeilschifter, J. & Huwiler, A. Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocr. Relat. Cancer 14, 325–335 (2007).

    Article  PubMed  Google Scholar 

  196. Hii, L. W. et al. Sphingosine kinase 1 regulates the survival of breast cancer stem cells and non-stem breast cancer cells by suppression of STAT1. Cells https://doi.org/10.3390/cells9040886 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Xin, Q. et al. STAT1 transcriptionally regulates the expression of S1PR1 by binding its promoter region. Gene 736, 144417 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Tan, Y. et al. Metabolic reprogramming from glycolysis to fatty acid uptake and β-oxidation in platinum-resistant cancer cells. Nat. Commun. 13, 4554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cai, L., Ying, M. & Wu, H. Microenvironmental factors modulating tumor lipid metabolism: paving the way to better antitumoral therapy. Front. Oncol. 11, 777273 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Louet, J. F. et al. Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor α (PPARα)-independent pathway. Biochem. J. 354, 189–197 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yonezawa, T., Katoh, K. & Obara, Y. Existence of GPR40 functioning in a human breast cancer cell line, MCF-7. Biochem. Biophys. Res. Commun. 314, 805–809 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Sauer, L. A., Dauchy, R. T. & Blask, D. E. Mechanism for the antitumor and anticachectic effects of ω-3 fatty acids. Cancer Res. 60, 5289–5295 (2000).

    CAS  PubMed  Google Scholar 

  203. van Jaarsveld, M. T., Houthuijzen, J. M. & Voest, E. E. Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 35, 4021–4035 (2016).

    Article  PubMed  Google Scholar 

  204. Liang, J. et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23, 107–120 (2013). This study identifies the importance of STAT3 in mediating S1P and S1PR1-promoted transition from chronic intestinal inflammation to colitis-associated cancer.

    Article  CAS  PubMed  Google Scholar 

  205. Oh, M. H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130, 3865–3884 (2020). This study shows that targeting glutamine inhibits the generation and recruitment of MDSCs, leading to tumour growth retardation. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Guo, L. et al. Blockage of glutaminolysis enhances the sensitivity of ovarian cancer cells to PI3K/mTOR inhibition involvement of STAT3 signaling. Tumour Biol. 37, 11007–11015 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Yang, L. et al. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol. 10, 728 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Xiong, J. et al. SLC1A1 mediated glutamine addiction and contributed to natural killer T-cell lymphoma progression with immunotherapeutic potential. EBioMedicine 72, 103614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cacace, A., Sboarina, M., Vazeille, T. & Sonveaux, P. Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism. Oncogene 36, 2074–2084 (2017). This article demonstrates a critical role of glutamine in inducing STAT3 activation and promoting cancer cell proliferation. 

    Article  CAS  PubMed  Google Scholar 

  210. Liu, G. et al. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J. Transl. Med. 13, 144 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Li, X. R. et al. Acetylation-dependent glutamate receptor GluR signalosome formation for STAT3 activation in both transcriptional and metabolism regulation. Cell Death Discov. 7, 11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hassanein, M. et al. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 19, 560–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. van Geldermalsen, M. et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35, 3201–3208 (2016).

    Article  PubMed  Google Scholar 

  214. Zhang, Z. et al. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br. J. Cancer 122, 82–93 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Amaya, M. et al. The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood https://doi.org/10.1182/blood.2021013201 (2021).

    Article  Google Scholar 

  216. Xiang, L. et al. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim. Biophys. Acta 1833, 2996–3005 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Lee, J. S. et al. Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC. Cell Death Dis. 7, e2511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Restall, I. J. et al. Brain tumor stem cell dependence on glutaminase reveals a metabolic vulnerability through the amino acid deprivation response pathway. Cancer Res. 80, 5478–5490 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Xiang, L. et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis. 10, 40 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Ren, L. et al. Glutaminase-1 (GLS1) inhibition limits metastatic progression in osteosarcoma. Cancer Metab. 8, 4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Perez-Escuredo, J. et al. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle 15, 72–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Milewski, K., Bogacinska-Karas, M., Hilgier, W., Albrecht, J. & Zielinska, M. TNFα increases STAT3-mediated expression of glutaminase isoform KGA in cultured rat astrocytes. Cytokine 123, 154774 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Fu, S. et al. Glutamine synthetase promotes radiation resistance via facilitating nucleotide metabolism and subsequent DNA damage repair. Cell Rep. 28, 1136–1143 e1134 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Werth, M., Gebhardt, R. & Gaunitz, F. Hepatic expression of glutamine synthetase in rats is controlled by STAT5 and TCF transcription factors. Hepatology 44, 967–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  226. Betto, R. M. et al. Metabolic control of DNA methylation in naive pluripotent cells. Nat. Genet. 53, 215–229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Xiao, L. et al. IL-9/STAT3/fatty acid oxidation-mediated lipid peroxidation contributes to Tc9 cell longevity and enhanced antitumor activity. J. Clin. Invest. https://doi.org/10.1172/JCI153247 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Yan, D. et al. Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur. J. Immunol. 43, 2943–2955 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Vasquez-Dunddel, D. et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J. Clin. Invest. 123, 1580–1589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Wang, Y. et al. Myeloid-derived suppressor cells impair B cell responses in lung cancer through IL-7 and STAT5. J. Immunol. 201, 278–295 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Liu, S. et al. S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-002548 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Goossens, P. et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 29, 1376–1389 e1374 (2019). This publication illustrates an important role of membrane cholesterol efflux in driving TAMs towards a cancer-promoting phenotype. 

    Article  CAS  PubMed  Google Scholar 

  233. Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78 (2019). This publication demonstrates that increased expression of FATP2 in both mouse and human PMN-MDSCs drives immunosuppression and tumour progression. 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mo, F. et al. An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature 597, 544–548 (2021). This article shows that an IL-2 partial agonist (H9T) reduced expression of glucose transporter genes, Slc2a1 and Slc2a3, resulting in reduced glucose uptake and enhanced mitochondrial fitness in H9T-expanded T cells, leading to enhanced memory-like CD8+ T stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Cui, W., Liu, Y., Weinstein, J. S., Craft, J. & Kaech, S. M. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Siegel, A. M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kujawski, M. et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Invest. 118, 3367–3377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sinha, P., Clements, V. K. & Ostrand-Rosenberg, S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 174, 636–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  244. Bhattacharjee, A. et al. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic. Biol. Med. 54, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  245. Jackson, S. H., Devadas, S., Kwon, J., Pinto, L. A. & Williams, M. S. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat. Immunol. 5, 818–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  246. Zhi, L., Ustyugova, I. V., Chen, X., Zhang, Q. & Wu, M. X. Enhanced Th17 differentiation and aggravated arthritis in IEX-1-deficient mice by mitochondrial reactive oxygen species-mediated signaling. J. Immunol. 189, 1639–1647 (2012).

    Article  CAS  PubMed  Google Scholar 

  247. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Chen, X., Song, M., Zhang, B. & Zhang, Y. Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid. Med. Cell Longev. 2016, 1580967 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Jayaraman, P. et al. Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J. Immunol. 188, 5365–5376 (2012).

    Article  CAS  PubMed  Google Scholar 

  250. Corzo, C. A. et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182, 5693–5701 (2009).

    Article  CAS  PubMed  Google Scholar 

  251. Sinha, P. & Ostrand-Rosenberg, S. Myeloid-derived suppressor cell function is reduced by Withaferin A, a potent and abundant component of Withania somnifera root extract. Cancer Immunol. Immun 62, 1663–1673 (2013).

    CAS  Google Scholar 

  252. Yin, T. et al. Aurora A inhibition eliminates myeloid cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in breast cancer. Cancer Res. 79, 3431–3444 (2019).

    Article  CAS  PubMed  Google Scholar 

  253. Griess, B., Mir, S., Datta, K. & Teoh-Fitzgerald, M. Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic. Biol. Med. 147, 48–60 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Al-Khami, A. A. et al. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology 6, e1344804 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Hossain, F. et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol. Res. 3, 1236–1247 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Adeshakin, A. O. et al. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell Immunol. 362, 104286 (2021).

    Article  CAS  PubMed  Google Scholar 

  257. Di Conza, G. et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat. Immunol. 22, 1403–1415 (2021). This article shows that tumour cell-derived glucosylceramide can induce the reshuffling of lipid composition and saturation on the ER membrane in macrophages, leading to ER stress responses. 

    Article  PubMed  PubMed Central  Google Scholar 

  258. Yu, J. et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J. Immunol. 190, 3783–3797 (2013). The findings from this study underscore an important role of STAT3 in promoting breast cancer-induced MDSCs by upregulating IDO, which plays a pivotal role in T cell immunosuppression.

    Article  CAS  PubMed  Google Scholar 

  259. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Gemta, L. F. et al. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8+ T cells. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aap9520 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Hu, Z. et al. Acylglycerol kinase maintains metabolic state and immune responses of CD8+ T cells. Cell Metab. 30, 290–302 e295 (2019).

    Article  CAS  PubMed  Google Scholar 

  262. Wofford, J. A., Wieman, H. L., Jacobs, S. R., Zhao, Y. & Rathmell, J. C. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111, 2101–2111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Nguyen, A. V., Wu, Y. Y. & Lin, E. Y. STAT3 and sphingosine-1-phosphate in inflammation-associated colorectal cancer. World J. Gastroenterol. 20, 10279–10287 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Loh, K. C. et al. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. PLoS ONE 7, e37218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Guo, Y. X. et al. Role of sphingosine 1-phosphate in human pancreatic cancer cells proliferation and migration. Int. J. Clin. Exp. Med. 8, 20349–20354 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Garandeau, D. et al. Targeting the sphingosine 1-phosphate axis exerts potent antitumor activity in BRAFi-resistant melanomas. Mol. Cancer Ther. 18, 289–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  268. Alshaker, H. et al. Sphingosine kinase 1 contributes to leptin-induced STAT3 phosphorylation through IL-6/gp130 transactivation in oestrogen receptor-negative breast cancer. Breast Cancer Res. Treat. 149, 59–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  269. Soto-Guzman, A., Villegas-Comonfort, S., Cortes-Reynosa, P. & Perez Salazar, E. Role of arachidonic acid metabolism in Stat5 activation induced by oleic acid in MDA-MB-231 breast cancer cells. Prostaglandins Leukot. Essent. Fat. Acids 88, 243–249 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.Y. and C.Z. acknowledge funding from National Institutes of Health National Cancer Institute, USA (R01CA247368 and P30CA033572 to H.Y.; R21CA241283 to C.Z.).

Author information

Authors and Affiliations

Authors

Contributions

All authors searched the literature, contributed to the conception of the article and edited or reviewed the manuscript before submission. A.M. generated the original figures. Y.-J.L., C.Z. and H.Y. wrote the final version of the manuscript.

Corresponding author

Correspondence to Hua Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Daniel Gough, Richard Moriggl and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adipocytes

White and brown fat-storing cells. In the tumour microenvironment, adipocytes transfer lipids and/or fatty acids to nearby cancer cells, thereby promoting fatty acid oxidation and leading to cancer progression and chemoresistance.

Catabolism

A metabolic process that breaks down large molecules (lipids, proteins and nucleic acids) into smaller units (fatty acids, amino acids and nucleotides) that can be oxidized to produce energy or used for de novo biogenesis.

CD8+ T cells

Cytotoxic effector cells that recognize specific antigens on cancer cells, as well as viral and bacterial antigens, and are powerful producers of the antitumour and antimicrobial cytokines (including tumour necrosis factor, granzyme B and interferon-γ (IFNγ)) necessary for antitumour immune responses.

Fatty acid β-oxidation

(FAO). A multistep catabolic process that converts fatty acids to acetyl coenzyme A, which is further oxidized by the tricarboxylic acid cycle and electron transport chain to produce ATP; FAO is often increased in malignant cells, therapy-resistant cancer cells and immunosuppressive immune cells.

Glycolysis

The process that converts glucose into pyruvic acid, which can be further catabolized to produce ATP through the tricarboxylic acid cycle.

Myeloid-derived suppressor cells

(MDSCs). Diverse myeloid-lineage cells with an essential role in regulating innate and adaptive immunity. In cancer, activated MDSCs potently suppress cytotoxic immune cell function and promote metastasis by forming pre-metastatic niches and producing growth factors and other cancer-promoting molecules.

Natural killer (NK) cells

Cytotoxic lymphocytes of the innate immune system with potent effects against tumour cells and virus-infected cells that are also involved in controlling tumour growth and metastasis.

Nicotinamide adenine dinucleotide

A coenzyme involved in redox reactions in different metabolic pathways, including glycolysis, the tricarboxylic acid cycle and oxidative phosphorylation; elevated nicotinamide adenine dinucleotide levels enhance glycolysis and promote increased proliferation and survival of cancer cells.

Oxidative phosphorylation

A process that mainly occurs in mitochondria and is the metabolic pathway through which oxidation of nutrients releases chemical energy for ATP generation; this pathway releases more energy than anaerobic glycolysis.

Pyruvate kinase M2

(PKM2). A member of the pyruvate kinase family that converts phosphoenolpyruvate to pyruvate, the final and rate-limiting step of glycolysis.

Reactive oxygen species

(ROS). Highly reactive oxygen-containing free radicals; their accumulation promotes tumour cell growth, immune cell differentiation and/or immune cell activation, and causes damage to cellular components (including DNA and proteins) resulting in cell death.

Regulatory T cells

(Treg cells). Also known as suppressor T cells, cells that suppress immune responses by downregulating the proliferation and cytotoxic function of effector T cells.

Tumour-associated macrophages

(TAMs). Macrophages that produce immunosuppressive cytokines, chemokines, growth factors and metabolites that promote tumour cell growth and metastasis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YJ., Zhang, C., Martincuks, A. et al. STAT proteins in cancer: orchestration of metabolism. Nat Rev Cancer 23, 115–134 (2023). https://doi.org/10.1038/s41568-022-00537-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00537-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer