Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Targeting the gut microbiota for cancer therapy

Abstract

Growing evidence suggests that the gut microbiota modulates the efficacy and toxicity of cancer therapy, most notably immunotherapy and its immune-related adverse effects. The poor response to immunotherapy in patients treated with antibiotics supports this influential role of the microbiota. Until recently, results pertaining to the identification of the microbial species responsible for these effects were incongruent, and relatively few studies analysed the underlying mechanisms. A better understanding of the taxonomy of the species involved and of the mechanisms of action has since been achieved. Defined bacterial species have been shown to promote an improved response to immune-checkpoint inhibitors by producing different products or metabolites. However, a suppressive effect of Gram-negative bacteria may be dominant in some unresponsive patients. Machine learning approaches trained on the microbiota composition of patients can predict the ability of patients to respond to immunotherapy with some accuracy. Thus, interest in modulating the microbiota composition to improve patient responsiveness to therapy has been mounting. Clinical proof-of-concept studies have demonstrated that faecal microbiota transplantation or dietary interventions might be utilized clinically to improve the success rate of immunotherapy in patients with cancer. Here, we review recent advances and discuss emerging strategies for microbiota-based cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The gut microbiota modulates cancer therapy and can be targeted to enhance therapy efficacy and prevent adverse effects.
Fig. 2: Gut microbiota regulation of the response to anti-PD1 immune-checkpoint blockade.

Similar content being viewed by others

References

  1. Zenobia, C., Herpoldt, K. L. & Freire, M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases? NPJ Vaccines 6, 80 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ansaldo, E., Farley, T. K. & Belkaid, Y. Control of immunity by the microbiota. Annu. Rev. Immunol. 39, 449–479 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota-host interactions. Nature 553, 427–436 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kayama, H., Okumura, R. & Takeda, K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu. Rev. Immunol. 38, 23–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Dzutsev, A. et al. Microbes and cancer. Annu. Rev. Immunol. 35, 199–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Lehouritis, P. et al. Local bacteria affect the efficacy of chemotherapeutic drugs. Sci. Rep. 5, 14554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roy, S. & Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer 17, 271–285 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013). Along with Iida et al., this study was the first to suggest the central role of the microbiota in controlling responses to chemotherapy and immunotherapy. Iida et al. showed that an intact gut microbiota primes tumour‑associated myeloid cell responses to produce pro-inflammatory cytokines and ROS that are necessary for CpG‑oligonucleotide immunotherapy and platinum chemotherapy, respectively. This article demonstrated the role of E. hirae translocation in cyclophosphamide treatment to induce TH17 and TH1 cell responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Daillere, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931–943 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022). This study identifies essential microbial signatures for anti-PD1 therapy clinical response and irAEs by evaluating a new cohort of patients with melanoma and four published datasets with optimized all-minus-one supervised learning algorithms to predict anti-PD1 therapy outcomes.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shaikh, F. Y. et al. A uniform computational approach improved on existing pipelines to reveal microbiome biomarkers of non-response to immune checkpoint inhibitors. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-20-4834 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gharaibeh, R. Z. & Jobin, C. Microbiota and cancer immunotherapy: in search of microbial signals. Gut 68, 385–388 (2018).

    Article  PubMed  Google Scholar 

  17. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021). This study uses the combination of FMT and anti-PD1 therapy to induce changes in the gut microbiota and tumor microenvironment that resulted in clinical responses in 40% of patients with advanced melanoma and who were unresponsive to anti-PD1 therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Fujita, K. & Sparreboom, A. Pharmacogenetics of irinotecan disposition and toxicity: a review. Curr. Clin. Pharmacol. 5, 209–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Stringer, A. M. et al. Faecal microflora and beta-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biol. Ther. 7, 1919–1925 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Uribe-Herranz, M. et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Invest. 130, 466–479 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Shiao, S. L. et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell 39, 1202–1213.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crawford, P. A. & Gordon, J. I. Microbial regulation of intestinal radiosensitivity. Proc. Natl Acad. Sci. USA 102, 13254–13259 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grootaert, C. et al. Bacterial monocultures, propionate, butyrate and H2O2 modulate the expression, secretion and structure of the fasting-induced adipose factor in gut epithelial cell lines. Env. Microbiol. 13, 1778–1789 (2011).

    Article  CAS  Google Scholar 

  28. Guo, H. et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science https://doi.org/10.1126/science.aay9097 (2020).

  29. Delia, P. et al. Use of probiotics for prevention of radiation-induced diarrhea. World J. Gastroenterol. 13, 912–915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalina, U. et al. Enhanced production of IL-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region. Eur. J. Immunol. 32, 2635–2643 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11, 4457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. McCarville, J. L. & Ayres, J. S. Disease tolerance: concept and mechanisms. Curr. Opin. Immunol. 50, 88–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Goldszmid, R. S. & Trinchieri, G. The price of immunity. Nat. Immunol. 13, 932–938 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trinchieri, G. Cancer immunity: lessons from infectious diseases. J. Infect. Dis. 212 (Suppl. 1), S67–S73 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goldszmid, R. S., Dzutsev, A. & Trinchieri, G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe 15, 295–305 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paulos, C. M. et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest. 117, 2197–2204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Uribe-Herranz, M. et al. Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12. JCI Insight https://doi.org/10.1172/jci.insight.94952 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith, M. et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. https://doi.org/10.1038/s41591-022-01702-9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lu, W. W. et al. The role of gut microbiota in the pathogenesis and treatment of acute pancreatitis: a narrative review. Ann. Palliat. Med. 10, 3445–3451 (2021).

    Article  PubMed  Google Scholar 

  42. Luu, M. et al. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun. 12, 4077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He, Y. et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33, 988–1000.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Luu, M. et al. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8, 14430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guiducci, C., Vicari, A. P., Sangaletti, S., Trinchieri, G. & Colombo, M. P. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 65, 3437–3446 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Ribas, A. et al. Overcoming PD-1 blockade resistance with CpG-A toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov. https://doi.org/10.1158/2159-8290.Cd-21-0425 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03618641 (2018).

  48. Cercek, A. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015). This study first proved the role of the microbiome in anti-PD1 and anti-PDL1 therapy by establishing that Bifidobacterium spp. strengthen antitumour immunity by allowing the expansion of anticancer T cells in the tumour microenvironment after anti‑PDL1 treatment in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015). This study first proved the role of the microbiome in anti-CTLA4 therapy and explores the role of the gut microbiota (in particular, B. fragilis) in anti-CTLA4 therapy‑mediated anticancer immune effects in mice and humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dzutsev, A., Goldszmid, R. S., Viaud, S., Zitvogel, L. & Trinchieri, G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur. J. Immunol. 45, 17–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 539, 97–103 (2018).

    Article  Google Scholar 

  54. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018). Along with Gopalakrishnan et al. and Matson et al., this study showed that the heterogeneous response of patients to anti-PD1 treatment across cancer types was associated with the composition of the gut microbiome and was mirrored in mice reconstituted with faecal bacteria from patients.

    Article  CAS  PubMed  Google Scholar 

  56. Lee, B. et al. Modulation of the gut microbiota alters the tumour-suppressive efficacy of Tim-3 pathway blockade in a bacterial species- and host factor-dependent manner. Microorganisms https://doi.org/10.3390/microorganisms8091395 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Frankel, A. E. et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19, 848–855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peters, B. A. et al. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med. 11, 61 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wind, T. T. et al. Gut microbial species and metabolic pathways associated with response to treatment with immune checkpoint inhibitors in metastatic melanoma. Melanoma Res. 30, 235–246 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Zheng, Y. et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J. Immunother. Cancer 7, 193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He, D. et al. Response to PD-1-based immunotherapy for non-small cell lung cancer altered by gut microbiota. Oncol. Ther. 9, 647–657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Derosa, L. et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 78, 195–206 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022). This study shows the association of Akkermansia with increased objective response rates and overall survival in multivariate analyses, independent of PDL1 expression, antibiotics and performance status in patients with advanced NSCLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Newsome, R. C. et al. Interaction of bacterial genera associated with therapeutic response to immune checkpoint PD-1 blockade in a United States cohort. Genome Med. 14, 35 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 28, 1368–1379 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Byrd, A. L. et al. Gut microbiome stability and dynamics in healthy donors and patients with non-gastrointestinal cancers. J. Exp. Med. https://doi.org/10.1084/jem.20200606 (2021).

    Article  PubMed  Google Scholar 

  68. Kartal, E. et al. A faecal microbiota signature with high specificity for pancreatic cancer. Gut https://doi.org/10.1136/gutjnl-2021-324755 (2022).

    Article  PubMed  Google Scholar 

  69. Terrisse, S. et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ. 28, 2778–2796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020). This study analyses over 1,500 tumours across seven cancer types and determines that each evaluated cancer type had a distinct intratumoural microbiome composition, and that intratumoural bacteria are mostly intracellular and found in both cancer and immune cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020). This study identifies predictive microbial signatures in whole-genome and whole-transcriptome sequencing studies of 33 different cancers in TCGA as well as in the blood of patients with cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Beghini, F. et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife https://doi.org/10.7554/eLife.65088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Limeta, A., Ji, B., Levin, M., Gatto, F. & Nielsen, J. Meta-analysis of the gut microbiota in predicting response to cancer immunotherapy in metastatic melanoma. JCI Insight https://doi.org/10.1172/jci.insight.140940 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. He, Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. https://doi.org/10.1038/s41591-018-0164-x (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems https://doi.org/10.1128/mSystems.00031-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Brooks, A. W., Priya, S., Blekhman, R. & Bordenstein, S. R. Gut microbiota diversity across ethnicities in the United States. PLoS Biol. 16, e2006842 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dwiyanto, J. et al. Geographical separation and ethnic origin influence the human gut microbial composition: a meta-analysis from a Malaysian perspective. Microb. Genom. https://doi.org/10.1099/mgen.0.000619 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang, R., Walker, A. R. & Datta, S. Unraveling city-specific signature and identifying sample origin locations for the data from CAMDA MetaSUB challenge. Biol. Direct 16, 1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Griffin, M. E. et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science 373, 1040–1046 (2021). This study identifies the peptidoglycan hydrolase SagA in Enterococcus spp., which generates immune-active muropeptides that stimulate NOD2, as improving immunotherapy responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim, B. et al. Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis. eLife https://doi.org/10.7554/eLife.45343 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lee, S. H. et al. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. Nat. Microbiol. 6, 277–288 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Abt, M. C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ganal, S. C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Schaupp, L. et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080–1096.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356.e21 (2021). This paper identifies the activation of STING by products released by the commensal microbiota as activating an interferon-dependent signature involving macrophage polarization and NK cell and DC activation that correlates with antitumour responses to immunotherapy both in mice and in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wirusanti, N. I., Baldridge, M. T. & Harris, V. C. Microbiota regulation of viral infections through interferon signaling. Trends Microbiol. https://doi.org/10.1016/j.tim.2022.01.007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Corrales, L., McWhirter, S. M., Dubensky, T. W. Jr. & Gajewski, T. F. The host STING pathway at the interface of cancer and immunity. J. Clin. Invest. 126, 2404–2411 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Parvatiyar, K. et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13, 1155–1161 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Si, W. et al. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade. Gut 71, 521–533 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Shi, Y. et al. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J. Exp. Med. https://doi.org/10.1084/jem.20192282 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Cohen, D. et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Tigano, M., Vargas, D. C., Tremblay-Belzile, S., Fu, Y. & Sfeir, A. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature 591, 477–481 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jacquelot, N. et al. Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 29, 846–861 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lercher, A. et al. Type I interferon signaling disrupts the hepatic urea cycle and alters systemic metabolism to suppress T cell function. Immunity 51, 1074–1087.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hou, H. et al. Gut microbiota-derived short-chain fatty acids and colorectal cancer: ready for clinical translation? Cancer Lett. 526, 225–235 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Botticelli, A. et al. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J. Transl. Med. 18, 49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Coutzac, C. et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 11, 2168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nastasi, C. et al. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci. Rep. 7, 14516 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yang, K. et al. Suppression of local type I interferon by gut microbiota-derived butyrate impairs antitumor effects of ionizing radiation. J. Exp. Med. https://doi.org/10.1084/jem.20201915 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020). This study explores the role of the bacterial metabolite inosine, which enhances the antitumour capacities of T cells upon immunotherapy in multiple tumour types, including colorectal cancer, bladder cancer and melanoma.

    Article  CAS  PubMed  Google Scholar 

  103. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature https://doi.org/10.1038/s41586-019-0878-z (2019).

    Article  PubMed  Google Scholar 

  104. Wang, T. et al. Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nat. Metab. 2, 635–647 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Augustin, R. C. et al. Next steps for clinical translation of adenosine pathway inhibition in cancer immunotherapy. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-004089 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Liu, S. et al. A novel CD73 inhibitor SHR170008 suppresses adenosine in tumor and enhances anti-tumor activity with PD-1 blockade in a mouse model of breast cancer. OncoTargets Ther. 14, 4561–4574 (2021).

    Article  Google Scholar 

  107. Sitkovsky, M. V. Lessons from the A2A adenosine receptor antagonist-enabled tumor regression and survival in patients with treatment-refractory renal cell cancer. Cancer Discov. 10, 16–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Fong, L. et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 10, 40–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, T. et al. Probiotics lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells. Front. Immunol. 10, 1235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. He, B. et al. Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J. Exp. Med. 214, 107–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Welihinda, A. A., Kaur, M., Greene, K., Zhai, Y. & Amento, E. P. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell. Signal. 28, 552–560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gomez, G. & Sitkovsky, M. V. Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102, 4472–4478 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Peng, L. et al. Peripheral blood markers predictive of outcome and immune-related adverse events in advanced non-small cell lung cancer treated with PD-1 inhibitors. Cancer Immunol. Immunother. 69, 1813–1822 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Di Noia, V. et al. Blood serum amyloid A as potential biomarker of pembrolizumab efficacy for patients affected by advanced non-small cell lung cancer overexpressing PD-L1: results of the exploratory “FoRECATT” study. Cancer Immunol. Immunother. 70, 1583–1592 (2021).

    Article  PubMed  Google Scholar 

  116. Riedl, J. M. et al. C-reactive protein (CRP) levels in immune checkpoint inhibitor response and progression in advanced non-small cell lung cancer: a Bi-center study. Cancers https://doi.org/10.3390/cancers12082319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhang, Q. et al. Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma. Cancer Discov. 11, 1248–1267 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zitvogel, L., Ayyoub, M., Routy, B. & Kroemer, G. Microbiome and anticancer immunosurveillance. Cell 165, 276–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Belkaid, Y., Bouladoux, N. & Hand, T. W. Effector and memory T cell responses to commensal bacteria. Trends Immunol. 34, 299–306 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03546829 (2018).

  126. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science https://doi.org/10.1126/science.aan5931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Cai, J., Sun, L. & Gonzalez, F. J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 30, 289–300 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03785210 (2018).

  129. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Terrisse, S. et al. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-004191 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pernigoni, N. et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 374, 216–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Hsu, B. B. et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25, 803–814.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Selle, K. et al. In vivo targeting of clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. mBio https://doi.org/10.1128/mBio.00019-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Voorhees, P. J., Cruz-Teran, C., Edelstein, J. & Lai, S. K. Challenges & opportunities for phage-based in situ microbiome engineering in the gut. J. Control. Release 326, 106–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Zheng, D. W. et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 3, 717–728 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Merrick, B. et al. Regulation, risk and safety of faecal microbiota transplant. Infect. Prev. Pract. 2, 100069 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Taur, Y. & Pamer, E. G. Harnessing microbiota to kill a pathogen: fixing the microbiota to treat Clostridium difficile infections. Nat. Med. 20, 246–247 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. DeFilipp, Z. et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv. 2, 745–753 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aap9489 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Schluter, J. et al. The gut microbiota is associated with immune cell dynamics in humans. Nature https://doi.org/10.1038/s41586-020-2971-8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wang, Y. et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat. Med. 24, 1804–1808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, Y., Ma, W., Abu-Sbeih, H., Jiang, Z.-D. & DuPont, H. L. Fecal microbiota transplantation (FMT) for immune checkpoint inhibitor induced–colitis (IMC) refractory to immunosuppressive therapy. J. Clin. Oncol. 38, 3067 (2020).

    Article  Google Scholar 

  143. Koo, H. & Morrow, C. D. Incongruence between dominant commensal donor microbes in recipient feces post fecal transplant and response to anti-PD-1 immunotherapy. BMC Microbiol. 21, 251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Coley, W. B. Treatment of malignant tumors by repeated inoculation of erysipelas, with a report of 10 cases. Am. J. Med. Sci. 105, 487–564 (1893).

    Article  Google Scholar 

  145. Pandey, M. et al. Recent update on bacteria as a delivery carrier in cancer therapy: from evil to allies. Pharm. Res. 39, 1115–1134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, S. G. et al. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant enterococcus. Nature 572, 665–669 (2019). This study shows that the production of lantibiotics by commensal strains can reduce the colonization of VRE in the gastrointestinal tract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile Infection. N. Engl. J. Med. 386, 220–229 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Tomita, Y. et al. Association of probiotic Clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer Immunol. Res. 8, 1236–1242 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. https://doi.org/10.1038/s41591-022-01694-6 (2022). This study reports that the bifidogenic live bacterial product CBM588 enhances the clinical outcome of patients with metastatic renal cell carcinoma treated with the immunotherapy combination nivolumab and ipilimumab.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Montalban-Arques, A. et al. Commensal Clostridiales strains mediate effective anti-cancer immune response against solid tumors. Cell Host Microbe 29, 1573–1588.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Vernieri, C. et al. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer. Cancer Discov. 12, 90–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Ferrere, G. et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight https://doi.org/10.1172/jci.insight.145207 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Beukema, M., Faas, M. M. & de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Exp. Mol. Med. 52, 1364–1376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Le Bastard, Q. et al. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies. Eur. J. Clin. Microbiol. Infect. Dis. 39, 403–413 (2020).

    Article  PubMed  Google Scholar 

  161. Han, K. et al. Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel. Nat. Biomed. Eng. 5, 1377–1388 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhang, S. L. et al. Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer. Theranostics 11, 4155–4170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Messaoudene, M. et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12, 1070–1087 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Park, J. C. & Im, S. H. Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp. Mol. Med. 52, 1383–1396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Krych, L., Hansen, C. H., Hansen, A. K., van den Berg, F. W. & Nielsen, D. S. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS One 8, e62578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wrzosek, L. et al. Transplantation of human microbiota into conventional mice durably reshapes the gut microbiota. Sci. Rep. 8, 6854 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhou, W., Chow, K. H., Fleming, E. & Oh, J. Selective colonization ability of human fecal microbes in different mouse gut environments. ISME J. 13, 805–823 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Morgun, A. et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64, 1732–1743 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Purushottam, L. Oral microbiome and response to immunotherapy: is it time to pay attention. Online J. Dent. Oral. Health https://doi.org/10.33552/OJDOH.2018.01.000501 (2018).

    Article  Google Scholar 

  173. Roberti, M. P. et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat. Med. 26, 919–931 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Broecker, F. & Moelling, K. The roles of the virome in cancer. Microorganisms https://doi.org/10.3390/microorganisms9122538 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Wei, Y. et al. Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.00303-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Jin, W. B. et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 185, 547–562.e22 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Li, D. et al. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy. Biotechnol. Bioeng. 112, 1623–1631 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Rong, L., Lei, Q. & Zhang, X. Z. Engineering living bacteria for cancer therapy. ACS Appl. Bio Mater. 3, 8136–8145 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03341143 (2017).

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03353402 (2017).

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03772899 (2018).

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04056026 (2019).

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04116775 (2019).

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04130763 (2019).

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04264975 (2020).

  187. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04521075 (2020).

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04577729 (2022).

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04729322 (2021).

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04758507 (2021).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04924374 (2021).

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04951583 (2021).

  193. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05008861 (2021).

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05251389 (2022).

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05273255 (2022).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05279677 (2022).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05286294 (2022).

  198. Chinese Clinical Trial Register. https://www.chictr.org.cn/historyversionpub.aspx?regno=ChiCTR2100042292 (2021).

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04038619 (2019).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04988841 (2021).

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04699721 (2021).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03829111 (2019).

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05122546 (2021).

  204. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03775850 (2018).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05032014 (2021).

  206. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03686202 (2018).

  207. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03637803 (2018).

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04909034 (2021).

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05220124 (2022).

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03817125 (2019).

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05094167 (2021).

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04208958 (2019).

  213. Gao, Y. et al. Antibiotics for cancer treatment: a double-edged sword. J. Cancer 11, 5135–5149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 120–124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Taur, Y., Jenq, R. R., Ubeda, C., van den Brink, M. & Pamer, E. G. Role of intestinal microbiota in transplantation outcomes. Best. Pract. Res. Clin. Haematol. 28, 155–161 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Yu, Y. et al. Effects of antibiotic use on outcomes in cancer patients treated using immune checkpoint inhibitors: a systematic review and meta-analysis. J. Immunother. 44, 76–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Elkrief, A., Derosa, L., Kroemer, G., Zitvogel, L. & Routy, B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann. Oncol. 30, 1572–1579 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Miller, W. H. et al. Fecal microbiota transplantation followed by anti–PD-1 treatment in patients with advanced melanoma. J. Clin. Oncol. 40, 9533–9533 (2022).

    Article  Google Scholar 

  219. Imai, H. et al. Antibiotic treatment improves the efficacy of oxaliplatin-based therapy as first-line chemotherapy for patients with advanced gastric cancer: a retrospective study. Cancer Manag. Res. 14, 1259–1266 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Wu, L. & Luo, Y. Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. Front. Microbiol. 12, 611413 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Bivar Xavier, K. Bacterial interspecies quorum sensing in the mammalian gut microbiota. C. R. Biol. 341, 297–299 (2018).

    Article  PubMed  Google Scholar 

  222. De Spiegeleer, B. et al. The quorum sensing peptides PhrG, CSP and EDF promote angiogenesis and invasion of breast cancer cells in vitro. PLoS One 10, e0119471 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Wynendaele, E., Pauwels, E., Van de Wiele, C., Burvenich, C. & De Spiegeleer, B. The potential role of quorum-sensing peptides in oncology. Med. Hypotheses 78, 814–817 (2012).

    Article  CAS  PubMed  Google Scholar 

  224. Stephens, K. & Bentley, W. E. Synthetic biology for manipulating quorum sensing in microbial consortia. Trends Microbiol. 28, 633–643 (2020).

    Article  CAS  PubMed  Google Scholar 

  225. Song, S., Vuai, M. S. & Zhong, M. The role of bacteria in cancer therapy - enemies in the past, but allies at present. Infect. Agent. Cancer 13, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Greathouse, K. L. et al. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol. 19, 123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806.e12 (2019). This study uses 16S rRNA gene sequencing to evaluate the relationship between the composition of the tumour microbiome and survivorship in patients with pancreatic adenocarcinoma. The authors show that long-term survival was correlated with increased intratumoural α-diversity and identified intratumoural microbial signatures that were predictive of long-term survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Katongole, P., Sande, O. J., Joloba, M., Reynolds, S. J. & Niyonzima, N. The human microbiome and its link in prostate cancer risk and pathogenesis. Infect. Agent. Cancer 15, 53 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Alam, A. et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell 40, 153–167.e11 (2022).

    Article  CAS  PubMed  Google Scholar 

  230. Aykut, B. et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Panebianco, C. et al. Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice. Cancer Chemother. Pharmacol. 81, 773–782 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372.e26 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Liu, B. et al. Hepatic stellate cell activation and senescence induced by intrahepatic microbiota disturbances drive progression of liver cirrhosis toward hepatocellular carcinoma. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-003069 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Petit, T. J. P. & Lebreton, A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol. https://doi.org/10.1016/j.tim.2022.01.015 (2022).

    Article  PubMed  Google Scholar 

  235. Abushahba, M. F., Mohammad, H., Thangamani, S., Hussein, A. A. & Seleem, M. N. Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens. Sci. Rep. 6, 20832 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Peled, J. U. et al. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 382, 822–834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Jenq, R. R. et al. Intestinal blautia is associated with reduced death from graft-versus-host disease. Biol. Blood Marrow Transpl. 21, 1373–1383 (2015).

    Article  Google Scholar 

  239. Rolling, T. et al. Haematopoietic cell transplantation outcomes are linked to intestinal mycobiota dynamics and an expansion of Candida parapsilosis complex species. Nat. Microbiol. 6, 1505–1515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Staffas, A. et al. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. Cell Host Microbe 23, 447–457.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Miltiadous, O. et al. Early intestinal microbial features are associated with CD4 T cell recovery after allogeneic hematopoietic transplant. Blood https://doi.org/10.1182/blood.2021014255 (2022).

    Article  PubMed  Google Scholar 

  242. Jenq, R. R. et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 209, 903–911 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  244. Boutros, C. et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 13, 473–486 (2016).

    Article  CAS  PubMed  Google Scholar 

  245. Rosenblum, M. D., Remedios, K. A. & Abbas, A. K. Mechanisms of human autoimmunity. J. Clin. Invest. 125, 2228–2233 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Zitvogel, L., Perreault, C., Finn, O. J. & Kroemer, G. Beneficial autoimmunity improves cancer prognosis. Nat. Rev. Clin. Oncol. 18, 591–602 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Zhang, Q. et al. Correlation between immune-related adverse events and the efficacy of PD-1/PD-L1 inhibitors in the treatment of non-small cell lung cancer: systematic review and meta-analysis. Cancer Chemother. Pharmacol. https://doi.org/10.1007/s00280-021-04375-2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Robert, C. et al. Long-term safety of pembrolizumab monotherapy and relationship with clinical outcome: a landmark analysis in patients with advanced melanoma. Eur. J. Cancer 144, 182–191 (2021).

    Article  CAS  PubMed  Google Scholar 

  249. Jing, Y. et al. Association of antibiotic treatment with immune-related adverse events in patients with cancer receiving immunotherapy. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-003779 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Kostine, M. et al. Baseline co-medications may alter the anti-tumoural effect of checkpoint inhibitors as well as the risk of immune-related adverse events. Eur. J. Cancer 157, 474–484 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016). This paper examined the link between the gut microbiota, specifically, bacteria from three families of the Bacteroidetes phylum and immune-related toxicities in patients with metastatic melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Giorgio Trinchieri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Bertrand Routy, Susan Bullman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

16S rRNA gene amplicon sequencing

The most widely used technique for microbial taxonomic classification that sequences the variable regions of the 16S rRNA gene.

α-Diversity

In microbial ecology, the measure of how evenly distributed the microbial taxa are within a single sample.

Adoptive T cell therapy

(ACT). A transfusion of T lymphocytes that can enhance antitumour immunity. Patient T lymphocytes are augmented and oftentimes altered before they are given back to the patient.

Allogeneic haematopoietic stem cell transplantation

(allo-HSCT). A therapeutic option for haematopoietic malignancies. Patients receive high-dose chemotherapy or chemoradiotherapy (known as conditioning therapy) to eliminate malignant cells; subsequent infusion of haematopoietic stem cells aims to restore haematopoiesis.

Area under the receiver operating characteristic curve

(AUROC). A graphical evaluation metrics to assess the performance of a classification model at various threshold settings.

Bacteraemia

Presence of viable bacteria in the blood that can be asymptomatic and physiological or can reflect a pathological infection.

Biofilm

Formed by consortia of microorganisms, usually bacteria, in which microbial cells are embedded in an extracellular matrix of polymeric substances and stick to each other, forming a thin layer coating a surface.

Chimeric antigen receptor (CAR) T cells

A form of immunotherapy in which a patient’s T cells are collected and genetically engineered to express specific chimeric antigen receptors that can target proteins expressed on cancer cells. The cells are then given back to the patient to exhibit anticancer effects.

Contigs

Overlapping DNA sequences that can be combined to provide a contiguous representation of a genomic region.

CpG-oligodeoxynucleotide

(CpG-ODN). DNA molecules that contain CpG motifs. They elicit potent immunostimulatory effects by binding to TLR9 and can enhance anticancer responses when combined with chemotherapy, radiation therapy or immunotherapy.

Enteric microbiotypes

Distinct, ecologically balanced microbial communities within the human gut microbiota.

Fasting mimetic diets

A diet plan in which the patient abstains from eating food for predetermined periods.

Faecal microbiota transplantation

(FMT). A clinical procedure that transfers, via colonoscopy, naso-enteric tube or capsules, faecal microbiota from a donor into another individual. Successfully used to treat opportunistic enteric infections in immunosuppressed patients caused by bacteria such as Clostridioides difficile.

Gnotobiotic mice

Mice colonized with a specific community of known microorganisms.

Graft-versus-host disease

(GvHD). A clinical condition following haematopoietic stem cell transplantation in which the bone marrow or stem cells from the donor recognize the recipient’s body as foreign and damage cells from different tissues. GvHD can be acute or chronic and is a major cause of toxicity and lethality following transplantation.

Immune-related adverse events

(irAEs). Frequently observed upon immune activation in patients undergoing immune-checkpoint blockade therapy for cancer treatment. Common examples include colitis, dermatitis, and hyperthyroidism or hypothyroidism.

Ketogenic diets

A diet plan in which the patient limits carbohydrate intake and increases fat and protein intake.

Machine learning

The branch of artificial intelligence that can automatically improve its system using algorithms that learn from input data patterns.

Nucleotide-binding oligomerization domain-containing protein 2

(NOD2). An intracellular innate receptor mainly expressed in haematopoietic myeloid cells that recognizes bacterial muramyl dipeptide.

Operon

A cluster of genes in prokaryotes that are transcribed together to give a polycistronic mRNA molecule encoding multiple proteins that are often part of the same biochemical pathway.

Pathobionts

Commensal microbes that opportunistically emerge as pathogens when the ecology of the healthy microbiota is perturbed, leading to their selection and unchecked expansion.

Polyphenol

A member of a large family of micronutrients with anti-oxidant and health-promoting activity, characterized by multiple units of phenol and present in plant-based food.

Primary bile acids

Bile acids (BAs) derived from cholesterol and are synthesized in the liver. They are often converted into secondary BAs by bacteria in the colon.

Prophage

A bacteriophage genome, incorporated into the circular chromosome of a bacterium or present within it as an extrachromosomal plasmid and able to produce phages if activated.

Quorum sensing

(QS). Bacterial cell-to-cell communication mediated by autoinducers that accumulate in the environment when bacteria interact at high densities.

Secondary BAs

BAs that are synthesized by microbial action in the colon. They have important roles in immunity, inflammation, tumorigenesis and disease.

Shotgun metagenomic sequencing

A technique that sequences all genomic DNA from a sample, thus giving highly accurate microbial taxonomical classifications and functional gene information.

Short-chain fatty acid

(SCFA). Metabolites, such as acetate, butyrate and propionate, that are produced by microbes in the colon by the fermentation of dietary fibres and starch and have various roles in inflammation, metabolism and disease.

Stereotactic body radiation therapy

A procedure using multiple precisely focused radiation beams to target a tumour sparing surrounding normal tissues.

Stimulator of interferon genes

(STING). A broadly expressed transmembrane intracellular innate receptor that induces type I interferon production. STING signalling is induced by cyclic dinucleotides that are released by intracellular bacteria or endogenous cyclic GMP-AMP synthase (cGAS) signalling following interaction with cellular or microbial intracellular DNA. STING is also an adaptor protein for several other cytoplasmic innate receptors.

Toll-like receptor

A class of innate receptors that recognize conserved molecules of microbial origin and activate pro-inflammatory pathways. TLR2, which mainly recognizes bacterial peptidoglycans from Gram-positive bacteria, and TLR4, which mainly recognizes lipopolysaccharides from Gram-negative bacteria, are broadly expressed on haematopoietic myeloid cells. TLR9, which recognizes unmethylated CpG-containing oligonucleotides from bacteria and viruses, is expressed primarily on human and mouse B cells and plasmacytoid dendritic cells while in mice, it is also expressed on myeloid cells.

Total body irradiation

(TBI). A form of radiotherapy commonly used to eradicate or suppress the patient’s immune system before haematopoietic stem cell transplantation to prevent immunological rejection of the donor cells.

Transkingdom gene network analysis

A data-driven systems-biology approach that identifies key causal players in a biological system, including species from different taxonomic kingdoms, for example, Animalia, Monera and Fungi.

Xeno-antigens

Antigens shared among different species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, M.R., Aggarwal, P., Costa, R.G.F. et al. Targeting the gut microbiota for cancer therapy. Nat Rev Cancer 22, 703–722 (2022). https://doi.org/10.1038/s41568-022-00513-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00513-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer