Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Programmed death ligand 1 signals in cancer cells

A Publisher Correction to this article was published on 19 January 2022

This article has been updated

Abstract

The paradigm of surface-expressed programmed death ligand 1 (PDL1) signalling to immune cell programmed death 1 (PD1) to inhibit antitumour immunity has helped to develop effective and revolutionary immunotherapies using antibodies blocking these cell-extrinsic interactions. The recent discovery of cancer cell-intrinsic PDL1 signals has broadened understanding of pathologic tumour PDL1 signal consequences that now includes control of tumour growth and survival pathways, stemness, immune effects, DNA damage responses and gene expression regulation. Many such effects are PD1-independent. These insights demonstrate that the prevailing cell-extrinsic PDL1 signalling paradigm is useful, but incomplete in important respects. This Perspective discusses historical and recent advances in understanding cancer cell-intrinsic PDL1 signals, mechanisms for signal controls and important immunopathologic consequences including resistance to cytotoxic agents, targeted small molecules and immunotherapies. Cancer cell-intrinsic PDL1 signals present novel drug discovery targets and also have potential as reliable treatment response biomarkers. Cancer cell-intrinsic PD1 signals and cell-intrinsic PDL1 signals in non-cancer cells are discussed briefly, as are PDL1 signals from soluble and vesicle-bound PDL1 and PDL1 isoforms. We conclude with suggestions for addressing the most pressing challenges and opportunities in this rapidly developing field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Programmed death ligand 1 signalling in cancer cells.
Fig. 2: Regulation of intracellular PDL1 and potential targeting.

Change history

References

  1. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999).

    CAS  PubMed  Google Scholar 

  2. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    CAS  PubMed  Google Scholar 

  4. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Baumeister, S. H., Freeman, G. J., Dranoff, G. & Sharpe, A. H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 539–573 (2016).

    CAS  PubMed  Google Scholar 

  6. Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl Med. 8, 328rv324 (2016).

    Google Scholar 

  7. Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9, 562–567 (2003).

    CAS  PubMed  Google Scholar 

  8. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gong, J., Chehrazi-Raffle, A., Reddi, S. & Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer 6, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Paterson, A. M. et al. The programmed death-1 ligand 1:B7-1 pathway restrains diabetogenic effector T cells in vivo. J. Immunol. 187, 1097–1105 (2011).

    CAS  PubMed  Google Scholar 

  11. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Taube, J. M. et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl Med. 4, 127ra137 (2012).

    Google Scholar 

  13. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pauken, K. E. et al. The PD-1 pathway regulates development and function of memory CD8+ T cells following respiratory viral infection. Cell Rep. 31, 107827 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ayala-Mar, S., Donoso-Quezada, J. & Gonzalez-Valdez, J. Clinical implications of exosomal PD-L1 in cancer immunotherapy. J. Immunol. Res. 2021, 8839978 (2021).

    PubMed  PubMed Central  Google Scholar 

  18. Bocanegra, A. et al. PD-L1 in systemic immunity: unraveling its contribution to PD-1/PD-l1 blockade immunotherapy. Int. J. Mol. Sci. 21, 5918 (2020).

    CAS  PubMed Central  Google Scholar 

  19. Zaslavsky, A. B. et al. Platelet PD-L1 suppresses anti-cancer immune cell activity in PD-L1 negative tumors. Sci. Rep. 10, 19296 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, B. et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast cancer. Oncoimmunology 7, e1500107 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Krupnick, A. S. et al. Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells. J. Immunol. 175, 6265–6270 (2005).

    CAS  PubMed  Google Scholar 

  22. Mueller, S. N. et al. PD-L1 has distinct functions in hematopoietic and nonhematopoietic cells in regulating T cell responses during chronic infection in mice. J. Clin. Invest. 120, 2508–2515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, D. et al. Bladder cancer cell-intrinsic PD-L1 signals promote mTOR and autophagy activation that can be inhibited to improve cytotoxic chemotherapy. Cancer Med. 10, 2137–2152 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Clark, C. A. et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res. 76, 6964–6974 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng, D. et al. BRAF(V600E)-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene 38, 6752–6766 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng, F. et al. PD-L1 promotes self-renewal and tumorigenicity of malignant melanoma initiating cells. Biomed. Res. Int. 2017, 1293201 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Gato-Canas, M. et al. PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep. 20, 1818–1829 (2017).

    CAS  PubMed  Google Scholar 

  28. Theivanthiran, B. et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J. Clin. Invest. 130, 2570–2586 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Azuma, T. et al. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111, 3635–3643 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta, H. B. et al. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer. Signal Transduct. Target. Ther. 1, 16030 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Yu, W. et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 11, 506 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Song, N. et al. PD-L1 upregulation accompanied with epithelial–mesenchymal transition attenuates sensitivity to ATR inhibition in p53 mutant pancreatic cancer cells. Med. Oncol. 37, 47 (2020).

    CAS  PubMed  Google Scholar 

  33. Cao, D. et al. Retinoic acid-related orphan receptor C regulates proliferation, glycolysis, and chemoresistance via the PD-L1/ITGB6/STAT3 signaling axis in bladder cancer. Cancer Res. 79, 2604–2618 (2019).

    CAS  PubMed  Google Scholar 

  34. Tu, X. et al. PD-L1 (B7-H1) competes with the RNA exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol. Cell 74, 1215–1226.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao, Y. et al. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat. Cell Biol. 22, 1064–1075 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu, J. et al. Regulation of sister chromatid cohesion by nuclear PD-L1. Cell Res. 30, 590–601 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, W. et al. PD-L1 regulates genomic stability via interaction with cohesin-SA1 in the nucleus. Signal Transduct. Target. Ther. 6, 81 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liang, J. et al. Verteporfin inhibits PD-L1 through autophagy and the STAT1–IRF1–TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol. Res. 8, 952–965 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, Y. et al. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine 56, 231–238 (2011).

    CAS  PubMed  Google Scholar 

  41. Mahoney, K. M. et al. A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer Immunol. Immunother. 68, 421–432 (2019).

    CAS  PubMed  Google Scholar 

  42. Hassounah, N. B. et al. Identification and characterization of an alternative cancer-derived PD-L1 splice variant. Cancer Immunol. Immunother. 68, 407–420 (2019).

    CAS  PubMed  Google Scholar 

  43. Wang, C. et al. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci. 112, 178–193 (2020).

    PubMed  PubMed Central  Google Scholar 

  44. Kataoka, K. et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    CAS  PubMed  Google Scholar 

  45. Romero, Y., Wise, R. & Zolkiewska, A. Proteolytic processing of PD-L1 by ADAM proteases in breast cancer cells. Cancer Immunol. Immunother. 69, 43–55 (2020).

    CAS  PubMed  Google Scholar 

  46. Lin, D. Y. et al. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc. Natl Acad. Sci. USA 105, 3011–3016 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, Y. et al. Antigen-presenting cell-intrinsic PD-1 neutralizes PD-L1 in cis to attenuate PD-1 signaling in T cells. Cell Rep. 24, 379–390.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fernandes, R. A. et al. Immune receptor inhibition through enforced phosphatase recruitment. Nature 586, 779–784 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Patsoukis, N., Wang, Q., Strauss, L. & Boussiotis, V. A. Revisiting the PD-1 pathway. Sci. Adv. 6, eabd2712 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H. & Freeman, G. J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27, 111–122 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao, Y. et al. PD-L1:CD80 cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity 51, 1059–1073.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Y. et al. Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front. Pharmacol. 9, 536 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Li, C. W. et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 7, 12632 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zak, K. M. et al. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure 25, 1163–1174 (2017).

    CAS  PubMed  Google Scholar 

  56. Magiera-Mularz, K. et al. Human and mouse PD-L1: similar molecular structure, but different druggability profiles. iScience 24, 101960 (2021).

    CAS  PubMed  Google Scholar 

  57. Mayoux, M. et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci. Transl Med. 12, eaav7431 (2020).

    CAS  PubMed  Google Scholar 

  58. He, X. H., Xu, L. H. & Liu, Y. Identification of a novel splice variant of human PD-L1 mRNA encoding an isoform-lacking Igv-like domain. Acta Pharmacol. Sin. 26, 462–468 (2005).

    CAS  PubMed  Google Scholar 

  59. Gong, B. et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J. Exp. Med. 216, 982–1000 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mahoney, K. M. et al. PD-L1 antibodies to its cytoplasmic domain most clearly delineate cell membranes in immunohistochemical staining of tumor cells. Cancer Immunol. Res. 3, 1308–1315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Page, D. B., Postow, M. A., Callahan, M. K., Allison, J. P. & Wolchok, J. D. Immune modulation in cancer with antibodies. Annu. Rev. Med. 65, 185–202 (2014).

    CAS  PubMed  Google Scholar 

  62. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    CAS  PubMed  Google Scholar 

  63. Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).

    CAS  PubMed  Google Scholar 

  64. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mezzadra, R. et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106–110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dong, W. et al. The mechanism of anti-PD-L1 antibody efficacy against PD-L1-negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov. 9, 1422–1437 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Diskin, B. et al. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat. Immunol. 21, 442–454 (2020).

    CAS  PubMed  Google Scholar 

  69. Zhang, M. et al. Programmed death-ligand 1 triggers PASMCs pyroptosis and pulmonary vascular fibrosis in pulmonary hypertension. J. Mol. Cell Cardiol. 138, 23–33 (2020).

    CAS  PubMed  Google Scholar 

  70. Lin, P. Y. et al. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J. Immunol. 185, 2747–2753 (2010).

    CAS  PubMed  Google Scholar 

  71. Kleffel, S. et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 162, 1242–1256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, X. et al. Tumor cell-intrinsic PD-1 receptor is a tumor suppressor and mediates resistance to PD-1 blockade therapy. Proc. Natl Acad. Sci. USA 117, 6640–6650 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mir, M. A. & Agrewala, J. N. Signaling through CD80: an approach for treating lymphomas. Expert Opin. Ther. Targets 12, 969–979 (2008).

    CAS  PubMed  Google Scholar 

  74. Sun, L. et al. Targeting glycosylated PD-1 induces potent antitumor immunity. Cancer Res. 80, 2298–2310 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, X. et al. NEK2 inhibition triggers anti-pancreatic cancer immunity by targeting PD-L1. Nat. Commun. 12, 4536 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, S. et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway. Oncogene 37, 4164–4180 (2018).

    CAS  PubMed  Google Scholar 

  77. Jalali, S. et al. Reverse signaling via PD-L1 supports malignant cell growth and survival in classical Hodgkin lymphoma. Blood Cancer J. 9, 22 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Saleh, R., Taha, R. Z., Sasidharan Nair, V., Alajez, N. M. & Elkord, E. PD-L1 blockade by atezolizumab downregulates signaling pathways associated with tumor growth, metastasis, and hypoxia in human triple negative breast cancer. Cancers 11, 1050 (2019).

    CAS  PubMed Central  Google Scholar 

  79. Wang, H. et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat. Chem. Biol. 15, 42–50 (2019).

    CAS  PubMed  Google Scholar 

  80. Du, W. et al. KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ. 28, 1284–1300 (2021).

    CAS  PubMed  Google Scholar 

  81. Wu, X. et al. Targeting B7-H1 (PD-L1) sensitizes cancer cells to chemotherapy. Heliyon 4, e01039 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Ghebeh, H. et al. Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res. 12, R48 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Chen, R. Q. et al. The binding of PD-L1 and Akt facilitates glioma cell invasion upon starvation via Akt/autophagy/F-actin signaling. Front. Oncol. 9, 1347 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. Qiu, X. Y. et al. PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1754–1769 (2018).

    CAS  PubMed  Google Scholar 

  85. Chen, C. et al. PD-L1 tumor-intrinsic signaling and its therapeutic implication in triple-negative breast cancer. JCI Insight 6, e131458 (2021).

    PubMed Central  Google Scholar 

  86. Shen, B. et al. PD-L1 and MRN synergy in platinum-based chemoresistance of head and neck squamous cell carcinoma. Br. J. Cancer 122, 640–647 (2020).

    CAS  PubMed  Google Scholar 

  87. Huttlin, E. L. et al. The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425–440 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    CAS  PubMed  Google Scholar 

  89. Fei, Z. et al. PD-L1 induces epithelial–mesenchymal transition in nasopharyngeal carcinoma cells through activation of the PI3K/AKT pathway. Oncol. Res. 27, 801–807 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Zhang, Y. et al. The canonical TGF-β/Smad signalling pathway is involved in PD-L1-induced primary resistance to EGFR-TKIs in EGFR-mutant non-small-cell lung cancer. Respir. Res. 20, 164 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. Lau, J. et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat. Commun. 8, 14572 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. You, L. et al. The crosstalk between autophagic and endo-/exosomal pathways in antigen processing for MHC presentation in anticancer T cell immune responses. J. Hematol. Oncol. 10, 165 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sen, T. et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 9, 646–661 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, S. et al. Mechanisms regulating PD-L1 expression on tumor and immune cells. J. Immunother. Cancer 7, 305 (2019).

    PubMed  PubMed Central  Google Scholar 

  97. Cha, J. H., Chan, L. C., Li, C. W., Hsu, J. L. & Hung, M. C. Mechanisms controlling PD-L1 expression in cancer. Mol. Cell 76, 359–370 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, J. et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018).

    CAS  PubMed  Google Scholar 

  99. Ren, Y. et al. TRAPPC4 regulates the intracellular trafficking of PD-L1 and antitumor immunity. Nat. Commun. 12, 5405 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Polioudaki, H. et al. Nuclear localization of PD-L1: artifact or reality? Cell Oncol. 42, 237–242 (2019).

    CAS  Google Scholar 

  101. Tarsounas, M. & Sung, P. The antitumorigenic roles of BRCA1–BARD1 in DNA repair and replication. Nat. Rev. Mol. Cell Biol. 21, 284–299 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lv, S. et al. Regulation and targeting of androgen receptor nuclear localization in castration-resistant prostate cancer. J. Clin. Invest. 131, e141335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gao, Y. S., Hubbert, C. C. & Yao, T. P. The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J. Biol. Chem. 285, 11219–11226 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wei, Y. et al. The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy. J. Clin. Invest. 129, 3347–3360 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hua, S., Gu, M., Wang, Y., Ban, D. & Ji, H. Oxymatrine reduces expression of programmed death-ligand 1 by promoting DNA demethylation in colorectal cancer cells. Clin. Transl. Oncol. 23, 750–756 (2021).

    CAS  PubMed  Google Scholar 

  107. Zhang, Y., Lv, C., Dong, Y. & Yang, Q. Aspirin-targeted PD-L1 in lung cancer growth inhibition. Thorac. Cancer 11, 1587–1593 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu, Q. et al. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol. Sin. 42, 1–9 (2021).

    PubMed  Google Scholar 

  109. Liu, C., Seeram, N. P. & Ma, H. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: a review. Cancer Cell Int. 21, 239 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Azuma, K. et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann. Oncol. 25, 1935–1940 (2014).

    CAS  PubMed  Google Scholar 

  111. Jiang, X. M. et al. Osimertinib (AZD9291) decreases programmed death ligand-1 in EGFR-mutated non-small cell lung cancer cells. Acta Pharmacol. Sin. 38, 1512–1520 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Dai, X. et al. Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Mol. Cell 81, 2317–2331.e6 (2021).

    CAS  PubMed  Google Scholar 

  113. Cha, J. H. et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell 71, 606–620.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chan, L. C. et al. IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J. Clin. Invest. 129, 3324–3338 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Yao, H. et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat. Biomed. Eng. 3, 306–317 (2019).

    CAS  PubMed  Google Scholar 

  116. Zhu, H. et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep. 16, 2829–2837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Xu, Y. et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25, 301–311 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Satelli, A. et al. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci. Rep. 6, 28910 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Park, J. J. et al. Checkpoint inhibition through small molecule-induced internalization of programmed death-ligand 1. Nat. Commun. 12, 1222 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Byers, L. A. & Heymach, J. V. Dual targeting of the vascular endothelial growth factor and epidermal growth factor receptor pathways: rationale and clinical applications for non-small-cell lung cancer. Clin. Lung Cancer 8 (Suppl. 2), S79–S85 (2007).

    CAS  PubMed  Google Scholar 

  121. Champiat, S. et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin. Cancer Res. 23, 1920–1928 (2017).

    CAS  PubMed  Google Scholar 

  122. Kwon, J. & Bakhoum, S. F. The cytosolic DNA-sensing cGAS–STING pathway in cancer. Cancer Discov. 10, 26–39 (2020).

    CAS  PubMed  Google Scholar 

  123. Tolis, C., Peters, G. J., Ferreira, C. G., Pinedo, H. M. & Giaccone, G. Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur. J. Cancer 35, 796–807 (1999).

    CAS  PubMed  Google Scholar 

  124. Abal, M., Andreu, J. M. & Barasoain, I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr. Cancer Drug Targets 3, 193–203 (2003).

    CAS  PubMed  Google Scholar 

  125. Donaldson, K. L., Goolsby, G. L. & Wahl, A. F. Cytotoxicity of the anticancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int. J. Cancer 57, 847–855 (1994).

    CAS  PubMed  Google Scholar 

  126. Biswas, S. et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 591, 464–470 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 25, 2972–2980.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Pantelidou, C. et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 9, 722–737 (2019).

    PubMed  PubMed Central  Google Scholar 

  129. Qiao, Y. et al. Human cancer cells sense cytosolic nucleic acids through the RIG-I–MAVS pathway and cGAS–STING pathway. Front. Cell Dev. Biol. 8, 606001 (2020).

    PubMed  Google Scholar 

  130. Wang, W. et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165, 1092–1105 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sato, H. et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 8, 1751 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Vendetti, F. P. et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J. Clin. Invest. 128, 3926–3940 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Gupta, H. B. et al. Tumor-intrinsic PD-L1 regulates tumor initiating cell virulence and stemness genes, and TCF1+ stem-like T cells through Raptor in ovarian cancer, which correlates with survival in high grade serous ovarian cancer. J. Immunol. 202 (Suppl. 1), 195.29 (2019).

    Google Scholar 

  134. Lecis, D., Sangaletti, S., Colombo, M. P. & Chiodoni, C. Immune checkpoint ligand reverse signaling: looking back to go forward in cancer therapy. Cancers 11, 624 (2019).

    CAS  PubMed Central  Google Scholar 

  135. Fanelli, G. et al. PD-L1 signaling on human memory CD4+ T cells induces a regulatory phenotype. PLoS Biol. 19, e3001199 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Okla, K., Farber, D. L. & Zou, W. Tissue-resident memory T cells in tumor immunity and immunotherapy. J. Exp. Med. 218, e2020160 (2021).

    Google Scholar 

  137. Li, T. et al. Exploring a tumor-intrinsic PD-L1 signal with proximity-dependent biotin identification in lung cancer cells. Biochemistry 58, 2293–2296 (2019).

    CAS  PubMed  Google Scholar 

  138. Erin, D. et al. PD-L1 reverse signaling in dermal dendritic cells promotes dendritic cell migration required for skin immunity. Cell Rep. 33, 108258 (2020).

    Google Scholar 

  139. Cao, Z. et al. An unexpected role for p53 in regulating cancer cell-intrinsic PD-1 by acetylation. Sci. Adv. 7, eabf4148 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    CAS  PubMed  Google Scholar 

  141. Ren, T. et al. Osteosarcoma cell intrinsic PD-L2 signals promote invasion and metastasis via the RhoA–ROCK–LIMK2 and autophagy pathways. Cell Death Dis. 10, 261 (2019).

    PubMed  PubMed Central  Google Scholar 

  142. Chen, Y. W., Tekle, C. & Fodstad, O. The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion. Curr. Cancer Drug Targets 8, 404–413 (2008).

    CAS  PubMed  Google Scholar 

  143. Tekle, C. et al. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes. Int. J. Cancer 130, 2282–2290 (2012).

    CAS  PubMed  Google Scholar 

  144. Liu, H. et al. B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation. Mol. Cancer Ther. 10, 960–971 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jiang, B., Liu, F., Liu, Z., Zhang, T. & Hua, D. B7-H3 increases thymidylate synthase expression via the PI3k–Akt pathway. Tumour Biol. 37, 9465–9472 (2016).

    CAS  PubMed  Google Scholar 

  146. Gao, L. et al. CD90 affects the biological behavior and energy metabolism level of gastric cancer cells by targeting the PI3K/AKT/HIF-1α signaling pathway. Oncol. Lett. 21, 191 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Avril, T. et al. CD90 expression controls migration and predicts dasatinib response in glioblastoma. Clin. Cancer Res. 23, 7360–7374 (2017).

    CAS  PubMed  Google Scholar 

  148. Brand, T. M. et al. The receptor tyrosine kinase AXL mediates nuclear translocation of the epidermal growth factor receptor. Sci. Signal. 10, eaag1064 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Yang, S. et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat. Commun. 10, 2782 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. Yao, H. et al. A peptidic inhibitor for PD-1 palmitoylation targets its expression and functions. RSC Chem. Biol. 2, 192205 (2021).

    Google Scholar 

  151. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank H. Bai, C. Clark, Y. Deng, E. Galvan, H. Gupta, Y. Hu, A. Kancharla, S. Kari, R. Li, C. Murray, R. Reyes and D. Zhang for valuable contributions to their cell-intrinsic PDL1 signal studies. They apologize to colleagues whose important works in this area were not cited due to space constraints.

Author information

Authors and Affiliations

Authors

Contributions

A.V.R.K. and T.J.C. contributed equally to all aspects of the article. R.K.V. edited and fact-checked the manuscript.

Corresponding author

Correspondence to Tyler J. Curiel.

Ethics declarations

Competing interests

T.J.C. and A.V.R.K. have filed a patent on using intracellular PDL1 to predict anticancer responses and drugs that reduce tumour PDL1 for treatment purposes.

Additional information

Peer review information

Nature Reviews Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

eteplirsen: https://musculardystrophynews.com/exondys-51-eteplirsen-sarepta-therapeutics

Nobel Prize in Medicine in 2018: https://www.nobelprize.org/prizes/medicine/2018/press-release

Patent application PCTTC/US2021/022244: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021183973

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornepati, A.V.R., Vadlamudi, R.K. & Curiel, T.J. Programmed death ligand 1 signals in cancer cells. Nat Rev Cancer 22, 174–189 (2022). https://doi.org/10.1038/s41568-021-00431-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00431-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer