Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Connecting copper and cancer: from transition metal signalling to metalloplasia

Abstract

Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of systemic and cellular copper homeostasis.
Fig. 2: Copper metalloallostery and signalling promotes cell growth/proliferation and autophagy pathways.
Fig. 3: Therapeutic strategies to target cuproplasia in cancer.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  2. Lippard S. J., Berg J. M. Principles of bioinorganic chemistry. vol. xvii, 411 p (University Science Books; 1994).

  3. Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606 (1996).

    CAS  PubMed  Google Scholar 

  4. Que, E. L., Domaille, D. W. & Chang, C. J. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008).

    CAS  PubMed  Google Scholar 

  5. Brady, D. C. et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509, 492–496 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang, C. J. Searching for harmony in transition-metal signaling. Nat. Chem. Biol. 11, 744–747 (2015).

    CAS  PubMed  Google Scholar 

  7. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ackerman, C. M., Lee, S. & Chang, C. J. Analytical methods for imaging metals in biology: from transition metal metabolism to transition metal signaling. Anal. Chem. 89, 22–41 (2017).

    CAS  PubMed  Google Scholar 

  10. Hare, D. J., New, E. J., de Jonge, M. D. & McColl, G. Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution. Chem. Soc. Rev. 44, 5941–5958 (2015).

    CAS  PubMed  Google Scholar 

  11. Rosenzweig, A. Structure and chemistry of the copper chaperone proteins. Curr. Opin. Chem. Biol. 4, 140–147 (2000).

    CAS  PubMed  Google Scholar 

  12. Thiele, D. J. & Gitlin, J. D. Assembling the pieces. Nat. Chem. Biol. 4, 145–147 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cobine, P. A., Moore, S. A. & Leary, S. C. Getting out what you put in: copper in mitochondria and its impacts on human disease. Biochim. Biophys. Acta Mol. Cell Res 1868, 118867 (2021).

    CAS  PubMed  Google Scholar 

  14. Gudekar, N. et al. Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess. Sci. Rep. 10, 7856 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta, A. & Lutsenko, S. Evolution of copper transporting ATPases in eukaryotic organisms. Curr. Genomics 13, 124–133 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaler, S. G. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat. Rev. Neurol. 7, 15–29 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ackerman, C. M. & Chang, C. J. Copper signaling in the brain and beyond. J. Biol. Chem. 293, 4628–4635 (2018).

    CAS  PubMed  Google Scholar 

  18. Prohaska J. R. Copper. In: Present Knowledge in Nutrition 10 (eds. Erdman J. W. MIA, Zeisel S. H.) p. 540–553 (Wiley-Blackwell; 2012).

  19. Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (National Academies Press, 2001).

  20. Wang, Y. et al. Maternofetal and neonatal copper requirements revealed by enterocyte-specific deletion of the Menkes disease protein. Am. J. Physiol. Gastrointest. Liver Physiol 303, G1236–G1244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Roelofsen, H. et al. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 119, 782–793 (2000).

    CAS  PubMed  Google Scholar 

  22. Polishchuk, E. V. et al. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell 29, 686–700 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Saroli Palumbo, C. & Schilsky, M. L. Clinical practice guidelines in Wilson disease. Ann. Transl. Med. 7, S65 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Harvey, L. J., Ashton, K., Hooper, L., Casgrain, A. & Fairweather-Tait, S. J. Methods of assessment of copper status in humans: a systematic review. Am. J. Clin. Nutr. 89, 2009S–2024S (2009).

    CAS  PubMed  Google Scholar 

  25. Linder, M. C. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics 8, 887–905 (2016).

    CAS  PubMed  Google Scholar 

  26. Meyer, L. A., Durley, A. P., Prohaska, J. R. & Harris, Z. L. Copper transport and metabolism are normal in aceruloplasminemic mice. J. Biol. Chem. 276, 36857–36861 (2001).

    CAS  PubMed  Google Scholar 

  27. Gray, L. W. et al. Urinary copper elevation in a mouse model of Wilson’s disease is a regulated process to specifically decrease the hepatic copper load. PLoS ONE 7, e38327 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, J., Pena, M. M., Nose, Y. & Thiele, D. J. Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 277, 4380–4387 (2002).

    CAS  PubMed  Google Scholar 

  29. Ren, F. et al. X-ray structures of the high-affinity copper transporter Ctr1. Nat. Commun. 10, 1386 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Ohgami, R. S., Campagna, D. R., McDonald, A. & Fleming, M. D. The Steap proteins are metalloreductases. Blood. 108, 1388–1394 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaler S. G., DiStasio A. T. ATP7A-related copper transport disorders. In: (eds Adam M. P., Ardinger H. H., Pagon R. A., Wallace S. E., Bean L. J. H., Mirzaa G. et al.) (GeneReviews, 1993).

  32. Czlonkowska, A. et al. Wilson disease. Nat. Rev. Dis. Prim. 4, 21 (2018).

    PubMed  Google Scholar 

  33. Gunjan, D. et al. Hepatocellular carcinoma: an unusual complication of longstanding Wilson disease. J. Clin. Exp. Hepatol. 7, 152–154 (2017).

    PubMed  Google Scholar 

  34. Blockhuys, S. et al. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics 9, 112–123 (2017).

    CAS  PubMed  Google Scholar 

  35. Turnlund, J. R., Keyes, W. R., Anderson, H. L. & Acord, L. L. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am. J. Clin. Nutr. 49, 870–878 (1989).

    CAS  PubMed  Google Scholar 

  36. Prohaska, J. R. Impact of copper deficiency in humans. Ann. N. Y. Acad. Sci. 1314, 1–5 (2014).

    CAS  PubMed  Google Scholar 

  37. Gambling, L., Kennedy, C. & McArdle, H. J. Iron and copper in fetal development. Semin. Cell Dev. Biol. 22, 637–44 (2011).

    CAS  PubMed  Google Scholar 

  38. Lopez, J., Ramchandani, D. & Vahdat, L. Copper depletion as a therapeutic strategy in cancer. Met. Ions Life Sci. https://doi.org/10.1515/9783110527872-018 (2019).

    Article  PubMed  Google Scholar 

  39. Ding, X. et al. Analysis of serum levels of 15 trace elements in breast cancer patients in Shandong, China. Env. Sci. Pollut. Res. Int. 22, 7930–7935 (2015).

    CAS  Google Scholar 

  40. Adeoti, M. L., Oguntola, A. S., Akanni, E. O., Agodirin, O. S. & Oyeyemi, G. M. Trace elements; copper, zinc and selenium, in breast cancer afflicted female patients in LAUTECH Osogbo, Nigeria. Indian J. Cancer 52, 106–109 (2015).

    CAS  PubMed  Google Scholar 

  41. Kuo, H. W., Chen, S. F., Wu, C. C., Chen, D. R. & Lee, J. H. Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol. Trace Elem. Res. 89, 1–11 (2002).

    CAS  PubMed  Google Scholar 

  42. Pavithra, V. et al. Serum levels of metal ions in female patients with breast cancer. J. Clin. Diagn. Res. 9, BC25–BC27 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Feng, J. F. et al. Serum total oxidant/antioxidant status and trace element levels in breast cancer patients. Int. J. Clin. Oncol. 17, 575–583 (2012).

    CAS  PubMed  Google Scholar 

  44. Zowczak, M., Iskra, M., Torlinski, L. & Cofta, S. Analysis of serum copper and zinc concentrations in cancer patients. Biol. Trace Elem. Res. 82, 1–8 (2001).

    CAS  PubMed  Google Scholar 

  45. Diez, M., Cerdan, F. J., Arroyo, M. & Balibrea, J. L. Use of the copper/zinc ratio in the diagnosis of lung cancer. Cancer 63, 726–730 (1989).

    CAS  PubMed  Google Scholar 

  46. Jin, Y. et al. Combined effects of serum trace metals and polymorphisms of CYP1A1 or GSTM1 on non-small cell lung cancer: a hospital based case-control study in China. Cancer Epidemiol. 35, 182–187 (2011).

    CAS  PubMed  Google Scholar 

  47. Oyama, T. et al. Efficiency of serum copper/zinc ratio for differential diagnosis of patients with and without lung cancer. Biol. Trace Elem. Res. 42, 115–127 (1994).

    CAS  PubMed  Google Scholar 

  48. Stepien, M. et al. Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European prospective investigation into cancer and nutrition cohort. Carcinogenesis 38, 699–707 (2017).

    CAS  PubMed  Google Scholar 

  49. Sohrabi, M. et al. Trace element and heavy metal levels in colorectal cancer: comparison between cancerous and non-cancerous tissues. Biol. Trace Elem. Res. 183, 1–8 (2018).

    CAS  PubMed  Google Scholar 

  50. Ribeiro, S. M. et al. Copper-Zinc ratio and nutritional status in colorectal cancer patients during the perioperative period. Acta Cir. Bras. 31, 24–28 (2016).

    PubMed  Google Scholar 

  51. Nayak, S. B., Bhat, V. R., Upadhyay, D. & Udupa, S. L. Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian. J. Physiol. Pharmacol. 47, 108–110 (2003).

    CAS  PubMed  Google Scholar 

  52. Margalioth, E. J., Schenker, J. G. & Chevion, M. Copper and zinc levels in normal and malignant tissues. Cancer 52, 868–872 (1983).

    CAS  PubMed  Google Scholar 

  53. Yaman, M., Kaya, G. & Yekeler, H. Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues. World J. Gastroenterol. 13, 612–618 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Khanna, S. S. & Karjodkar, F. R. Circulating immune complexes and trace elements (Copper, Iron and Selenium) as markers in oral precancer and cancer: a randomised, controlled clinical trial. Head Face Med. 2, 33 (2006).

    PubMed  PubMed Central  Google Scholar 

  55. Baltaci, A. K., Dundar, T. K., Aksoy, F. & Mogulkoc, R. Changes in the serum levels of trace elements before and after the operation in thyroid cancer patients. Biol. Trace Elem. Res. 175, 57–64 (2017).

    CAS  PubMed  Google Scholar 

  56. Basu, S. et al. Heavy and trace metals in carcinoma of the gallbladder. World J. Surg. 37, 2641–2646 (2013).

    PubMed  Google Scholar 

  57. Saleh, S. A. K., Adly, H. M., Abdelkhaliq, A. A. & Nassir, A. M. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr. Urol. 14, 44–49 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J. & Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl Acad. Sci. USA 110, 19507–19512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wooton-Kee, C. R. et al. Metabolic dysregulation in the Atp7b (-/-) Wilson’s disease mouse model. Proc. Natl Acad. Sci. USA 117, 2076–2083 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, H. et al. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol. 16, e2006519 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Shanbhag, V. et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc. Natl Acad. Sci. USA 116, 6836–41 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsang, T. et al. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat. Cell Biol. 22, 412–24 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Opazo, C. M. et al. Copper signaling promotes proteostasis and animal development via allosteric activation of ubiquitin E2D conjugases. Preprint at bioRxiv https://doi.org/10.1101/2021.02.15.431211 (2021).

    Article  Google Scholar 

  64. Dodani, S. C. et al. Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy. Proc. Natl Acad. Sci. USA 108, 5980–5985 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dodani, S. C. et al. Copper is an endogenous modulator of neural circuit spontaneous activity. Proc. Natl Acad. Sci. USA 111, 16280–16285 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hong-Hermesdorf, A. et al. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat. Chem. Biol 10, 1034–1042 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Krishnamoorthy, L. et al. Copper regulates cyclic-AMP-dependent lipolysis. Nat. Chem. Biol. 12, 586–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Morgan, M. T. et al. Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells. Proc. Natl Acad. Sci. USA 116, 12167–12172 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chung, C. Y. et al. Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism. Proc. Natl Acad. Sci. USA 116, 18285–18294 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Bruemmer, K. J., Crossley, S. W. M. & Chang, C. J. Activity-based sensing: a synthetic methods approach for selective molecular imaging and beyond. Angew. Chem. Int. Ed. 59, 13734–13762 (2020).

    CAS  Google Scholar 

  71. Lee, S. et al. Activity-based sensing with a metal-directed acyl imidazole strategy reveals cell type-dependent pools of labile brain copper. J. Am. Chem. Soc. 142, 14993–15003 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cotruvo, J. A. Jr., Aron, A. T., Ramos-Torres, K. M. & Chang, C. J. Synthetic fluorescent probes for studying copper in biological systems. Chem. Soc. Rev. 44, 4400–4414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Aron, A. T., Ramos-Torres, K. M., Cotruvo, J. A. Jr. & Chang, C. J. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc. Chem. Res. 48, 2434–2442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hwang, J. J., Park, M. H. & Koh, J. Y. Copper activates TrkB in cortical neurons in a metalloproteinase-dependent manner. J. Neurosci. Res. 85, 2160–2166 (2007).

    CAS  PubMed  Google Scholar 

  75. Michniewicz, F. et al. Copper: an intracellular Achilles’ heel allowing the targeting of epigenetics, kinase pathways, and cell metabolism in cancer therapeutics. ChemMedChem 16, 2315–2329 (2021).

    CAS  PubMed  Google Scholar 

  76. He, F. et al. Copper (II) ions activate ligand-independent receptor tyrosine kinase (RTK) signaling pathway. Biomed. Res. Int. 2019, 4158415 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Turski, M. L. et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol. Cell. Biol. 32, 1284–1295 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Aubert, L. et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat. Commun. 11, 3701 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Polishchuk, E. V. et al. Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis. Gastroenterology 156, 1173–89 e5 (2019).

    CAS  PubMed  Google Scholar 

  80. Guo, J. et al. Copper promotes tumorigenesis by activating the PDK1-AKT oncogenic pathway in a copper transporter 1 dependent manner. Adv. Sci. 8, e2004303 (2021).

    Google Scholar 

  81. Kang, J., Lin, C., Chen, J. & Liu, Q. Copper induces histone hypoacetylation through directly inhibiting histone acetyltransferase activity. Chem. Biol. Interact. 148, 115–123 (2004).

    CAS  PubMed  Google Scholar 

  82. Kieffer, D. A. & Medici, V. Wilson disease: at the crossroads between genetics and epigenetics-a review of the evidence. Liver Res. 1, 121–130 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Itoh, S. et al. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J. Biol. Chem. 283, 9157–9167 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Walshe, J. M. Treatment of Wilson’s disease with trientine (triethylene tetramine) dihydrochloride. Lancet 319, 643–647 (1982).

    Google Scholar 

  85. Ishida, S., McCormick, F., Smith-McCune, K. & Hanahan, D. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17, 574–583 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. University D. A Pilot Study of Trientine with Vemurafenib for the Treatment BRAF Mutated Metastatic Melanoma https://ClinicalTrials.gov/show/NCT02068079 (2014).

  87. Brewer, G. J. et al. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: phase I study. Clin. Cancer Res. 6, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  88. Center MSKC, University WMCoC. Phase II Study of Tetrathiomolybdate (TM) in Patients With Breast Cancer https://ClinicalTrials.gov/show/NCT00195091 (2003).

  89. UK CR, Institute NC. Exemestane With or Without ATN-224 in Treating Postmenopausal Women With Recurrent or Advanced Breast Cancer https://ClinicalTrials.gov/show/NCT00674557 (2008).

  90. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    CAS  PubMed  Google Scholar 

  92. Parke, A., Bhattacherjee, P., Palmer, R. M. & Lazarus, N. R. Characterization and quantification of copper sulfate-induced vascularization of the rabbit cornea. Am. J. Pathol. 130, 173–8 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Raju, K. S., Alessandri, G., Ziche, M. & Gullino, P. M. Ceruloplasmin, copper ions, and angiogenesis2. J. Natl Cancer Inst 69, 1183–1188 (1982).

    CAS  PubMed  Google Scholar 

  94. Sen, C. K. et al. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol 282, H1821–H1827 (2002).

    CAS  PubMed  Google Scholar 

  95. Chan, N. et al. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin. Cancer Res. 23, 666–676 (2017).

    CAS  PubMed  Google Scholar 

  96. Jiao, Y., Hannafon, B. N. & Ding, W. Q. Disulfiram’s anticancer activity: evidence and mechanisms. Anticancer. Agents Med. Chem. 16, 1378–1384 (2016).

    CAS  PubMed  Google Scholar 

  97. Huang, J. et al. A phase I study to repurpose disulfiram in combination with temozolomide to treat newly diagnosed glioblastoma after chemoradiotherapy. J. Neurooncol 128, 259–66 (2016).

    CAS  PubMed  Google Scholar 

  98. O’Day, S. et al. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J. Clin. Oncol. 27, 5452–5458 (2009).

    PubMed  Google Scholar 

  99. O’Day, S. J. et al. Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J. Clin. Oncol. 31, 1211–1218 (2013).

    PubMed  Google Scholar 

  100. Sahlgrenska University Hospital S, Hospital SO, Hospital LU, Hospital KU, University Hospital L, County RÖ, et al. Disulfiram in Recurrent Glioblastoma https://ClinicalTrials.gov/show/NCT02678975 (2017).

  101. Gohil, V. M. Repurposing elesclomol, an investigational drug for the treatment of copper metabolism disorders. Expert. Opin. Investig. Drugs 30, 1–4 (2021).

    CAS  PubMed  Google Scholar 

  102. Ascierto, P. A. et al. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 10, 85 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Brady, D. C., Crowe, M. S., Greenberg, D. N. & Counter, C. M. Copper chelation inhibits BRAF(V600E)-driven melanomagenesis and counters resistance to BRAF(V600E) and MEK1/2 inhibitors. Cancer Res. 77, 6240–6252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Amaravadi, R., Kimmelman, A. C. & White, E. Recent insights into the function of autophagy in cancer. Genes. Dev. 30, 1913–1930 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Piffoux, M., Eriau, E. & Cassier, P. A. Autophagy as a therapeutic target in pancreatic cancer. Br. J. Cancer 124, 333–344 (2021).

    PubMed  Google Scholar 

  106. Yang, H., Liang, S. Q., Schmid, R. A. & Peng, R. W. New horizons in KRAS-mutant lung cancer: dawn after darkness. Front. Oncol. 9, 953 (2019).

    PubMed  PubMed Central  Google Scholar 

  107. Bryant, K. L. et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 25, 628–640 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Krishnan, N., Felice, C., Rivera, K., Pappin, D. J. & Tonks, N. K. DPM-1001 decreased copper levels and ameliorated deficits in a mouse model of Wilson’s disease. Genes. Dev. 32, 944–952 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Krishnan, N., Konidaris, K. F., Gasser, G. & Tonks, N. K. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J. Biol. Chem. 293, 1517–1525 (2018).

    CAS  PubMed  Google Scholar 

  110. Pan, Q. et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 62, 4854–4859 (2002).

    CAS  PubMed  Google Scholar 

  111. Pan, Q., Rosenthal, D. T., Bao, L., Kleer, C. G. & Merajver, S. D. Antiangiogenic tetrathiomolybdate protects against Her2/neu-induced breast carcinoma by hypoplastic remodeling of the mammary gland. Clin. Cancer Res. 15, 7441–7446 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, K. et al. The copper chelator ATN-224 induces peroxynitrite-dependent cell death in hematological malignancies. Free. Radic. Biol. Med. 60, 157–167 (2013).

    CAS  PubMed  Google Scholar 

  113. Glasauer, A., Sena, L. A., Diebold, L. P., Mazar, A. P. & Chandel, N. S. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Invest. 124, 117–128 (2014).

    CAS  PubMed  Google Scholar 

  114. Juarez, J. C. et al. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1. Clin. Cancer Res. 12, 4974–4982 (2006).

    CAS  PubMed  Google Scholar 

  115. Tsang, T. et al. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Preprint at bioRxiv 22, 412–424 (2020).

    CAS  Google Scholar 

  116. Lin, N. U. et al. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer 113, 2638–2645 (2008).

    PubMed  Google Scholar 

  117. Kennecke, H. et al. Metastatic behavior of the breast cancer subtypes. J. Clin. Oncol. 28, 3271–3277 (2010).

    PubMed  Google Scholar 

  118. Voli, F. et al. Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 80, 4129–4144 (2020).

    CAS  PubMed  Google Scholar 

  119. Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    CAS  PubMed  Google Scholar 

  120. Halliwell, B. & Gutteridge, J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug. Discov. 8, 579–591 (2009).

    CAS  PubMed  Google Scholar 

  122. Schumacker, P. T. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10, 175–176 (2006).

    CAS  PubMed  Google Scholar 

  123. Cabello, C. M., Bair, W. B. 3rd & Wondrak, G. T. Experimental therapeutics: targeting the redox Achilles heel of cancer. Curr. Opin. Investig. Drugs 8, 1022–1037 (2007).

    CAS  PubMed  Google Scholar 

  124. Fruehauf, J. P. & Meyskens, F. L. Jr. Reactive oxygen species: a breath of life or death? Clin. Cancer Res. 13, 789–794 (2007).

    CAS  PubMed  Google Scholar 

  125. Kirshner, J. R. et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther. 7, 2319–2327 (2008).

    CAS  PubMed  Google Scholar 

  126. Tsvetkov, P. et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol. 15, 681–689 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Viola-Rhenals, M. et al. Recent advances in Antabuse (disulfiram): the importance of its metal-binding ability to its anticancer activity. Curr. Med. Chem. 25, 506–524 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wattenberg, L. W. Inhibition of dimethylhydrazine-induced neoplasia of the large intestine by disulfiram. J. Natl Cancer Inst. 54, 1005–1006 (1975).

    CAS  PubMed  Google Scholar 

  129. Sunderman, F. W. Efficacy of sodium diethyldithiocarbamate (dithiocarb) in acute nickel carbonyl poisoning. Ann. Clin. Lab. Sci. 9, 1–10 (1979).

    CAS  PubMed  Google Scholar 

  130. Victoriano, L. I. The reactivity of metal species towards thiuram sulfides: an alternative route to the syntheses of metal dithiocarbamates. Coord. Chem. Rev. 196, 383–398 (2000).

    CAS  Google Scholar 

  131. Lewis, D. J., Deshmukh, P., Tedstone, A. A., Tuna, F. & O’Brien, P. On the interaction of copper(II) with disulfiram. Chem. Commun. 50, 13334–13337 (2014).

    CAS  Google Scholar 

  132. Cvek, B., Milacic, V., Taraba, J. & Dou, Q. P. Ni(II), Cu(II), and Zn(II) diethyldithiocarbamate complexes show various activities against the proteasome in breast cancer cells. J. Med. Chem. 51, 6256–6258 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tawari, P. E. et al. The cytotoxic mechanisms of disulfiram and copper(II) in cancer cells. Toxicol. Res. 4, 1439–1442 (2015).

    CAS  Google Scholar 

  134. Chen, D., Cui, Q. C., Yang, H. & Dou, Q. P. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 66, 10425–10433 (2006).

    CAS  PubMed  Google Scholar 

  135. Chen, X. et al. Metal-based proteasomal deubiquitinase inhibitors as potential anticancer agents. Cancer Metastasis Rev. 36, 655–668 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Skrott, Z. et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552, 194–199 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Yang, H. et al. Repurposing old drugs as new inhibitors of the ubiquitin-proteasome pathway for cancer treatment. Semin. Cancer Biol. 68, 105–122 (2021).

    CAS  PubMed  Google Scholar 

  138. Liu, P. et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br. J. Cancer 109, 1876–1885 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, Y. et al. Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget. 5, 3743–3755 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Wu, L. et al. Disulfiram and BKM120 in combination with chemotherapy impede tumor progression and delay tumor recurrence in tumor initiating cell-rich TNBC. Sci. Rep. 9, 236 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Gehrmann, M. Drug evaluation: STA-4783–enhancing taxane efficacy by induction of Hsp70. Curr. Opin. Investig. Drugs 7, 574–580 (2006).

    CAS  PubMed  Google Scholar 

  142. Yadav, A. A., Patel, D., Wu, X. & Hasinoff, B. B. Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II). J. Inorg. Biochem. 126, 1–6 (2013).

    CAS  PubMed  Google Scholar 

  143. Nagai, M. et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free. Radic. Biol. Med. 52, 2142–2150 (2012).

    CAS  PubMed  Google Scholar 

  144. Berkenblit, A. et al. Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors. Clin. Cancer Res. 13, 584–590 (2007).

    CAS  PubMed  Google Scholar 

  145. Chakravarty, R., Chakraborty, S. & Dash, A. 64Cu2+ ions as PET Probe: an emerging paradigm in molecular imaging of cancer. Mol. Pharm. 13, 3601–3612 (2016).

    CAS  PubMed  Google Scholar 

  146. Qin, C. et al. Theranostics of malignant melanoma with 64CuCl2. J. Nucl. Med. 55, 812–817 (2014).

    CAS  PubMed  Google Scholar 

  147. Peng, F., Lu, X., Janisse, J., Muzik, O. & Shields, A. F. PET of human prostate cancer xenografts in mice with increased uptake of 64CuCl2. J. Nucl. Med. 47, 1649–1652 (2006).

    CAS  PubMed  Google Scholar 

  148. Kim, K. I. et al. Detection of increased 64Cu uptake by human copper transporter 1 gene overexpression using PET with 64CuCl2 in human breast cancer xenograft model. J. Nucl. Med. 55, 1692–1698 (2014).

    CAS  PubMed  Google Scholar 

  149. Jorgensen, J. T., Persson, M., Madsen, J. & Kjaer, A. High tumor uptake of 64Cu: implications for molecular imaging of tumor characteristics with copper-based PET tracers. Nucl. Med. Biol. 40, 345–350 (2013).

    PubMed  Google Scholar 

  150. Ferrari, C. et al. Copper-64 dichloride as theranostic agent for glioblastoma multiforme: a preclinical study. Biomed. Res. Int. 2015, 129764 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Cai, H. et al. Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer. J. Nucl. Med. 55, 622–628 (2014).

    CAS  PubMed  Google Scholar 

  152. Capasso, E. et al. Role of 64CuCl2 PET/CT in staging of prostate cancer. Ann. Nucl. Med. 29, 482–8 (2015).

    CAS  PubMed  Google Scholar 

  153. Piccardo, A. et al. 64CuCl2 PET/CT in prostate cancer relapse. J. Nucl. Med. 59, 444–451 (2018).

    CAS  PubMed  Google Scholar 

  154. Panichelli, P. et al. Imaging of brain tumors with copper-64 chloride: early experience and results. Cancer Biother Radiopharm. 31, 159–167 (2016).

    CAS  PubMed  Google Scholar 

  155. Santini, C. et al. Advances in copper complexes as anticancer agents. Chem. Rev. 114, 815–862 (2014).

    CAS  PubMed  Google Scholar 

  156. De Luca, A., Barile, A., Arciello, M. & Rossi, L. Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy J. Trace Elem. Med. Biol. 55, 204–13 (2019).

    PubMed  Google Scholar 

  157. Kellett A., Molphy Z., McKee V., Slator C. Recent advances in anticancer copper compounds. in Metal-based Anticancer Agents. p. 91–119 (Royal Society of Chemistry, 2019).

  158. Gandin, V. et al. In vitro and in vivo anticancer activity of copper(I) complexes with homoscorpionate tridentate tris(pyrazolyl)borate and auxiliary monodentate phosphine ligands. J. Med. Chem. 57, 4745–4760 (2014).

    CAS  PubMed  Google Scholar 

  159. Marzano C. et al. [CU(thp)4]n[X]-n Compounds for the Treatment of a Broad Range of Human Solid Tumors, Including Refractory Tumors. US Patent 9114149, Abstract (2015). Inventors; Universita degli Studi di Camerino, Universita degli Studi di Padova, assignee.

  160. Trejo-Solis, C. et al. Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and JNK activation. BMC Cancer 12, 156 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Serment-Guerrero, J. et al. Genotoxicity of the copper antineoplastic coordination complexes casiopeinas. Toxicol. In Vitro 25, 1376–1384 (2011).

    CAS  PubMed  Google Scholar 

  162. Hirayama, T., Van de Bittner, G. C., Gray, L. W., Lutsenko, S. & Chang, C. J. Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc. Natl Acad. Sci. USA. 109, 2228–2233 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Heffern, M. C. et al. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA. 113, 14219–14224 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Cui, L. et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat. Biotechnol. 39, 357–367 (2021).

    CAS  PubMed  Google Scholar 

  165. Iovan, D. A., Jia, S. & Chang, C. J. Inorganic chemistry approaches to activity-based sensing: from metal sensors to bioorthogonal metal chemistry. Inorg. Chem. 58, 13546–13560 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ramos-Torres, K. M., Kolemen, S. & Chang, C. J. Thioether coordination chemistry for molecular imaging of copper in biological systems. Isr. J. Chem. 56, 724–737 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Morgan, M. T. et al. Stabilization of aliphatic phosphines by auxiliary phosphine sulfides offers zeptomolar affinity and unprecedented selectivity for probing biological Cu(I). Angew. Chem. Int. Ed. 57, 9711–9715 (2018).

    CAS  Google Scholar 

  168. Wang, J. et al. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat. Chem. 7, 968–979 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Karginova, O. et al. Inhibition of copper transport induces apoptosis in triple-negative breast cancer cells and suppresses tumor angiogenesis. Mol. Cancer Ther. 18, 873–885 (2019).

    CAS  PubMed  Google Scholar 

  170. Haddad, M. R. et al. Cerebrospinal fluid-directed rAAV9-rsATP7A plus subcutaneous copper histidinate advance survival and outcomes in a Menkes disease mouse model. Mol. Ther. Methods Clin. Dev. 10, 165–178 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Su, T. A. et al. A modular ionophore platform for liver-directed copper supplementation in cells and animals. J. Am. Chem. Soc. 140, 13764–13774 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Pinho, J. O. et al. Therapeutic potential of a copper complex loaded in pH-sensitive long circulating liposomes for colon cancer management. Int. J. Pharm. 599, 120463 (2021).

    CAS  PubMed  Google Scholar 

  173. Pinho, J. O. et al. Copper complex nanoformulations featuring highly promising therapeutic potential in murine melanoma models. Nanomedicine 14, 835–850. (2019).

    CAS  PubMed  Google Scholar 

  174. Hunsaker, E. W. & Franz, K. J. Emerging opportunities to manipulate metal trafficking for therapeutic benefit. Inorg. Chem. 58, 13528–13545 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Walshe, J. M. Penicillamine, a new oral therapy for Wilson’s disease. Am. J. Med. 21, 487–495 (1956).

    CAS  PubMed  Google Scholar 

  176. Brewer, G. J. et al. Treatment of Wilson’s disease with ammonium tetrathiomolybdate. I. Initial therapy in 17 neurologically affected patients. Arch. Neurol. 51, 545–554 (1994).

    CAS  PubMed  Google Scholar 

  177. NCRR, University of Michigan. Study of Tetrathiomolybdate in Patients With Wilson Disease https://ClinicalTrials.gov/show/NCT00004339 (1994).

  178. Bell, R. G. & Smith, H. W. Preliminary report on clinical trials of Antabuse. Can. Med. Assoc. J. 60, 286–288 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Limited CMDP. Treatment Continuation Study for Patients With ALS/MND Who Completed Study CMD-2019-001 https://ClinicalTrials.gov/show/NCT04313166 (2020).

  180. Torres, J. B. et al. PET Imaging of copper trafficking in a mouse model of Alzheimer disease. J. Nucl. Med. 57, 109–114 (2016).

    CAS  PubMed  Google Scholar 

  181. Mao, X. & Schimmer, A. D. The toxicology of clioquinol. Toxicol. Lett. 182, 1–6 (2008).

    CAS  PubMed  Google Scholar 

  182. Ltd CP. 64Cu-SAR-bisPSMA and 67Cu-SAR-bisPSMA for Identification and Treatment of PSMA-expressing Metastatic Castrate Resistant Prostate Cancer https://ClinicalTrials.gov/show/NCT04868604 (2021).

Download references

Acknowledgements

The authors thank the following sources for funding: NIH (GM79465 and GM139245 to C.J.C., GM124749 to D.C.B., R01-GM084176 to K.J.F., GM120211 to P.A.C., GM111672 to V.M.G., R21-GM129592 to M.R., R01-NS109307 to P.Y., CA190265 and DK116859 to M.J.P., Z01 HD008768 and Z01 HD008892 to S.G.K., CA53840 and DK124907 to N.K.T. and R01-GM101502, R01-DK117396 and R01-DK071865 to S.L.), the US National Cancer Institute (R21CA184788 to Q.P.D.), the Welch Foundation (A-1810 to V.M.G.), Pew Charitable Trusts (Pew Scholars Program in Biomedical Science award no. 50350 to D.C.B.)), AIRC Italy (IG 17118 to R.P.), the Florida Department of Health Bankhead-Coley Cancer Research Program (9BC07 to G.M.D.), the Breast Cancer Research Foundation, Susan G. Komen Greater New York City (L.T.V.), the US Department of Army (W81XH-20-1-0754 to L.V.A.), the CSHL Cancer Centre Support Grant (CA45508 to N.K.T.) and the V Foundation Scholar Award (3C59 8ABS 3424 3BDA to D.C.B.) V.M. was supported by the Center on the Physics of Cancer Metabolism through award number U54CA210184 from the National Cancer Institute, and also by National Cancer Institute award R01 CA257254-01A1 (V.M. and L.T.V.). S.G. received support from NIDDK R01-DK-071111 and NIDDK Center grants, P30-DK-41296 and P30-DK-020541 and NCI Center grant P30-CA-13330. A.I.B. is funded by the National Health and Medical Research Council of Australia. C.J.C. is a CIFAR Fellow.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussion of the content. C.J.C. outlined the article. C.J.C., E.J.G., M.J.P., D.C.B., V.M.G., Q.P.D., L.T.V., S.G.K., A.I.B., A.C. and M.L.S. wrote portions of the article. E.J.G., D.C.B. and C.J.C. reviewed and edited the article before submission. C.J.C. and D.C.B. designed the figures.

Corresponding authors

Correspondence to Donita C. Brady or Christopher J. Chang.

Ethics declarations

Competing interests

N.K.T. is a member of the Scientific Advisory Board of DepYmed Inc. V.M.G. is listed as an inventor on the patent application PCT/US2019/041571 submitted by Texas A&M University entitled “Compositions for the treatment of copper deficiency and methods of use”. D.C.B. holds ownership in Merlon Inc. A.I.B. holds equity in Alterity Biotechnology Ltd, Cogstate Ltd, Mesoblast Ltd and Collaborative Medicinal Development LLC and is a paid consultant for Collaborative Medicinal Development Pty Ltd. L.T.V. is a consultant for Berg Pharma, Osmol Therapeutics and Sema4, serves on the advisory board of Seattle Genetics and Immunomedics/Gilead, and receives research funding from Genentech, Arvinas, and Oncotheraphy Sciences. E.J.G, A.C., P.A.C., J.R.C, G.M.D., Q.P.D., K.J.F., S.G., S.G.K., S.L., V.M., M.J.P., R.P., M.R., M.L.S., L.V.A., D.X., P.Y. and C.J.C. declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks James Camakaris, Victor Faundez, Žaklina Kovačević and Orazio Vittorio for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, E.J., Bush, A.I., Casini, A. et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 22, 102–113 (2022). https://doi.org/10.1038/s41568-021-00417-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00417-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer