Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer metabolism: looking forward

Abstract

Tumour initiation and progression requires the metabolic reprogramming of cancer cells. Cancer cells autonomously alter their flux through various metabolic pathways in order to meet the increased bioenergetic and biosynthetic demand as well as mitigate oxidative stress required for cancer cell proliferation and survival. Cancer driver mutations coupled with environmental nutrient availability control flux through these metabolic pathways. Metabolites, when aberrantly accumulated, can also promote tumorigenesis. The development and application of new technologies over the last few decades has not only revealed the heterogeneity and plasticity of tumours but also allowed us to uncover new metabolic pathways involved in supporting tumour growth. The tumour microenvironment (TME), which can be depleted of certain nutrients, forces cancer cells to adapt by inducing nutrient scavenging mechanisms to sustain cancer cell proliferation. There is growing appreciation that the metabolism of cell types other than cancer cells within the TME, including endothelial cells, fibroblasts and immune cells, can modulate tumour progression. Because metastases are a major cause of death of patients with cancer, efforts are underway to understand how metabolism is harnessed by metastatic cells. Additionally, there is a new interest in exploiting cancer genetic analysis for patient stratification and/or dietary interventions in combination with therapies that target metabolism. In this Perspective, we highlight these main themes that are currently under investigation in the context of in vivo tumour metabolism, specifically emphasizing questions that remain unanswered.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Metabolic and signalling pathways supporting tumour biomass production.
Fig. 2: Signalling and non-canonical mechanisms in cancer metabolism.
Fig. 3: Biology of ROS in cancer cells.
Fig. 4: Metabolic crosstalk of cells within the TME.
Fig. 5: Metabolism regulates multisteps of metastasis.
Fig. 6: Personalized medicine approach to targeting cancer metabolism.

References

  1. 1.

    Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    DeBerardinis, R. J. & Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab. 2, 127–129 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Krall, A. S. et al. Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metab. 33, 1013–1026.e6 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Vasan, K., Werner, M. & Chandel, N. S. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 32, 341–352 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Martínez-Reyes, I. et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585, 288–292 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Hollinshead, K. E. R. et al. Respiratory supercomplexes promote mitochondrial efficiency and growth in severely hypoxic pancreatic cancer. Cell Rep. 33, 108231 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Bonekamp, N. A. et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 588, 712–716 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Cardaci, S. et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol. 17, 1317–1326 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA 94, 6658–6663 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Sabatini, D. M. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc. Natl Acad. Sci. USA 114, 11818–11825 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Hurst, J. H. William Kaelin, Peter Ratcliffe, and Gregg Semenza receive the 2016 Albert Lasker Basic Medical Research Award. J. Clin. Invest. 126, 3628–3638 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Hoxhaj, G. & Manning, B. D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Ghergurovich et al. Local production of lactate, ribose phosphate, and amino acids by human triple-negative breast cancer. Med 2, 736–754.e6 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Sellers, K. et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Christen, S. et al. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep. 17, 837–848 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Davidson, S. M. et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Knott, S. R. V. et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554, 378–381 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Garcia-Bermudez, J. et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat. Cell Biol. 20, 775–781 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Sullivan, L. B. et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat. Cell Biol. 20, 782–788 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Harris, I. S. & DeNicola, G. M. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 30, 440–451 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Sayin, V. I., LeBoeuf, S. E. & Papagiannakopoulos, T. Targeting metabolic bottlenecks in lung cancer. Trends Cancer 5, 457–459 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Liu, J. Y. & Wellen, K. E. Advances into understanding metabolites as signaling molecules in cancer progression. Curr. Opin. Cell Biol. 63, 144–153 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, eaaw5473 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Tajan, M. & Vousden, K. H. Dietary approaches to cancer therapy. Cancer Cell 37, 767–785 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Poillet-Perez, L. & White, E. Role of tumor and host autophagy in cancer metabolism. Genes Dev. 33, 610–619 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Bader, J. E., Voss, K. & Rathmell, J. C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell 78, 1019–1033 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Dey, P., Kimmelman, A. C. & DePinho, R. A. Metabolic codependencies in the tumor microenvironment. Cancer Discov. 11, 1067–1081 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Zhu, X. G. et al. Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells. Cell Metab. 33, 211–221.e6 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Biancur, D. E. et al. Functional genomics identifies metabolic vulnerabilities in pancreatic cancer. Cell Metab. 33, 199–210.e8 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Vandekeere, S. et al. Serine synthesis via PHGDH is essential for heme production in endothelial cells. Cell Metab. 28, 573–587.e13 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 24, 640–641 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Oshima, N. et al. Dynamic imaging of LDH inhibition in tumors reveals rapid in vivo metabolic rewiring and vulnerability to combination therapy. Cell Rep. 30, 1798–1810.e4 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108–1119 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Zhang, Y. et al. Upregulation of antioxidant capacity and nucleotide precursor availability suffices for oncogenic transformation. Cell Metab. 33, 94–109.e8 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Tennant, D. A., Durán, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267–277 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Rabinovich, S. et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527, 379–383 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Kim, J. et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 546, 168–172 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251–255 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Li, F. et al. FBP1 loss disrupts liver metabolism and promotes tumorigenesis through a hepatic stellate cell senescence secretome. Nat. Cell Biol. 22, 728–739 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Huangyang, P. et al. Fructose-1,6-bisphosphatase 2 inhibits sarcoma progression by restraining mitochondrial biogenesis. Cell Metab. 31, 174–188 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371.e9 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Yuneva, M. O. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157–170 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Hui, S. et al. Quantitative fluxomics of circulating metabolites. Cell Metab. 32, 676–688.e4 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Liu, S., Dai, Z., Cooper, D. E., Kirsch, D. G. & Locasale, J. W. Quantitative analysis of the physiological contributions of glucose to the TCA cycle. Cell Metab. 32, 619–628.e21 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    García-Cañaveras, J. C. et al. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 35, 377–388 (2021).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  55. 55.

    Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8. Immunity 51, 856–870.e5 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Carroll, P. A., Freie, B. W., Mathsyaraja, H. & Eisenman, R. N. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front. Med. 12, 412–425 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Lacroix, M., Riscal, R., Arena, G., Linares, L. K. & Le Cam, L. Metabolic functions of the tumor suppressor p53: implications in normal physiology, metabolic disorders, and cancer. Mol. Metab. 33, 2–22 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Li, T. et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149, 1269–1283 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Ali, E. S. et al. ERK2 phosphorylates PFAS to mediate posttranslational control of de novo purine synthesis. Mol. Cell 78, 1178–1191.e6 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Huang, F. et al. Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers. Cell Metab. 28, 369–382.e5 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Valvezan, A. J. et al. IMPDH inhibitors for antitumor therapy in tuberous sclerosis complex. JCI Insight 5, e135071 (2020).

    PubMed Central  Article  Google Scholar 

  64. 64.

    González, A., Hall, M. N., Lin, S. C. & Hardie, D. G. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab. 31, 472–492 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  65. 65.

    Eichner, L. J. et al. Genetic analysis reveals AMPK is required to support tumor growth in murine Kras-dependent lung cancer models. Cell Metab. 29, 285–302.e7 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Condon, K. J. et al. Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. Proc. Natl Acad. Sci. USA 118, e2022120118 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Khan, N. A. et al. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 26, 419–428.e5 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Thompson, C. B. Metabolic enzymes as oncogenes or tumor suppressors. N. Engl. J. Med. 360, 813–815 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Yong, C., Stewart, G. D. & Frezza, C. Oncometabolites in renal cancer. Nat. Rev. Nephrol. 16, 156–172 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Frezza, C., Pollard, P. J. & Gottlieb, E. Inborn and acquired metabolic defects in cancer. J. Mol. Med. 89, 213–220 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Ye, D., Guan, K. L. & Xiong, Y. Metabolism, activity, and targeting of d- and l-2-hydroxyglutarates. Trends Cancer 4, 151–165 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Fan, J. et al. Human phosphoglycerate dehydrogenase produces the oncometabolite d-2-hydroxyglutarate. ACS Chem. Biol. 10, 510–516 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Engqvist, M. K., Eßer, C., Maier, A., Lercher, M. J. & Maurino, V. G. Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion 19, 275–281 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Shim, E. H. et al. l-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 4, 1290–1298 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Baksh, S. C. & Finley, L. W. S. Metabolic coordination of cell fate by α-ketoglutarate-dependent dioxygenases. Trends Cell Biol. 31, 24–36 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Losman, J. A. et al. (R)-2-Hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Xu, D. et al. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab. 33, 33–50 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Tsutsumi, R. et al. Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat. Commun. 8, 466 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. 84.

    Tonks, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833–846 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Konaté, M. M., Antony, S. & Doroshow, J. H. Inhibiting the activity of NADPH oxidase in cancer. Antioxid. Redox Signal. 33, 435–454 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  86. 86.

    Kong, H. et al. Metabolic determinants of cellular fitness dependent on mitochondrial reactive oxygen species. Sci. Adv. 6, eabb7272 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Woo, D. K. et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APCMin/+ mice. Am. J. Pathol. 180, 24–31 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Xiao, H. et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983.e24 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Manford, A. G. et al. A cellular mechanism to detect and alleviate reductive stress. Cell 183, 46–61.e21 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422.e21 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Alvarez, S. W. et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551, 639–643 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Tsang, T. et al. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat. Cell Biol. 22, 412–424 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell. Biol. 22, 266–282 (2021).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. 94.

    Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Lignitto, L. et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178, 316–329.e18 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345.e22 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Lee, P., Vousden, K. H. & Cheung, E. C. TIGAR, TIGAR, burning bright. Cancer Metab. 2, 1 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Cheung, E. C. et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer. Cancer Cell 37, 168–182.e4 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Le Gal, K. et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 7, 308re308 (2015).

    Google Scholar 

  101. 101.

    Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Gillies, R. J., Brown, J. S., Anderson, A. R. A. & Gatenby, R. A. Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat. Rev. Cancer 18, 576–585 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Li, X., Sun, X. & Carmeliet, P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 30, 414–433 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Amaravadi, R. K., Kimmelman, A. C. & Debnath, J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167–1181 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Bosc, C. et al. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria–endoplasmic reticulum contact sites. Nat. Commun. 11, 4056 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Yang, A. et al. Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov. 8, 276–287 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Guo, J. Y. et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447–1461 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Poillet-Perez, L. et al. Autophagy maintains tumour growth through circulating arginine. Nature 563, 569–573 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Zhang, Y. & Commisso, C. Macropinocytosis in cancer: a complex signaling network. Trends Cancer 5, 332–334 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Jayashankar, V. & Edinger, A. L. Macropinocytosis confers resistance to therapies targeting cancer anabolism. Nat. Commun. 11, 1121 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272.e17 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. 120.

    Ryan, D. G. & O’Neill, L. A. J. Krebs cycle reborn in macrophage immunometabolism. Annu. Rev. Immunol. 38, 289–313 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Makowski, L., Chaib, M. & Rathmell, J. C. Immunometabolism: from basic mechanisms to translation. Immunol. Rev. 295, 5–14 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Bian, Y. et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585, 277–282 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Poillet-Perez, L. et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat. Cancer 1, 923–934 (2020).

    Article  Google Scholar 

  127. 127.

    Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Zhu, Z. et al. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat. Metab. 2, 775–792 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Mukherjee, A. et al. Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Res. 80, 1748–1761 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Leone, R. D. & Powell, J. D. Metabolism of immune cells in cancer. Nat. Rev. Cancer 20, 516–531 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Madden, M. Z. & Rathmell, J. C. The complex integration of T-cell metabolism and immunotherapy. Cancer Discov. Online ahead of print. https://doi.org/10.1158/2159-8290.CD-20-0569 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Gilmore, I. S., Heiles, S. & Pieterse, C. L. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu. Rev. Anal. Chem. 12, 201–224 (2019).

    CAS  Article  Google Scholar 

  133. 133.

    Chuang, C. H. et al. Altered mitochondria functionality defines a metastatic cell state in lung cancer and creates an exploitable vulnerability. Cancer Res. 81, 567–579 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Porporato, P. E. et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 8, 754–766 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Schwörer, S. et al. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J. 39, e103334 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. 136.

    Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Sullivan, W. J. et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell 175, 117–132.e21 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Hu, H. et al. Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 164, 433–446 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Gomes, A. P. et al. Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature 585, 283–287 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Ubellacker, J. M. & Morrison, S. J. Metabolic adaptation fuels lymph node metastasis. Cell Metab. 29, 785–786 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Takahashi, N. et al. 3D culture models with CRISPR screens reveal hyperactive NRF2 as a prerequisite for spheroid formation via regulation of proliferation and ferroptosis. Mol. Cell 80, 828–844.e6 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Labuschagne, C. F., Cheung, E. C., Blagih, J., Domart, M. C. & Vousden, K. H. Cell clustering promotes a metabolic switch that supports metastatic colonization. Cell Metab. 30, 720–734.e5 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Schito, L. & Semenza, G. L. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2, 758–770 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Sayin, V. I. et al. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 6, 221ra215 (2014).

    Article  CAS  Google Scholar 

  145. 145.

    Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Elia, I. et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568, 117–121 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Rinaldi, G. et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition. Mol. Cell 81, 386–397.e7 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    Article  CAS  Google Scholar 

  152. 152.

    Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167, 171–186.e15 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    McBrayer, S. K. et al. Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma. Cell 175, 101–116.e25 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Sulkowski, P. L. et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature 582, 586–591 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Sulkowski, P. L. et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci. Transl. Med. 9, eaal2463 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. 156.

    Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Bar-Peled, L. et al. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171, 696–709.e23 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Cramer, S. L. et al. Systemic depletion of l-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160.

    Wang, W. et al. CD8 T cells regulate tumor ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. 165.

    Venneti, S. et al. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med. 7, 274ra217 (2015).

    Article  CAS  Google Scholar 

  166. 166.

    Lien, E. C. & Vander Heiden, M. G. A framework for examining how diet impacts tumour metabolism. Nat. Rev. Cancer 19, 651–661 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  167. 167.

    Gao, X. et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572, 397–401 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  169. 169.

    Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    Peck, B. & Schulze, A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer 5, 693–703 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  172. 172.

    Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432.e9 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Bhatt, V. et al. Autophagy modulates lipid metabolism to maintain metabolic flexibility for Lkb1-deficient Kras-driven lung tumorigenesis. Genes Dev. 33, 150–165 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. 174.

    Bryant, K. L. et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 25, 628–640 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Kinsey, C. G. et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 620–627 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Deberardinis (UT Southwestern) for helpful and insightful comments. They thank L. Diebold and C. Reczek from the Chandel laboratory for their helpful input and editing. This work was funded by National Institutes of Health (NIH) Grant 5R35CA197532. We have largely confined the references to the past few years with the emphasis on in vivo findings in the field and have cited many excellent references in the past year.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Navdeep S. Chandel.

Ethics declarations

Competing interests

N.S.C. is on the scientific advisory board of Rafael Pharmaceuticals and Penrose TherapeuTx. I.M.-R. declares no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks C. Frezza, E. White and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autophagy

A highly regulated process through which proteins and organelles are delivered to the lysosome and degraded.

Ferroptosis

A distinct form of programmed cell death that requires reactive oxygen species (ROS) and iron accumulation to cause lethal lipid peroxidation.

Hyaluronidase

An enzyme that degrades hyaluronic acid into monosaccharides.

Peroxiredoxin enzymes

Cysteine-dependent peroxidases that convert hydrogen peroxide (H2O2) to water.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Reyes, I., Chandel, N.S. Cancer metabolism: looking forward. Nat Rev Cancer (2021). https://doi.org/10.1038/s41568-021-00378-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing