Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial DNA variation and cancer

Abstract

Variation in the mitochondrial DNA (mtDNA) sequence is common in certain tumours. Two classes of cancer mtDNA variants can be identified: de novo mutations that act as ‘inducers’ of carcinogenesis and functional variants that act as ‘adaptors’, permitting cancer cells to thrive in different environments. These mtDNA variants have three origins: inherited variants, which run in families, somatic mutations arising within each cell or individual, and variants that are also associated with ancient mtDNA lineages (haplogroups) and are thought to permit adaptation to changing tissue or geographic environments. In addition to mtDNA sequence variation, mtDNA copy number and perhaps transfer of mtDNA sequences into the nucleus can contribute to certain cancers. Strong functional relevance of mtDNA variation has been demonstrated in oncocytoma and prostate cancer, while mtDNA variation has been reported in multiple other cancer types. Alterations in nuclear DNA-encoded mitochondrial genes have confirmed the importance of mitochondrial metabolism in cancer, affecting mitochondrial reactive oxygen species production, redox state and mitochondrial intermediates that act as substrates for chromatin-modifying enzymes. Hence, subtle changes in the mitochondrial genotype can have profound effects on the nucleus, as well as carcinogenesis and cancer progression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mitochondrial DNA variants can play inductive and adaptive roles in oncogenesis.
Fig. 2: Mitochondrial biology and metabolism and its relationship to the epigenome.
Fig. 3: Human mtDNA map showing representative variants.
Fig. 4: Examples of cancer-relevant classes of mtDNA variants.

References

  1. 1.

    Warburg, O. The Metabolism of Tumors (ed. Smith, R. R.) (Springer, 1931).

  2. 2.

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  3. 3.

    Pedersen, P. L. Tumor mitochondria and the bioenergetics of cancer cells. Prog. Exp. Tumor Res. 22, 190–274 (1978).

    CAS  PubMed  Google Scholar 

  4. 4.

    Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981). This study reports the human mtDNA sequence.

    CAS  PubMed  Google Scholar 

  5. 5.

    Andrews, R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147 (1999).

    CAS  Google Scholar 

  6. 6.

    Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W. & Clayton, D. A. Sequence and gene organization of mouse mitochondrial DNA. Cell 26, 167–180 (1981).

    CAS  PubMed  Google Scholar 

  7. 7.

    Wallace, D. C. Mitochondrial genetic medicine. Nat. Genet. 50, 1642–1649 (2018).

    CAS  PubMed  Google Scholar 

  8. 8.

    Wallace, D. C. Mitochondrial DNA variation in human radiation and disease. Cell 163, 33–38 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wallace, D. C. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242, 1427–1430 (1988). This study reports the first mtDNA nucleotide substitution disease.

    CAS  PubMed  Google Scholar 

  10. 10.

    Shoffner, J. M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61, 931–937 (1990).

    CAS  PubMed  Google Scholar 

  11. 11.

    Holt, I. J., Harding, A. E., Petty, R. K. & Morgan-Hughes, J. A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Cortopassi, G. A. & Arnheim, N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18, 6927–6933 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Corral-Debrinski, M. et al. Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. JAMA 266, 1812–1816 (1991).

    CAS  PubMed  Google Scholar 

  14. 14.

    Corral-Debrinski, M. et al. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat. Genet. 2, 324–329 (1992).

    CAS  PubMed  Google Scholar 

  15. 15.

    Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).

    CAS  PubMed  Google Scholar 

  16. 16.

    Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V. & Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226 (2004). This study reports that human mtDNA variants can be adaptive.

    CAS  PubMed  Google Scholar 

  17. 17.

    Brandon, M., Baldi, P. & Wallace, D. C. Mitochondrial mutations in cancer. Oncogene 25, 4647–4662 (2006). This article is the first proposal that cancer mtDNA mutations may be adaptive.

    CAS  PubMed  Google Scholar 

  18. 18.

    Petros, J. A. et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl Acad. Sci. USA 102, 719–724 (2005). This article shows that mtDNA mutations are important in prostate cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Arnold, R. S. et al. An inherited heteroplasmic mutation in mitochondrial gene COI in a patient with prostate cancer alters reactive oxygen, reactive nitrogen and proliferation. Biomed. Res. Int. 2013, 239257 (2013).

    PubMed  Google Scholar 

  20. 20.

    Wallace, D. C., Fan, W. & Procaccio, V. Mitochondrial energetics and therapeutics. Annu. Rev. Path. 5, 297–348 (2010).

    CAS  Google Scholar 

  21. 21.

    Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31 (2010).

    CAS  PubMed  Google Scholar 

  23. 23.

    Letouze, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752 (2013).

    CAS  PubMed  Google Scholar 

  24. 24.

    Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Picard, M. et al. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc. Natl Acad. Sci. USA 111, E4033–E4042 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kopinski, P. K. et al. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc. Natl Acad. Sci. USA 116, 16028–16035 (2019). This study is the first description of an mtDNA mutation causing changes in the nuclear epigenome.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    MITOMAP. A Human Mitochondrial Genome Database. http://www.mitomap.org (2021).

  28. 28.

    Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wallace, D. C. et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55, 601–610 (1988).

    CAS  PubMed  Google Scholar 

  30. 30.

    Goto, Y., Nonaka, I. & Horai, S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990).

    CAS  PubMed  Google Scholar 

  31. 31.

    Holt, I. J., Harding, A. E. & Morgan-Hughes, J. A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988).

    CAS  PubMed  Google Scholar 

  32. 32.

    Zeviani, M. et al. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 38, 1339–1346 (1988).

    CAS  PubMed  Google Scholar 

  33. 33.

    Shoffner, J. M. et al. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl Acad. Sci. USA 86, 7952–7956 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wallace, D. C., Ruiz-Pesini, E. & Mishmar, D. MtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harb. Symp. Quant. Biol. 68, 479–486 (2003).

    CAS  PubMed  Google Scholar 

  35. 35.

    Mishmar, D., Ruiz-Pesini, E., Brandon, M. & Wallace, D. C. Mitochondrial DNA-like sequences in the nucleus (NUMTs): insights into our African origins and the mechanism of foreign DNA integration. Hum. Mutat. 23, 125–133 (2004).

    CAS  PubMed  Google Scholar 

  36. 36.

    Torroni, A. et al. MtDNA and the origin of Caucasians. Identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am. J. Hum. Genet. 55, 760–776 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Torroni, A., Neel, J. V., Barrantes, R., Schurr, T. G. & Wallace, D. C. A mitochondrial DNA ‘clock’ for the Amerinds and its implication for timing their entry into North America. Proc. Natl Acad. Sci. USA 91, 1158–1162 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Torroni, A. et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835–1850 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Schurr, T. G. & Wallace, D. C. Mitochondrial DNA diversity in Southeast Asian populations. Hum. Biol. 74, 431–452 (2002).

    PubMed  Google Scholar 

  40. 40.

    Chen, Y. S., Torroni, A., Excoffier, L., Santachiara-Benerecetti, A. S. & Wallace, D. C. Analysis of mtDNA variation in African populations reveals the most ancient of all human continent-specific haplogroups. Am. J. Hum. Genet. 57, 133–149 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Chen, Y. S. et al. mtDNA variation in the South African Kung and Khwe and their genetic relationships to other African populations. Am. J. Hum. Genet. 66, 1362–1383 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kazuno, A. A. et al. Mitochondrial DNA haplogroup analysis in patients with bipolar disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet 150B, 243–247 (2009).

    CAS  PubMed  Google Scholar 

  43. 43.

    DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Courtney, K. D. et al. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab. 28, 793–800 e792 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Stewart, T. A., Yapa, K. T. & Monteith, G. R. Altered calcium signaling in cancer cells. Biochim. Biophys. Acta. 1848, 2502–2511 (2015).

    CAS  PubMed  Google Scholar 

  46. 46.

    Huang, P., Feng, L., Oldham, E. A., Keating, M. J. & Plunkett, W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407, 390–395 (2000).

    CAS  PubMed  Google Scholar 

  47. 47.

    Herrera-Cruz, M. S. & Simmen, T. Cancer: untethering mitochondria from the endoplasmic reticulum? Front. Oncol. 7, 105 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Verschoor, M. L. et al. Mitochondria and cancer: past, present, and future. Biomed. Res. Int. 2013, 612369 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Singh, K. K., Choudhury, A. R. & Tiwari, H. K. Numtogenesis as a mechanism for development of cancer. Semin. Cancer Biol. 47, 101–109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Dayama, G., Emery, S. B., Kidd, J. M. & Mills, R. E. The genomic landscape of polymorphic human nuclear mitochondrial insertions. Nucleic Acids Res. 42, 12640–12649 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Leister, D. Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet. 21, 655–663 (2005).

    CAS  PubMed  Google Scholar 

  52. 52.

    Woischnik, M. & Moraes, C. T. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res. 12, 885–893 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hazkani-Covo, E., Zeller, R. M. & Martin, W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 6, e1000834 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Choudhury, A. R. & Singh, K. K. Mitochondrial determinants of cancer health disparities. Semin. Cancer Biol. 47, 125–146 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Ramos, A. et al. Nuclear insertions of mitochondrial origin: database updating and usefulness in cancer studies. Mitochondrion 11, 946–953 (2011).

    CAS  PubMed  Google Scholar 

  56. 56.

    Payne, B. A. et al. Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet. 22, 384–390 (2013).

    CAS  PubMed  Google Scholar 

  57. 57.

    Goto, H. et al. Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. Genome Biol. 12, R59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Davis, R. E. et al. Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 4526–4531 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wallace, D. C., Stugard, C., Murdock, D., Schurr, T. & Brown, M. D. Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc. Natl Acad. Sci. USA 94, 14900–14905 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Srinivasainagendra, V. et al. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med. 9, 31 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Ju, Y. S. et al. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res. 25, 814–824 (2015). This study reports numtogenesis as a feature of cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Shay, J. W., Baba, T., Zhan, Q. M., Kamimura, N. & Cuthbert, J. A. HeLaTG cells have mitochondrial DNA inserted into the c-myc oncogene. Oncogene 6, 1869–1874 (1991).

    CAS  PubMed  Google Scholar 

  63. 63.

    Gould, M. P. et al. PCR-free enrichment of mitochondrial DNA from human blood and cell lines for high quality Next-Generation DNA sequencing. PLoS ONE 10, e0139253 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Weerts, M. J. A. et al. Sensitive detection of mitochondrial DNA variants for analysis of mitochondrial DNA-enriched extracts from frozen tumor tissue. Sci. Rep. 8, 2261 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Grandhi, S. et al. Heteroplasmic shifts in tumor mitochondrial genomes reveal tissue-specific signals of relaxed and positive selection. Hum. Mol. Genet. 26, 2912–2922 (2017). This study reports a survey of mtDNA variants in cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Chinnery, P. F., Samuels, D. C., Elson, J. & Turnbull, D. M. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 360, 1323–1325 (2002).

    CAS  PubMed  Google Scholar 

  68. 68.

    Copeland, W. C., Wachsman, J. T., Johnson, F. M. & Penta, J. S. Mitochondrial DNA alterations in cancer. Cancer Invest. 20, 557–569 (2002).

    CAS  PubMed  Google Scholar 

  69. 69.

    Gasparre, G. et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum. Mol. Genet. 17, 986–995 (2008).

    CAS  PubMed  Google Scholar 

  70. 70.

    Bartoletti-Stella, A. et al. Mitochondrial DNA mutations in oncocytic adnexal lacrimal glands of the conjunctiva. Arch. Ophthalmol. 129, 664–666 (2011).

    CAS  PubMed  Google Scholar 

  71. 71.

    Pereira, L., Soares, P., Maximo, V. & Samuels, D. C. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer 12, 53 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Gasparre, G. et al. An inherited mitochondrial DNA disruptive mutation shifts to homoplasmy in oncocytic tumor cells. Hum. Mutat. 30, 391–396 (2009). This study shows that mtDNA mutants are important in oncocytomas.

    CAS  PubMed  Google Scholar 

  73. 73.

    Gopal, R. K. et al. Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma. Proc. Natl Acad. Sci. USA 115, E6283–E6290 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Kalsbeek, A. M. F., Chan, E. K. F., Corcoran, N. M., Hovens, C. M. & Hayes, V. M. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget 8, 71342–71357 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Kalsbeek, A. M. et al. Mutational load of the mitochondrial genome predicts pathological features and biochemical recurrence in prostate cancer. Aging 8, 2702–2712 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Hopkins, J. F. et al. Mitochondrial mutations drive prostate cancer aggression. Nat. Commun. 8, 656 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Yuan, Y. et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat. Genet. 52, 342–352 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Bunn, C. L., Wallace, D. C. & Eisenstadt, J. M. Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells. Proc. Natl Acad. Sci. USA 71, 1681–1685 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Wallace, D. C., Bunn, C. L. & Eisenstadt, J. M. Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J. Cell Biol. 67, 174–188 (1975).

    CAS  PubMed  Google Scholar 

  80. 80.

    Trounce, I. A., Kim, Y. L., Jun, A. S. & Wallace, D. C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 264, 484–509 (1996).

    CAS  PubMed  Google Scholar 

  81. 81.

    McCormick, E. M. et al. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum. Mutat. 41, 2028–2057 (2020).

    PubMed  Google Scholar 

  82. 82.

    Ju, Y. S. et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife 3, e02935 (2014).

    PubMed Central  Google Scholar 

  83. 83.

    Anderson, A. P., Luo, X., Russell, W. & Yin, Y. W. Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. Nucleic Acids Res. 48, 817–829 (2020).

    CAS  PubMed  Google Scholar 

  84. 84.

    Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    CAS  PubMed  Google Scholar 

  85. 85.

    Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    CAS  PubMed  Google Scholar 

  86. 86.

    Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Xiao, J. et al. Mitochondrial biology and prostate cancer ethnic disparity. Carcinogenesis 39, 1311–1319 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Gopal, R. K. et al. Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hurthle cell carcinoma. Cancer Cell 34, 242–255 e245 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Weerts, M. J. A., Smid, M., Foekens, J. A., Sleijfer, S. & Martens, J. W. M. Mitochondrial RNA expression and single nucleotide variants in association with clinical parameters in primary breast cancers. Cancers 10, E500 (2018).

    PubMed  Google Scholar 

  90. 90.

    Jimenez-Morales, S., Perez-Amado, C. J., Langley, E. & Hidalgo-Miranda, A. Overview of mitochondrial germline variants and mutations in human disease: focus on breast cancer (review). Int. J. Oncol. 53, 923–936 (2018).

    CAS  PubMed  Google Scholar 

  91. 91.

    Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774–785 (2007).

    CAS  PubMed  Google Scholar 

  92. 92.

    Perrone, A. M. et al. Potential for mitochondrial DNA sequencing in the differential diagnosis of gynaecological malignancies. Int. J. Mol. Sci. 19, E2048 (2018).

    PubMed  Google Scholar 

  93. 93.

    Musicco, C. et al. Mitochondrial dysfunctions in type I endometrial carcinoma: exploring their role in oncogenesis and tumor progression. Int. J. Mol. Sci. 19, E2076 (2018).

    PubMed  Google Scholar 

  94. 94.

    Yuan, Y. et al. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer 15, 346 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Li, N. et al. Dissecting the expression landscape of mitochondrial genes in lung squamous cell carcinoma and lung adenocarcinoma. Oncol. Lett. 16, 3992–4000 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Tyagi, A. et al. Pattern of mitochondrial D-loop variations and their relation with mitochondrial encoded genes in pediatric acute myeloid leukemia. Mutat. Res. 810, 13–18 (2018).

    CAS  PubMed  Google Scholar 

  97. 97.

    Kim, H. R. et al. Spectrum of mitochondrial genome instability and implication of mitochondrial haplogroups in Korean patients with acute myeloid leukemia. Blood Res. 53, 240–249 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Vidone, M. et al. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. Int. J. Biochem. Cell Biol. 63, 46–54 (2015).

    CAS  PubMed  Google Scholar 

  99. 99.

    Fischer, R. [On the histochemical demonstration of oxidative enzymes in oncocytes of different organs]. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 334, 445–452 (1961).

    CAS  PubMed  Google Scholar 

  100. 100.

    Gasparre, G. et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl Acad. Sci. USA 104, 9001–9006 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Bonora, E. et al. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res. 66, 6087–6096 (2006).

    CAS  PubMed  Google Scholar 

  102. 102.

    Kurschner, G. et al. Renal oncocytoma characterized by the defective complex I of the respiratory chain boosts the synthesis of the ROS scavenger glutathione. Oncotarget 8, 105882–105904 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Burdon, R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free. Radic. Biol. Med. 18, 775–794 (1995).

    CAS  PubMed  Google Scholar 

  104. 104.

    Chouchani, E. T. et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 23, 254–263 (2016).

    CAS  PubMed  Google Scholar 

  105. 105.

    Arnold, R. S. et al. Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone 78, 81–86 (2015). This study shows the recurrence of the adaptive 10398 variant in prostate cancer metastases.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Kalsbeek, A. M. F. et al. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer. Prostate 78, 25–31 (2018).

    CAS  PubMed  Google Scholar 

  107. 107.

    Gupta, S. C. et al. Upsides and downsides of ROS for cancer: the roles of ROS in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal. 16, 1295–1322 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Lander, H. M. An essential role for free radicals and derived species in signal transduction. FASEB J. 11, 118–124 (1997).

    CAS  PubMed  Google Scholar 

  109. 109.

    Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Scialo, F. et al. Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab. 23, 725–734 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Slane, B. G. et al. Mutation of succinate dehydrogenase subunit C results in increased O2·, oxidative stress, and genomic instability. Cancer Res. 66, 7615–7620 (2006).

    CAS  PubMed  Google Scholar 

  112. 112.

    Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    CAS  PubMed  Google Scholar 

  113. 113.

    Goh, J. et al. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 11, 191 (2011). This study demonstrates that ROS can promote tumorigenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Woo, D. K. et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am. J. Pathol. 180, 24–31 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Sun, Q., Arnold, R. S., Sun, C. Q. & Petros, J. A. A mitochondrial DNA mutation influences the apoptotic effect of statins on prostate cancer. Prostate 75, 1916–1925 (2015).

    CAS  PubMed  Google Scholar 

  116. 116.

    Howell, A. N. & Sager, R. Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines. Proc. Natl Acad. Sci. USA 75, 2358–2362 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Shidara, Y. et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 65, 1655–1663 (2005).

    CAS  PubMed  Google Scholar 

  118. 118.

    Ishikawa, K. et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320, 661–664 (2008).

    CAS  PubMed  Google Scholar 

  119. 119.

    Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Nieborowska-Skorska, M. et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119, 4253–4263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Reznik, E. et al. Mitochondrial DNA copy number variation across human cancers. eLife 5, e10769 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Ng, K. W., Marshall, E. A., Bell, J. C. & Lam, W. L. cGAS-STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol. 39, 44–54 (2018).

    CAS  PubMed  Google Scholar 

  124. 124.

    Guha, M. et al. Aggressive triple negative breast cancers have unique molecular signature on the basis of mitochondrial genetic and functional defects. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1060–1071 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Moreno-Loshuertos, R. et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat. Genet. 38, 1261–1268 (2006).

    CAS  PubMed  Google Scholar 

  126. 126.

    Giordano, C. et al. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy. Brain 137, 335–353 (2014).

    PubMed  Google Scholar 

  127. 127.

    Ruiz-Pesini, E. & Wallace, D. C. Evidence for adaptive selection acting on the tRNA and rRNA genes of the human mitochondrial DNA. Hum. Mutat. 27, 1072–1081 (2006).

    CAS  PubMed  Google Scholar 

  128. 128.

    Canter, J. A., Kallianpur, A. R., Parl, F. F., Millikan, R. C. & Mitochondrial, D. N. A. G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res. 65, 8028–8033 (2005).

    CAS  PubMed  Google Scholar 

  129. 129.

    Darvishi, K. et al. G10398A polymorphism imparts maternal haplogroup N a risk for breast and esophageal cancer. Cancer Lett. 249, 249–255 (2007).

    CAS  PubMed  Google Scholar 

  130. 130.

    Marom, S., Friger, M. & Mishmar, D. MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association. Sci. Rep. 7, 43449 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Yu, Y. et al. Mitochondrial ND3 G10398A mutation: a biomarker for breast cancer. Genet. Mol. Res. 14, 17426–17431 (2015).

    CAS  PubMed  Google Scholar 

  132. 132.

    Fang, H. et al. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer 10, 421 (2010).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Blein, S. et al. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Res. 17, 61 (2015).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Riley, J. S. et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J. 37, e99238 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Booker, L. M. et al. North American white mitochondrial haplogroups in prostate and renal cancer. J. Urol. 175, 468–472; discussion 472-473 (2006).

    CAS  PubMed  Google Scholar 

  136. 136.

    Cano, D. et al. Mitochondrial DNA haplogroups and susceptibility to prostate cancer in a Colombian population. ISRN Oncol. 2014, 530675 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Li, Y. et al. Association of genes, pathways, and haplogroups of the mitochondrial genome with the risk of colorectal cancer: the multiethnic cohort. PLoS ONE 10, e0136796 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Poynter, J. N. et al. Association between mitochondrial DNA haplogroup and myelodysplastic syndromes. Genes Chromosomes Cancer 55, 688–693 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Liu, V. W. et al. Mitochondrial DNA variant 16189T>C is associated with susceptibility to endometrial cancer. Hum. Mutat. 22, 173–174 (2003).

    CAS  PubMed  Google Scholar 

  140. 140.

    Zhang, J. et al. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc. Natl Acad. Sci. USA 100, 1116–1121 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Zhai, K., Chang, L., Zhang, Q., Liu, B. & Wu, Y. Mitochondrial C150T polymorphism increases the risk of cervical cancer and HPV infection. Mitochondrion 11, 559–563 (2011).

    CAS  PubMed  Google Scholar 

  142. 142.

    Kazuno, A. A. et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet. 2, e128 (2006).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Ji, F. et al. Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc. Natl Acad. Sci. USA 109, 7391–7396 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Vaupel, P. & Kelleher, D. K. Blood flow and oxygenation status of prostate cancers. Adv. Exp. Med. Biol. 765, 299–305 (2013).

    CAS  PubMed  Google Scholar 

  145. 145.

    Parrella, P. et al. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res. 61, 7623–7626 (2001).

    CAS  PubMed  Google Scholar 

  146. 146.

    Kenney, M. C. et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: Implications for population susceptibility to diseases. Biochim. Biophys. Acta. 1842, 208–219 (2014).

    CAS  PubMed  Google Scholar 

  147. 147.

    Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Guha, M. et al. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene 33, 5238–5250 (2014).

    CAS  PubMed  Google Scholar 

  149. 149.

    Amuthan, G. et al. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 20, 1910–1920 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Guha, M., Srinivasan, S., Biswas, G. & Avadhani, N. G. Activation of a novel calcineurin-mediated insulin-like growth factor-1 receptor pathway, altered metabolism, and tumor cell invasion in cells subjected to mitochondrial respiratory stress. J. Biol. Chem. 282, 14536–14546 (2007).

    CAS  PubMed  Google Scholar 

  151. 151.

    Smith, A. L. et al. Age-associated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. Nat. Cancer 1, 976–989 (2020).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Bardella, C., Pollard, P. J. & Tomlinson, I. SDH mutations in cancer. Biochim. Biophys. Acta. 1807, 1432–1443 (2011).

    CAS  PubMed  Google Scholar 

  153. 153.

    Picaud, S. et al. Structural basis of fumarate hydratase deficiency. J. Inherit. Metab. Dis. 34, 671–676 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Li, X., Egervari, G., Wang, Y., Berger, S. L. & Lu, Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Su, X., Wellen, K. E. & Rabinowitz, J. D. Metabolic control of methylation and acetylation. Curr. Opin. Chem. Biol. 30, 52–60 (2016).

    CAS  PubMed  Google Scholar 

  156. 156.

    Campbell, S. L. & Wellen, K. E. Metabolic signaling to the nucleus in cancer. Mol. Cell 71, 398–408 (2018).

    CAS  PubMed  Google Scholar 

  157. 157.

    Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Balss, J. et al. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 116, 597–602 (2008).

    CAS  PubMed  Google Scholar 

  159. 159.

    Watanabe, T., Nobusawa, S., Kleihues, P. & Ohgaki, H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am. J. Pathol. 174, 1149–1153 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Klose, R. J. et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312–316 (2006).

    CAS  PubMed  Google Scholar 

  166. 166.

    Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243–269 (2006).

    CAS  PubMed  Google Scholar 

  167. 167.

    Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010). This study reports a link between IDH mutations and DNA methylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    CAS  PubMed  Google Scholar 

  170. 170.

    Koivunen, P. et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483, 484–488 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Popovici-Muller, J. et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med. Chem. Lett. 3, 850–855 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340, 622–626 (2013).

    CAS  PubMed  Google Scholar 

  174. 174.

    Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000). This study demonstrates the association of complex II mutations with hereditary paraganglioma.

    CAS  PubMed  Google Scholar 

  175. 175.

    Xiao, M. et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Cervera, A. M., Bayley, J. P., Devilee, P. & McCreath, K. J. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol. Cancer 8, 89 (2009).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    CAS  PubMed  Google Scholar 

  178. 178.

    Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Enns, G. M. et al. Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status. PLoS ONE 9, e100001 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. 180.

    Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

    CAS  PubMed  Google Scholar 

  181. 181.

    Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998).

    CAS  PubMed  Google Scholar 

  183. 183.

    Pantaleo, M. A. et al. SDHA loss-of-function mutations in KIT-PDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing. J. Natl Cancer Inst. 103, 983–987 (2011).

    CAS  PubMed  Google Scholar 

  184. 184.

    Janeway, K. A. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl Acad. Sci. USA 108, 314–318 (2011).

    CAS  PubMed  Google Scholar 

  185. 185.

    Miettinen, M. et al. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am. J. Surg. Pathol. 37, 234–240 (2013).

    PubMed  PubMed Central  Google Scholar 

  186. 186.

    Killian, J. K. et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 3, 648–657 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    CAS  PubMed  Google Scholar 

  188. 188.

    Castro-Vega, L. J. et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum. Mol. Genet. 23, 2440–2446 (2014).

    CAS  PubMed  Google Scholar 

  189. 189.

    Wiese, M. & Bannister, A. J. Two genomes, one cell: mitochondrial-nuclear coordination via epigenetic pathways. Mol. Metab. 38, 100942 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Feinberg, A. P., Koldobskiy, M. A. & Gondor, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284–299 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Smiraglia, D. J., Kulawiec, M., Bistulfi, G. L., Gupta, S. G. & Singh, K. K. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol. Ther. 7, 1182–1190 (2008).

    CAS  PubMed  Google Scholar 

  192. 192.

    Meierhofer, D. et al. Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism. Br. J. Cancer 94, 268–274 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Wallace, D. C. Mitochondria and cancer: Warburg address. Cold Spring Harb. Symp. Quant. Biol. 70, 363–374 (2005).

    CAS  PubMed  Google Scholar 

  194. 194.

    Joshi, S. et al. The genomic landscape of renal oncocytoma identifies a metabolic barrier to tumorigenesis. Cell Rep. 13, 1895–1908 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Lott, M. T. et al. mtDNA variation and analysis using MITOMAP and MITOMASTER. Curr. Protoc. Bioinforma. https://doi.org/10.1002/0471250953.bi0123s44 (2013).

    Article  Google Scholar 

  196. 196.

    Attimonelli, M. et al. HmtDB, a human mitochondrial genomic resource based on variability studies supporting population genetics and biomedical research. BMC Bioinformatics 6 (Suppl. 4), S4 (2005).

    PubMed  PubMed Central  Google Scholar 

  197. 197.

    Falk, M. J. et al. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol. Genet. Metab. 114, 388–396 (2015).

    CAS  PubMed  Google Scholar 

  198. 198.

    Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

    CAS  PubMed  Google Scholar 

  199. 199.

    Yao, Y. G., Kong, Q. P., Salas, A. & Bandelt, H. J. Pseudomitochondrial genome haunts disease studies. J. Med. Genet. 45, 769–772 (2008).

    CAS  PubMed  Google Scholar 

  200. 200.

    Schon, E. A., DiMauro, S. & Hirano, M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13, 878–890 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201.

    Guo, Y., Li, J., Li, C. I., Shyr, Y. & Samuels, D. C. MitoSeek: extracting mitochondria information and performing high-throughput mitochondria sequencing analysis. Bioinformatics 29, 1210–1211 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Calabrese, C. et al. MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing. Bioinformatics 30, 3115–3117 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Li, M., Schroeder, R., Ko, A. & Stoneking, M. Fidelity of capture-enrichment for mtDNA genome sequencing: influence of NUMTs. Nucleic Acids Res. 40, e137 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204.

    Gaidzik, V. I. et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J. Clin. Oncol. 30, 1350–1357 (2012).

    CAS  PubMed  Google Scholar 

  205. 205.

    Young, A. L., Baysal, B. E., Deb, A. & Young, W. F. Jr. Familial malignant catecholamine-secreting paraganglioma with prolonged survival associated with mutation in the succinate dehydrogenase B gene. J. Clin. Endocrinol. Metab. 87, 4101–4105 (2002).

    CAS  PubMed  Google Scholar 

  206. 206.

    Neumann, H. P. et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002).

    CAS  PubMed  Google Scholar 

  207. 207.

    Maher, E. R. & Eng, C. The pressure rises: update on the genetics of phaeochromocytoma. Hum. Mol. Genet. 11, 2347–2354 (2002).

    CAS  PubMed  Google Scholar 

  208. 208.

    Stratakis, C. A. & Carney, J. A. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J. Intern. Med. 266, 43–52 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. 209.

    Belinsky, M. G., Rink, L. & von Mehren, M. Succinate dehydrogenase deficiency in pediatric and adult gastrointestinal stromal tumors. Front. Oncol. 3, 117 (2013).

    PubMed  PubMed Central  Google Scholar 

  210. 210.

    Ricketts, C. J. et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J. Urol. 188, 2063–2071 (2012).

    CAS  PubMed  Google Scholar 

  211. 211.

    Schimke, R. N., Collins, D. L. & Stolle, C. A. Paraganglioma, neuroblastoma, and a SDHB mutation: Resolution of a 30-year-old mystery. Am. J. Med. Genet. A 152A, 1531–1535 (2010).

    PubMed  Google Scholar 

  212. 212.

    Grau, E. et al. There is no evidence that the SDHB gene is involved in neuroblastoma development. Oncol. Res. 15, 393–398 (2005).

    CAS  PubMed  Google Scholar 

  213. 213.

    Kim, S., Kim, D. H., Jung, W. H. & Koo, J. S. Succinate dehydrogenase expression in breast cancer. SpringerPlus 2, 299 (2013).

    PubMed  PubMed Central  Google Scholar 

  214. 214.

    Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    CAS  PubMed  Google Scholar 

  215. 215.

    Lehtonen, R. et al. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am. J. Pathol. 164, 17–22 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. 216.

    Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    CAS  PubMed  Google Scholar 

  217. 217.

    Wei, M. H. et al. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J. Med. Genet. 43, 18–27 (2006).

    CAS  PubMed  Google Scholar 

  218. 218.

    Douwes Dekker, P. B. et al. SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J. Pathol. 201, 480–486 (2003).

    CAS  PubMed  Google Scholar 

  219. 219.

    Sciacovelli, M. et al. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab. 17, 988–999 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. 220.

    Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Howard Hughes Medical Institute Research Fellowship awarded to P.K.K., and US National Institutes of Health grants NS021328, MH108592 and OD010944, and US Department of Defense grants W81XWH-16-1-0401v and W81XWH-21-1-0128 awarded to D.C.W.

Author information

Affiliations

Authors

Contributions

P.K.K. and D.C.W. contributed to all aspects of the article. L.N.S., S.Z. and M.T.L. researched the literature and contributed to the discussion of content and reviewing or editing of the article.

Corresponding author

Correspondence to Douglas C. Wallace.

Ethics declarations

Competing interests

D.C.W. has associations with Pano Therapeutics and Medical Excellence Capital. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks L. Greaves and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/

HmtDB: http://www.hmtdb.uniba.it

MITOMAP: https://mitomap.org

MSeqDR: https://MSeqDR.org

Glossary

Heteroplasmy

The simultaneous presence of two or more mitochondrial DNA genotypes in one cell.

Myoclonic epilepsy and ragged red fibre (MERRF) syndrome

A progressive disease including seizures, muscle spasm and weakness, lack of muscle control, abnormal sensations in limbs and fat growth (lipomas).

Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome

A heterogenous phenotype characterized by epilepsy or dementia, with characteristic elevated lactate levels in blood and cerebrospinal fluid, as well as episodes of selective loss of vision, sensation and speech.

Leigh syndrome

Also known as subacute necrotizing encephalopathy, a disease of typically infantile onset with psychomotor retardation, floppiness, brainstem dysfunction and abnormal body movements.

Homoplasmy

The presence of only one mitochondrial DNA genotype within one cell.

Leber hereditary optic neuropathy

A disease of early adulthood with rapidly progressive central loss of vision sequentially in both eyes.

Pearson syndrome

A disease of the newborn caused by mitochondrial DNA deletion presenting with anaemia, vomiting and failure to thrive.

Kearns–Sayre syndrome

A disease with typical onset before the age of 20 years with abnormal pigmentation of the retina and progressive abnormal eye movements, as well as cardiac conduction abnormalities and cerebellar dysfunction.

Chronic progressive external ophthalmoplegia

Slowly progressive weakness of extraocular eye muscles resulting in abnormal eye movements and lid lag.

Numtogenesis

The transfer of mitochondrial DNA sequences into the nucleus.

Transmitochondrial cybrid

A cell line in which the mitochondrial and mitochondrial DNA encompassed within an enucleated cytoplasmic fragment is fused to a recipient cell, resulting in a cytoplasmic hybrid (cybrid) with the nucleus of the recipient cell but the mitochondrial and mitochondrial DNA of the donor cell.

Oncocytomas

Benign tumours harbouring a large numbers of cytoplasmic mitochondria.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kopinski, P.K., Singh, L.N., Zhang, S. et al. Mitochondrial DNA variation and cancer. Nat Rev Cancer 21, 431–445 (2021). https://doi.org/10.1038/s41568-021-00358-w

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing