Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The language of chromatin modification in human cancers

Abstract

The genetic information of human cells is stored in the context of chromatin, which is subjected to DNA methylation and various histone modifications. Such a ‘language’ of chromatin modification constitutes a fundamental means of gene and (epi)genome regulation, underlying a myriad of cellular and developmental processes. In recent years, mounting evidence has demonstrated that miswriting, misreading or mis-erasing of the modification language embedded in chromatin represents a common, sometimes early and pivotal, event across a wide range of human cancers, contributing to oncogenesis through the induction of epigenetic, transcriptomic and phenotypic alterations. It is increasingly clear that cancer-related metabolic perturbations and oncohistone mutations also directly impact chromatin modification, thereby promoting cancerous transformation. Phase separation-based deregulation of chromatin modulators and chromatin structure is also emerging to be an important underpinning of tumorigenesis. Understanding the various molecular pathways that underscore a misregulated chromatin language in cancer, together with discovery and development of more effective drugs to target these chromatin-related vulnerabilities, will enhance treatment of human malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The misregulated ‘language’ of chromatin modification in cancer.
Fig. 2: Miswriting of chromatin modification promotes oncogenic development.
Fig. 3: Misinterpretation of histone modification in cancer.
Fig. 4: Mis-erasing of chromatin modification is critically involved in cancer initiation and progression.

Similar content being viewed by others

References

  1. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Ren, R., Horton, J. R., Zhang, X., Blumenthal, R. M. & Cheng, X. Detecting and interpreting DNA methylation marks. Curr. Opin. Struct. Biol. 53, 88–99 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carlson, S. M. & Gozani, O. Nonhistone lysine methylation in the regulation of cancer pathways. Cold Spring Harb. Perspect Med. 6, a026435 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Biggar, K. K. & Li, S. S. Non-histone protein methylation as a regulator of cellular signalling and function. Nat. Rev. Mol. Cell Biol. 16, 5–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Farria, A., Li, W. & Dent, S. Y. KATs in cancer: functions and therapies. Oncogene 34, 4901–4913 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, J. & Thompson, C. B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436–450 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gut, P. & Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature 502, 489–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suganuma, T. & Workman, J. L. Chromatin and metabolism. Annu. Rev. Biochem. 87, 27–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. M. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Bio. 18, 90–101 (2017).

    Article  CAS  Google Scholar 

  16. Li, Y. et al. Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain. Mol. Cell 62, 181–193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren, X. et al. Histone benzoylation serves as an epigenetic mark for DPF and YEATS family proteins. Nucleic Acids Res. 49, 114–126 (2021).

    Article  PubMed  Google Scholar 

  18. Nacev, B. A. et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567, 473–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phillips, R. E., Soshnev, A. A. & Allis, C. D. Epigenomic reprogramming as a driver of malignant glioma. Cancer Cell 38, 647–660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nacev, B. A. et al. The epigenomics of sarcoma. Nat. Rev. Cancer 20, 608–623 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yusufova, N. et al. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 589, 299–305 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Flaus, A., Downs, J. A. & Owen-Hughes, T. Histone isoforms and the oncohistone code. Curr. Opin. Genet. Dev. 67, 61–66 (2020).

    Article  PubMed  Google Scholar 

  23. Ghiraldini, F. G., Filipescu, D. & Bernstein, E. Solid tumours hijack the histone variant network. Nat Rev Cancer 21, 257–275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. St Pierre, R. & Kadoch, C. Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. Curr. Opin. Genet. Dev. 42, 56–67 (2017).

    Article  CAS  Google Scholar 

  26. Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect Med. 6, a026930 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491.e1413 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484 e421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Larson, A. G. et al. Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Donaldson-Collier, M. C. et al. EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes within chromatin domains. Nat. Genet. 51, 517–528 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Willcockson, M. A. et al. H1 histones control the epigenetic landscape by local chromatin compaction. Nature 589, 293–298 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, C. C. L. et al. Histone H3.3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. Cell 183, 1617–1633 e1622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mazor, T., Pankov, A., Song, J. S. & Costello, J. F. Intratumoral heterogeneity of the epigenome. Cancer Cell 29, 440–451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

    Article  PubMed  Google Scholar 

  37. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Easwaran, H., Tsai, H. C. & Baylin, S. B. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 54, 716–727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Husmann, D. & Gozani, O. Histone lysine methyltransferases in biology and disease. Nat. Struct. Mol. Biol. 26, 880–889 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jang, S. & Song, J. J. The big picture of chromatin biology by cryo-EM. Curr. Opin. Struct. Biol. 58, 76–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019). This paper reports a new histone acylation type and its relationship with metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Attar, N. & Kurdistani, S. K. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harb. Perspect Med. 7, a026534 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Di Martile, M., Del Bufalo, D. & Trisciuoglio, D. The multifaceted role of lysine acetylation in cancer: prognostic biomarker and therapeutic target. Oncotarget 7, 55789–55810 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sheikh, B. N. & Akhtar, A. The many lives of KATs – detectors, integrators and modulators of the cellular environment. Nat. Rev. Genet. 20, 7–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Valerio, D. G. et al. Histone acetyltransferase activity of MOF is required for MLL-AF9 leukemogenesis. Cancer Res. 77, 1753–1762 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. MacPherson, L. et al. HBO1 is required for the maintenance of leukaemia stem cells. Nature 577, 266–270 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meyer, S. N. et al. Unique and shared epigenetic programs of the CREBBP and EP300 acetyltransferases in germinal center B cells reveal targetable dependencies in lymphoma. Immunity 51, 535–547 e539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, J. et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 7, 322–337 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jiang, Y. et al. CREBBP inactivation promotes the development of HDAC3-dependent lymphomas. Cancer Discov. 7, 38–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Ramirez, I. et al. Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice. Blood 129, 2645–2656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hashwah, H. et al. Inactivation of CREBBP expands the germinal center B cell compartment, down-regulates MHCII expression and promotes DLBCL growth. Proc. Natl Acad. Sci. USA 114, 9701–9706 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mondello, P. et al. Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. Cancer Discov. 10, 440–459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mlynarczyk, C., Fontan, L. & Melnick, A. Germinal center-derived lymphomas: the darkest side of humoral immunity. Immunol. Rev. 288, 214–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bakhshi, T. J. & Georgel, P. T. Genetic and epigenetic determinants of diffuse large B-cell lymphoma. Blood Cancer J. 10, 123 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sze, C. C. & Shilatifard, A. MLL3/MLL4/COMPASS family on epigenetic regulation of enhancer function and cancer. Cold Spring Harb. Perspect Med. 6, a026427 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Flinn, E. M. et al. Recruitment of Gcn5-containing complexes during c-Myc-dependent gene activation. Structure and function aspects. J. Biol. Chem. 277, 23399–23406 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, X., Tesfai, J., Evrard, Y. A., Dent, S. Y. & Martinez, E. c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation. J. Biol. Chem. 278, 20405–20412 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Patel, J. H. et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol. Cell Biol. 24, 10826–10834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Farria, A. T. et al. Transcriptional activation of MYC-induced genes by GCN5 promotes B-cell lymphomagenesis. Cancer Res. 80, 5543–5553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Yokoyama, A. & Cleary, M. L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, J. et al. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 482, 542–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13, 713–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Li, Y. et al. Structural basis for activity regulation of MLL family methyltransferases. Nature 530, 447–452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xue, H. et al. Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature 573, 445–449 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Park, S. H. et al. Cryo-EM structure of the human MLL1 core complex bound to the nucleosome. Nat. Commun. 10, 5540 (2019). This study, along with Xue et al., reveals the structural basis of MLL binding to the nucleosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Slany, R. K. MLL fusion proteins and transcriptional control. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194503 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Rao, R. C. & Dou, Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer 15, 334–346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meyer, C. et al. The MLL recombinome of acute leukemias in 2017. Leukemia 32, 273–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Milne, T. A. et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell 38, 853–863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dorrance, A. M. et al. The MLL partial tandem duplication: differential, tissue-specific activity in the presence or absence of the wild-type allele. Blood 112, 2508–2511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dorrance, A. M. et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J. Clin. Invest. 116, 2707–2716 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alam, H. et al. KMT2D deficiency impairs super-enhancers to confer a glycolytic vulnerability in lung cancer. Cancer Cell 37, 599–617 e597 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, J. et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 21, 1190–1198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ortega-Molina, A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med. 21, 1199–1208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maitituoheti, M. et al. Enhancer reprogramming confers dependence on glycolysis and IGF signaling in KMT2D mutant melanoma. Cell Rep. 33, 108293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dhar, S. S. et al. MLL4 is required to maintain broad H3K4me3 peaks and super-enhancers at tumor suppressor genes. Mol. Cell 70, 825–841 e826 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, L. et al. Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy. Nat. Med. 24, 758–769 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tran, N., Broun, A. & Ge, K. Lysine demethylase KDM6A in differentiation, development, and cancer. Mol. Cell Biol. 40, e00341-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Xu, B., Konze, K. D., Jin, J. & Wang, G. G. Targeting EZH2 and PRC2 dependence as novel anticancer therapy. Exp. Hematol. 43, 698–712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yu, J. R., Lee, C. H., Oksuz, O., Stafford, J. M. & Reinberg, D. PRC2 is high maintenance. Genes Dev. 33, 903–935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sneeringer, C. J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl Acad. Sci. USA 107, 20980–20985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Souroullas, G. P. et al. An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat. Med. 22, 632–640 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Caganova, M. et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J. Clin. Invest. 123, 5009–5022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Velichutina, I. et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 116, 5247–5255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Burr, M. L. et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36, 385–401 e388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beguelin, W. et al. Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response. Cancer Cell 37, 655–673 e611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, W. et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46, 1227–1232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. De Raedt, T. et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 514, 247–251 (2014).

    Article  PubMed  Google Scholar 

  101. Gu, Z. et al. Loss of EZH2 reprograms BCAA metabolism to drive leukemic transformation. Cancer Discov. 9, 1228–1247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiao, L. & Liu, X. Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350, aac4383 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Justin, N. et al. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat. Commun. 7, 11316 (2016). This study, along with Jiao & Liu, provides the structural basis of core PRC2 complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee, C. H. et al. Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol. Cell 70, 422–434 e426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ueda, T. et al. Propagation of trimethylated H3K27 regulated by polycomb protein EED is required for embryogenesis, hematopoietic maintenance, and tumor suppression. Proc. Natl Acad. Sci. USA 113, 10370–10375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, J., Ahn, J. H. & Wang, G. G. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol. Life Sci. 76, 2899–2916 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Bennett, R. L., Swaroop, A., Troche, C. & Licht, J. D. The role of nuclear receptor-binding SET domain family histone lysine methyltransferases in cancer. Cold Spring Harb. Perspect Med. 7, a026708 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jaffe, J. D. et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat. Genet. 45, 1386–1391 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Oyer, J. A. et al. Point mutation E1099K in MMSET/NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies. Leukemia 28, 198–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, G. G., Cai, L., Pasillas, M. P. & Kamps, M. P. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat. Cell Biol. 9, 804–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Papillon-Cavanagh, S. et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat. Genet. 49, 180–185 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brennan, K. et al. NSD1 inactivation defines an immune cold, DNA hypomethylated subtype in squamous cell carcinoma. Sci. Rep. 7, 17064 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zheng, Y. et al. Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc. Natl Acad. Sci. USA 109, 13549–13554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Miyazaki, H. et al. Ash1l methylates Lys36 of histone H3 independently of transcriptional elongation to counteract polycomb silencing. PLoS Genet. 9, e1003897 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Popovic, R. et al. Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation. PLoS Genet. 10, e1004566 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lu, C. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fang, D. et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352, 1344–1348 (2016). This paper, along with Lu et al., reports the functional roles of oncohistone H3K36M in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shirane, K., Miura, F., Ito, T. & Lorincz, M. C. NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat. Genet. 52, 1088–1098 (2020).

    Article  PubMed  Google Scholar 

  120. Xu, W. et al. DNMT3A reads and connects histone H3K36me2 to DNA methylation. Protein Cell 11, 150–154 (2020).

    Article  PubMed  Google Scholar 

  121. Swaroop, A. et al. An activating mutation of the NSD2 histone methyltransferase drives oncogenic reprogramming in acute lymphocytic leukemia. Oncogene 38, 671–686 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Li, W. et al. Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases. Nature 590, 498–503 (2021). This study illustrates the structural basis by which NSD family proteins catalyse nucleosomal H3K36me.

    Article  CAS  PubMed  Google Scholar 

  123. Yuan, G. et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 590, 504–508 (2021). This study illustrates the roles of NSD3 GOF mutation during development of lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cho, M. H. et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat. Commun. 6, 7821 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, C. W. et al. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat. Med. 21, 335–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vlaming, H. et al. Conserved crosstalk between histone deacetylation and H3K79 methylation generates DOT1L-dose dependency in HDAC1-deficient thymic lymphoma. EMBO J. 38, e101564 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang, H. et al. Structural and functional analysis of the DOT1L-AF10 complex reveals mechanistic insights into MLL-AF10-associated leukemogenesis. Genes Dev. 32, 341–346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jang, S. et al. Structural basis of recognition and destabilization of the histone H2B ubiquitinated nucleosome by the DOT1L histone H3 Lys79 methyltransferase. Genes Dev. 33, 620–625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Valencia-Sanchez, M. I. et al. Structural basis of Dot1L stimulation by histone H2B lysine 120 ubiquitination. Mol. Cell 74, 1010–1019 e1016 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Worden, E. J., Hoffmann, N. A., Hicks, C. W. & Wolberger, C. Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L. Cell 176, 1490–1501 e1412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Anderson, C. J. et al. Structural basis for recognition of ubiquitylated nucleosome by Dot1L methyltransferase. Cell Rep. 26, 1681–1690 e1685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Valencia-Sanchez, M. I. et al. Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation. Science 371, eabc6663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Song, X. et al. A higher-order configuration of the heterodimeric DOT1L-AF10 coiled-coil domains potentiates their leukemogenenic activity. Proc. Natl Acad. Sci. USA 116, 19917–19923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal. Transduct. Target. Ther. 4, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Nishiyama, A. et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502, 249–253 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Mudbhary, R. et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 25, 196–209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kong, X. et al. Defining UHRF1 domains that support maintenance of human colon cancer DNA methylation and oncogenic properties. Cancer Cell 35, 633–648 e637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bronner, C., Alhosin, M., Hamiche, A. & Mousli, M. Coordinated dialogue between UHRF1 and DNMT1 to ensure faithful inheritance of methylated DNA patterns. Genes (Basel) 10, 65 (2019).

    Article  Google Scholar 

  139. Zhang, Z. M. et al. An allosteric interaction links USP7 to deubiquitination and chromatin targeting of UHRF1. Cell Rep. 12, 1400–1406 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang, L., Rau, R. & Goodell, M. A. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15, 152–165 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Brunetti, L., Gundry, M. C. & Goodell, M. A. DNMT3A in leukemia. Cold Spring Harb. Perspect Med. 7, a030320 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kaner, J. et al. Clonal hematopoiesis and premalignant diseases. Cold Spring Harb. Perspect Med. 10, a035675 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lu, R. & Wang, G. G. Pharmacologic targeting of chromatin modulators as therapeutics of acute myeloid leukemia. Front. Oncol. 7, 241 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Russler-Germain, D. A. et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25, 442–454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang, L. et al. DNMT3A loss drives enhancer hypomethylation in FLT3-ITD-associated leukemias. Cancer Cell 30, 363–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Lu, R. et al. Epigenetic perturbations by Arg882-mutated DNMT3A potentiate aberrant stem cell gene-expression program and acute leukemia development. Cancer Cell 30, 92–107 (2016). This study, along with Russler-Germain et al., illustrates the mechanism by which the DNMT3A-R882H mutation contributes to the development of acute leukaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Meyer, S. E. et al. DNMT3A haploinsufficiency transforms FLT3ITD myeloproliferative disease into a rapid, spontaneous, and fully penetrant acute myeloid leukemia. Cancer Discov. 6, 501–515 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Guryanova, O. A. et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat. Med. 22, 1488–1495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ferreira, H. J. et al. DNMT3A mutations mediate the epigenetic reactivation of the leukemogenic factor MEIS1 in acute myeloid leukemia. Oncogene 36, 4233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lu, R. et al. A model system for studying the DNMT3A hotspot mutation (DNMT3A(R882)) demonstrates a causal relationship between its dominant-negative effect and leukemogenesis. Cancer Res. 79, 3583–3594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Uckelmann, H. J. et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science 367, 586–590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Xu, T. H. et al. Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B. Nature 586, 151–155 (2020). This study provides the structural basis of DNMT3A in complex with the substrate nucleosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang, Z. M. et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature 554, 387–391 (2018). This study provides the structural basis of DNMT3A in complex with substrate duplex DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gao, L. et al. Comprehensive structure–function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat. Commun. 11, 3355 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Anteneh, H., Fang, J. & Song, J. Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation. Nat. Commun. 11, 2294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Norvil, A. B. et al. Dnmt3b methylates DNA by a noncooperative mechanism, and its activity is unaffected by manipulations at the predicted dimer interface. Biochemistry 57, 4312–4324 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Emperle, M. et al. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res. 47, 11355–11367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Norvil, A. B. et al. The acute myeloid leukemia variant DNMT3A Arg882His is a DNMT3B-like enzyme. Nucleic acids Res. 48, 3761–3775 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zaware, N. & Zhou, M. M. Bromodomain biology and drug discovery. Nat. Struct. Mol. Biol. 26, 870–879 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zeng, L. et al. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466, 258–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, Y. et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159, 558–571 (2014). This paper identifies the YEATS domain as a new reader of histone acetylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wan, L. et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543, 265–269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature 543, 270–274 (2017). This paper, along with Wan et al., illustrates the functional roles of ENL YEATS domain in leukaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li, X. et al. Structure-guided development of YEATS domain inhibitors by targeting pi-pi-pi stacking. Nat. Chem. Biol. 14, 1140–1149 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Perlman, E. J. et al. MLLT1 YEATS domain mutations in clinically distinctive favourable histology Wilms tumours. Nat. Commun. 6, 10013 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Gadd, S. et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 49, 1487–1494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wan, L. et al. Impaired cell fate through gain-of-function mutations in a chromatin reader. Nature 577, 121–126 (2020). This paper reports that GOF mutations of ENL YEATS domain result in enhanced self-association and contribute to pathogenesis of Wilms tumour.

    Article  CAS  PubMed  Google Scholar 

  170. Guo, C. et al. ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation. Sci. Adv. 6, eaay4858 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mi, W. et al. YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer. Nat. Commun. 8, 1088 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Hsu, C. C. et al. Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer. Genes Dev. 32, 58–69 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Andrews, F. H. et al. The Taf14 YEATS domain is a reader of histone crotonylation. Nat. Chem. Biol. 12, 396–398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Klein, B. J. et al. Structural insights into the pi-pi-pi stacking mechanism and DNA-binding activity of the YEATS domain. Nat. Commun. 9, 4574 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhang, Q. et al. Structural insights into histone crotonyl-lysine recognition by the AF9 YEATS domain. Structure 24, 1606–1612 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sabari, B. R. et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell 58, 203–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fan, H. et al. BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis. Nat. Genet. 52, 1384–1396 (2020). This paper reports the BAH domain within BAHCC1 as a new H3K27me3 reader in mammalian cells, significantly contributing to Polycomb gene silencing and oncogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wang, H., Farnung, L., Dienemann, C. & Cramer, P. Structure of H3K36-methylated nucleosome-PWWP complex reveals multivalent cross-gyre binding. Nat. Struct. Mol. Biol. 27, 8–13 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Dukatz, M. et al. H3K36me2/3 binding and DNA binding of the DNA methyltransferase DNMT3A PWWP domain both contribute to its chromatin interaction. J. Mol. Biol. 431, 5063–5074 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Heyn, P. et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat. Genet. 51, 96–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Wen, H. et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508, 263–268 (2014). This paper reports ZMYND11 as a histone variant H3.3K36me3-specific reader and its roles in tumour suppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Guo, R. et al. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol. Cell 56, 298–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Armache, A. et al. Histone H3.3 phosphorylation amplifies stimulation-induced transcription. Nature 583, 852–857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. De Braekeleer, E. et al. Recurrent translocation (10;17)(p15;q21) in acute poorly differentiated myeloid leukemia likely results in ZMYND11-MBTD1 fusion. Leuk. Lymphoma 55, 1189–1190 (2014).

    Article  PubMed  Google Scholar 

  187. Li, J. et al. ZMYND11-MBTD1 induces leukemogenesis through hijacking NuA4/TIP60 acetyltransferase complex and a PWWP-mediated chromatin association mechanism. Nat. Commun. 12, 1045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Li, F. et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153, 590–600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Daugaard, M. et al. LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat. Struct. Mol. Biol. 19, 803–810 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Wang, G. G. et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459, 847–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gough, S. M. et al. NUP98-PHF23 is a chromatin-modifying oncoprotein that causes a wide array of leukemias sensitive to inhibition of PHD histone reader function. Cancer Discov. 4, 564–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhang, Y. et al. Mechanistic insights into chromatin targeting by leukemic NUP98-PHF23 fusion. Nat. Commun. 11, 3339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. de Rooij, J. D. et al. NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia 27, 2280–2288 (2013).

    Article  PubMed  Google Scholar 

  194. Cardin, S. et al. Human models of NUP98-KDM5A megakaryocytic leukemia in mice contribute to uncovering new biomarkers and therapeutic vulnerabilities. Blood Adv. 3, 3307–3321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Roussy, M. et al. NUP98-BPTF gene fusion identified in primary refractory acute megakaryoblastic leukemia of infancy. Genes Chromosomes Cancer 57, 311–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Klein, B. J. et al. PHF20 readers link methylation of histone H3K4 and p53 with H4K16 acetylation. Cell Rep. 17, 1158–1170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Li, N. et al. ZMYND8 reads the dual histone mark H3K4me1-H3K14ac to antagonize the expression of metastasis-linked genes. Mol. Cell 63, 470–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Shen, H. et al. Suppression of enhancer overactivation by a RACK7-histone demethylase complex. Cell 165, 331–342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jiao, F. et al. RACK7 recognizes H3.3G34R mutation to suppress expression of MHC class II complex components and their delivery pathway in pediatric glioblastoma. Sci. Adv. 6, eaba2113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Qiu, Y. et al. Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription. Genes Dev. 26, 1376–1391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Klein, B. J. et al. Histone H3K23-specific acetylation by MORF is coupled to H3K14 acylation. Nat. Commun. 10, 4724 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Xiong, X. et al. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nat. Chem. Biol. 12, 1111–1118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Vasileiou, G. et al. Mutations in the BAF-complex subunit DPF2 are associated with Coffin–Siris syndrome. Am. J. Hum. Genet. 102, 468–479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Huber, F. M. et al. Histone-binding of DPF2 mediates its repressive role in myeloid differentiation. Proc. Natl Acad. Sci. USA 114, 6016–6021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect Med. 6, a026831 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Klose, R. J., Kallin, E. M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. 7, 715–727 (2006).

    Article  CAS  Google Scholar 

  207. Losman, J. A., Koivunen, P. & Kaelin, W. G. Jr. 2-Oxoglutarate-dependent dioxygenases in cancer. Nat. Rev. Cancer 20, 710–726 (2020).

    Article  PubMed  Google Scholar 

  208. Shi, Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet. 8, 829–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Niu, X. et al. The von Hippel–Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 31, 776–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Wong, S. H. et al. The H3K4-methyl epigenome regulates leukemia stem cell oncogenic potential. Cancer Cell 28, 198–209 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wu, L. et al. KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biol. 16, e2006134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Hinohara, K. et al. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell 34, 939–953 e939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Vinogradova, M. et al. An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat. Chem. Biol. 12, 531–538 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell 23, 811–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Ntziachristos, P. et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514, 513–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Pan, M. et al. Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090–1101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  218. Tommasini-Ghelfi, S. et al. Cancer-associated mutation and beyond: the emerging biology of isocitrate dehydrogenases in human disease. Sci. Adv. 5, eaaw4543 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Ye, D., Guan, K. L. & Xiong, Y. Metabolism, activity, and targeting of D- and L-2-hydroxyglutarates. Trends Cancer 4, 151–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Intlekofer, A. M. et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Huang, Y. & Rao, A. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet. 30, 464–474 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hu, L. et al. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155, 1545–1555 (2013).

    Article  CAS  PubMed  Google Scholar 

  230. Ko, M. et al. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497, 122–126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Thienpont, B. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537, 63–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Cimmino, L. et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170, 1079–1095 e1020 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Yue, X. & Rao, A. TET family dioxygenases and the TET activator vitamin C in immune responses and cancer. Blood 136, 1394–1401 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Wu, T. P. et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Koziol, M. J. et al. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat. Struct. Mol. Biol. 23, 24–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Schiffers, S. et al. Quantitative LC-MS provides no evidence for m6 dA or m4 dC in the genome of mouse embryonic stem cells and tissues. Angew. Chem. Int. Ed. Engl. 56, 11268–11271 (2017).

    Article  CAS  PubMed  Google Scholar 

  239. Xie, Q. et al. N(6)-methyladenine DNA modification in glioblastoma. Cell 175, 1228–1243 e1220 (2018). This paper links abnormal levels of DNA N6mA modification to glioblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Xiao, C. L. et al. N6-methyladenine DNA modification in the human genome. Mol. Cell 71, 306–318 e307 (2018).

    Article  CAS  PubMed  Google Scholar 

  241. Hao, Z. et al. N6-deoxyadenosine methylation in mammalian mitochondrial DNA. Mol. Cell 78, 382–395 e388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Zhang, M. et al. Mammalian ALKBH1 serves as an N6-mA demethylase of unpairing DNA. Cell Res. 30, 197–210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Tian, L. F. et al. Structural basis of nucleic acid recognition and 6mA demethylation by human ALKBH1. Cell Res. 30, 272–275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Li, Z. et al. N6-methyladenine in DNA antagonizes SATB1 in early development. Nature 583, 625–630 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Yang, X. et al. m6A promotes R-loop formation to facilitate transcription termination. Cell Res. 29, 1035–1038 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Abakir, A. et al. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat. Genet. 52, 48–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  247. Woodcock, C. B. et al. Human MettL3-MettL14 complex is a sequence-specific DNA adenine methyltransferase active on single-strand and unpaired DNA in vitro. Cell Discov. 5, 63 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Woodcock, C. B. et al. Biochemical and structural basis for YTH domain of human YTHDC1 binding to methylated adenine in DNA. Nucleic Acids Res. 48, 10329–10341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Douvlataniotis, K., Bensberg, M., Lentini, A., Gylemo, B. & Nestor, C. E. No evidence for DNA N6-methyladenine in mammals. Sci. Adv. 6, eaay3335 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Mohammad, H. P., Barbash, O. & Creasy, C. L. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat. Med. 25, 403–418 (2019).

    Article  CAS  PubMed  Google Scholar 

  251. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Vogelmann, A., Robaa, D., Sippl, W. & Jung, M. Proteolysis targeting chimeras (PROTACs) for epigenetics research. Curr. Opin. Chem. Biol. 57, 8–16 (2020).

    Article  CAS  PubMed  Google Scholar 

  253. Pisa, R. & Kapoor, T. M. Chemical strategies to overcome resistance against targeted anticancer therapeutics. Nat. Chem. Biol. 16, 817–825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Winter, G. E. et al. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Yang, K. et al. Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg. Med. Chem. Lett. 28, 2493–2497 (2018).

    Article  CAS  PubMed  Google Scholar 

  256. Ma, A. et al. Discovery of a first-in-class EZH2 selective degrader. Nat. Chem. Biol. 16, 214–222 (2020).

    Article  CAS  PubMed  Google Scholar 

  257. Ludwig, C. H. & Bintu, L. Mapping chromatin modifications at the single cell level. Development 146, dev170217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Shema, E., Bernstein, B. E. & Buenrostro, J. D. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat. Genet. 51, 19–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  259. Yang, L. et al. Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci. Transl. Med. 9, eaal1645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Sun, C. et al. BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency. Cancer Cell 33, 401–416 e408 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Hogg, S. J., Beavis, P. A., Dawson, M. A. & Johnstone, R. W. Targeting the epigenetic regulation of antitumour immunity. Nat. Rev. Drug Discov. 19, 776–800 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Huang, H., Sabari, B. R., Garcia, B. A., Allis, C. D. & Zhao, Y. SnapShot: histone modifications. Cell 159, 458–458 e451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Weinberg, D. N., Allis, C. D. & Lu, C. Oncogenic mechanisms of histone H3 mutations. Cold Spring Harb. Perspect Med. 7, a026443 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  264. McGinty, R. K. & Tan, S. Recognition of the nucleosome by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 37, 54–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Lohr, J. G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl Acad. Sci. USA 109, 3879–3884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013). This paper illustrates an oncogenic action of oncohistone H3K27M in paediatric glioblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Jain, S. U. et al. Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proc. Natl Acad. Sci. USA 117, 27354–27364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Huang, T. Y. et al. Effects of H3.3G34V mutation on genomic H3K36 and H3K27 methylation patterns in isogenic pediatric glioma cells. Acta Neuropathol. Commun. 8, 219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Shi, L., Shi, J., Shi, X., Li, W. & Wen, H. Histone H3.3 G34 mutations alter histone H3K36 and H3K27 methylation in cis. J. Mol. Biol. 430, 1562–1565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Chan, K. M. et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Bender, S. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24, 660–672 (2013).

    Article  CAS  PubMed  Google Scholar 

  272. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 e1816 (2018).

    Article  CAS  PubMed  Google Scholar 

  273. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659 e646 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (R01-CA215284 and R01-CA218600 to G.G.W.). This research was also supported by a NIH grant (P01CA196539 to C.D.A.) and funds of St. Jude Children’s Research Hospital and The Rockefeller University (to C.D.A). G.G.W. is an American Cancer Society Research Scholar and a Leukemia and Lymphoma Society Scholar. The authors apologize to colleagues whose works are not cited in this Review owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

S.Z. and G.G.W. researched data for the article and wrote the article. All authors contributed to discussion of the content and review and editing of the manuscript before submission.

Corresponding author

Correspondence to Gang Greg Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks Y. Dou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Polycomb repressive complex 2

(PRC2). Complex consisting of core subunits EZH2 or EZH1, EED, SUZ12 and RbAp46 or RbAp48, which catalyses the methylation of histone H3K27.

SWI/SNF chromatin remodelling complex

Comprising approximately 15 subunits, uses the energy from ATP hydrolysis to mobilize nucleosomes.

Germinal centre (GC) B cells

B cells residing in the GC sites of secondary lymphoid organs such as spleen and lymph nodes where B cells proliferate, differentiate and mutate the antibody-encoding genes (through somatic hypermutation) to generate antibodies of higher affinity during the immune response.

Acylation

A chemical process of transferring an acyl group to the substrate. It includes but is not limited to acetylation.

Superenhancers

Chromatin regions that comprise multiple enhancers and are enriched in transcription factors and mediators.

De novo DNA methylation

DNA methylation occurring at previously unmethylated sites.

Acidic patch

A negatively charged region in nucleosome, formed by six residues from H2A and H2B.

CpG islands

Genomic regions (typically 300–3,000 bp) that are highly enriched for CpG dinucleotides and usually lack DNA methylation.

Maintenance DNA methylation

DNA methylation that is maintained based on the existing template DNA methylation.

Clonal haematopoiesis

A phenomenon of the expansion of a clonal blood cell population with the same genetic mutation.

Hypomorphic

Describes mutation that causes a partial loss of gene function (such as reduced enzymatic activity).

Intrinsically disordered regions

Flexible linkers or loops within a protein that form no secondary structure and often mediate phase separation.

π-π-π stacking

The noncovalent interaction between aromatic rings.

Oncometabolite

A metabolite that is significantly elevated in quantity in tumours.

Dioxygenase

Oxidoreductase enzyme that incorporates both atoms of O2 into the substrate.

R-loops

Three-stranded nucleic acid structures formed by one DNA–RNA duplex and one associated non-template single-strand DNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Allis, C.D. & Wang, G.G. The language of chromatin modification in human cancers. Nat Rev Cancer 21, 413–430 (2021). https://doi.org/10.1038/s41568-021-00357-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00357-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing