Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy in tumour immunity and therapy

Abstract

Autophagy is a regulated mechanism that removes unnecessary or dysfunctional cellular components and recycles metabolic substrates. In response to stress signals in the tumour microenvironment, the autophagy pathway is altered in tumour cells and immune cells — thereby differentially affecting tumour progression, immunity and therapy. In this Review, we summarize our current understanding of the immunologically associated roles and modes of action of the autophagy pathway in cancer progression and therapy, and discuss potential approaches targeting autophagy to enhance antitumour immunity and improve the efficacy of current cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The machinery of canonical and non-canonical autophagy.
Fig. 2: Impact of tumour autonomous autophagy on immunity.
Fig. 3: Autophagy in immune cells in the tumour microenvironment.
Fig. 4: Targeting autophagy for tumour immunotherapy.

Similar content being viewed by others

References

  1. Morishita, H. & Mizushima, N. Diverse cellular roles of autophagy. Annu. Rev. Cell Dev. Biol. 35, 453–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Amaravadi, R. K., Kimmelman, A. C. & Debnath, J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167–1181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011). This detailed review discusses the protein and membrane interactions required for autophagosome formation.

    Article  CAS  PubMed  Google Scholar 

  4. Marino, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Galluzzi, L. & Green, D. R. Autophagy-independent functions of the autophagy machinery. Cell 177, 1682–1699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heckmann, B. L. et al. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 178, 536–551.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005). This comprehensive review discusses the interaction between host and tumour cells that creates an immunosuppressive TME, and describes how to target this microenvironment for anticancer therapy.

    Article  CAS  PubMed  Google Scholar 

  9. Sanmamed, M. F. & Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175, 313–326 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl Med. 8, 328rv4 (2016). This detailed review discusses the development and clinical application of ICB targeting the PDL1 and PD1 pathway in cancer therapy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Clarke, A. J. & Simon, A. K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 19, 170–183 (2019). This detailed review discusses the role of autophagy in the modulation of immune cell development and differentiation.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, A. et al. Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov. 8, 276–287 (2018). This article demonstrates that autophagy is critical for pancreatic tumour maintenance through tumour cell-autonomous and non-autonomous mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levy, J. et al. Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat. Cell Biol. 17, 1062–1073 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020). This article demonstrates that autophagy enables pancreatic cancer cells to evade an immune response through degrading MHC class I. Autophagy inhibition reverses this immune evasion in animal models of pancreatic cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bian, Y. et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585, 277–282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kimmelman, A. C. & White, E. Autophagy and tumor metabolism. Cell Metab. 25, 1037–1043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290–303 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, Y. L. et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 72, 1773–1783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Conza, G. et al. The mTOR and PP2A pathways regulate PHD2 phosphorylation to fine-tune HIF1α levels and colorectal cancer cell survival under hypoxia. Cell Rep. 18, 1699–1712 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mazure, N. M. & Pouyssegur, J. Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy 5, 868–869 (2009).

    Article  PubMed  Google Scholar 

  26. Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Poillet-Perez, L., Despouy, G., Delage-Mourroux, R. & Boyer-Guittaut, M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 4, 184–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song, C. et al. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy. PLoS ONE 12, e0171940 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Taguchi, K. et al. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc. Natl Acad. Sci. USA 109, 13561–13566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Ma, Y., Galluzzi, L., Zitvogel, L. & Kroemer, G. Autophagy and cellular immune responses. Immunity 39, 211–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Shi, C. S. & Kehrl, J. H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3, ra42 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhan, Z. et al. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 10, 257–268 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896–910 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang, D. et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29, 5299–5310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang, R. et al. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ. 17, 666–676 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Katheder, N. S. et al. Microenvironmental autophagy promotes tumour growth. Nature 541, 417–420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kiyono, K. et al. Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res. 69, 8844–8852 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, C. et al. TGF-β2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion. J. Exp. Clin. Cancer Res. 36, 162 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Schmeisser, H. et al. Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9, 683–696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tu, S. P. et al. IFN-γ inhibits gastric carcinogenesis by inducing epithelial cell autophagy and T-cell apoptosis. Cancer Res. 71, 4247–4259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strohecker, A. M. & White, E. Targeting mitochondrial metabolism by inhibiting autophagy in BRAF-driven cancers. Cancer Discov. 4, 766–772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shibutani, S. T., Saitoh, T., Nowag, H., Munz, C. & Yoshimori, T. Autophagy and autophagy-related proteins in the immune system. Nat. Immunol. 16, 1014–1024 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Li, X., He, S. & Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 19, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lebovitz, C. B. et al. Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy 11, 1668–1687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kang, M. R. et al. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J. Pathol. 217, 702–706 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. An, C. H., Kim, M. S., Yoo, N. J., Park, S. W. & Lee, S. H. Mutational and expressional analyses of ATG5, an autophagy-related gene, in gastrointestinal cancers. Pathol. Res. Pract. 207, 433–437 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905–913 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosenfeldt, M. T. et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Rao, S. et al. A dual role for autophagy in a murine model of lung cancer. Nat. Commun. 5, 3056 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Xie, X., Koh, J. Y., Price, S., White, E. & Mehnert, J. M. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov. 5, 410–423 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Strohecker, A. M. et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 3, 1272–1285 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Duran, A. et al. The signaling adaptor p62 is an important NF-κB mediator in tumorigenesis. Cancer Cell 13, 343–354 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kwon, Y., Kim, J. W., Jeoung, J. A., Kim, M. S. & Kang, C. Autophagy is pro-senescence when seen in close-up, but anti-senescence in long-shot. Mol. Cell 40, 607–612 (2017).

    CAS  Google Scholar 

  58. Aita, V. M. et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59, 59–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999). This study identifies that Beclin 1 functions as a putative tumour suppressor.

    Article  CAS  PubMed  Google Scholar 

  60. Garcia-Fernandez, M. et al. Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of ATG5. Autophagy 12, 1776–1790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gorgulu, K. et al. Levels of the autophagy-related 5 protein affect progression and metastasis of pancreatic tumors in mice. Gastroenterology 156, 203–217.e20 (2019).

    Article  PubMed  CAS  Google Scholar 

  62. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murthy, A. et al. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506, 456–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Lassen, K. G. et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc. Natl Acad. Sci. USA 111, 7741–7746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eng, C. H. et al. Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc. Natl Acad. Sci. USA 113, 182–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Loi, M. et al. Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8+ T cell responses. Cell Rep. 15, 1076–1087 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Parekh, V. V. et al. Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8α+ dendritic cells. Proc. Natl Acad. Sci. USA 114, E6371–E6380 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gettinger, S. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grasso, C. S. et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 8, 730–749 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pommier, A. et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 360, eaao4908 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Poillet-Perez, L. et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat. Cancer 1, 923–934 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Perera, R. M. et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cruz, F. M., Colbert, J. D., Merino, E., Kriegsman, B. A. & Rock, K. L. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu. Rev. Immunol. 35, 149–176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, Y. et al. Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin. Cancer Res. 17, 7047–7057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, Y. et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 68, 6889–6895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ziegler, P. K. et al. Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis. Cell 174, 88–101.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wei, H. et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 25, 1510–1527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mgrditchian, T. et al. Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proc. Natl Acad. Sci. USA 114, E9271–E9279 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baginska, J. et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl Acad. Sci. USA 110, 17450–17455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Noman, M. Z. et al. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res. 71, 5976–5986 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020). This article demonstrates that the tumour cell-intrinsic autophagy pathway protects against CTL killing based on functional genomic screens using CRISPR–Cas9 approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Friedmann Angeli, J. P., Krysko, D. V. & Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Hou, W. et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021–1032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lang, X. et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9, 562–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Xia, H. et al. Suppression of FIP200 and autophagy by tumor-derived lactate promotes naive T cell apoptosis and affects tumor immunity. Sci. Immunol. 2, eaan4631 (2017). This article demonstrates that tumour-derived lactate suppresses FIP200 expression and autophagy, thereby causing T cell apoptosis and attenuating antitumour immunity.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Paul, S., Kashyap, A. K., Jia, W., He, Y. W. & Schaefer, B. C. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. Immunity 36, 947–958 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, G. et al. Autophagy-related protein PIK3C3/VPS34 controls T cell metabolism and function. Autophagy https://doi.org/10.1080/15548627.2020.1752979 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hubbard, V. M. et al. Macroautophagy regulates energy metabolism during effector T cell activation. J. Immunol. 185, 7349–7357 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Swadling, L. et al. Human liver memory CD8+ T cells use autophagy for tissue residence. Cell Rep. 30, 687–698 e6 (2020). This article reveals the importance of IL-15 in T cell autophagy in the liver, which provides a potential strategy to enhance immunotherapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009). This paper uncovers the function of autophagy in regulating intracellular lipid stores (macrolipophagy).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Xu, X. et al. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat. Immunol. 15, 1152–1161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Puleston, D. J. et al. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3, e03706 (2014).

    Article  PubMed Central  Google Scholar 

  103. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu, Y. R. et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020). This article reveals that decreased autophagy in tumour-infiltrating T cells leads to accumulated depolarized mitochondria, which induces epigenetic reprogramming towards terminal exhaustion.

    Article  CAS  PubMed  Google Scholar 

  105. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rivera Vargas, T. et al. Selective degradation of PU.1 during autophagy represses the differentiation and antitumour activity of TH9 cells. Nat. Commun. 8, 559 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. DeVorkin, L. et al. Autophagy regulation of metabolism is required for CD8+ T cell anti-tumor immunity. Cell Rep. 27, 502–513.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Munz, C. Autophagy proteins in antigen processing for presentation on MHC molecules. Immunol. Rev. 272, 17–27 (2016).

    Article  PubMed  CAS  Google Scholar 

  109. Dorfel, D. et al. Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood 105, 3199–3205 (2005).

    Article  PubMed  CAS  Google Scholar 

  110. Cui, T. X. et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39, 611–621 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Li, W. et al. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab. 28, 87–103 e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Parker, K. H., Horn, L. A. & Ostrand-Rosenberg, S. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy. J. Leukoc. Biol. 100, 463–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Corzo, C. A. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alissafi, T. et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J. Clin. Invest. 128, 3840–3852 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 6, 295–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Fimia, G. M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Le Texier, L. et al. Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease. JCI Insight 1, e86850 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Becher, J. et al. AMBRA1 controls regulatory T-cell differentiation and homeostasis upstream of the FOXO3–FOXP3 axis. Dev. Cell 47, 592–607 e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Lowe, M. M. et al. Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight 4, e129756 (2019).

    Article  PubMed Central  Google Scholar 

  124. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Martinez, J. et al. Microtubule-associated protein 1 light chain 3α (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl Acad. Sci. USA 108, 17396–17401 (2011). This article demonstrates that LAP is required for degradation of ingested apoptotic cells and suppression of pro-inflammatory cytokine expression in macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016). This article demonstrates that LAP defects, a non-canonical autophagy, are associated with impaired efferocytosis, secretion of pro-inflammatory cytokines and spontaneous onset of a systemic lupus erythematosus-like disorder in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cunha, L. D. et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175, 429–441 e16 (2018). This article demonstrates that TAMs take advantage of LC3-associated phagocytosis to degrade apoptotic tumour cells. Genetic deficiency of LC3-associated phagocytosis in TAM boosts antitumour immune response through the STING–type I interferon pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Florey, O., Gammoh, N., Kim, S. E., Jiang, X. & Overholtzer, M. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy 11, 88–99 (2015).

    Article  PubMed  Google Scholar 

  129. Romao, S. et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J. Cell Biol. 203, 757–766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, Y. T. et al. Select autophagy genes maintain quiescence of tissue-resident macrophages and increase susceptibility to Listeria monocytogenes. Nat. Microbiol. 5, 272–281 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Xia, H. et al. Autophagic adaptation to oxidative stress alters peritoneal residential macrophage survival and ovarian cancer metastasis. JCI Insight 5, e141115 (2020).

    Article  PubMed Central  Google Scholar 

  132. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011). This article demonstrates that chemotherapy-associated autophagy is required for dying tumour cells to release ATP, and recruit and activate dendritic cells, thereby inducing tumour immunity.

    Article  CAS  PubMed  Google Scholar 

  133. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017). This detailed review discusses the molecular and cellular mechanisms of cell death.

    Article  CAS  PubMed  Google Scholar 

  134. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baghdadi, M. et al. TIM-4 glycoprotein-mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity 39, 1070–1081 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Chow, A. et al. Tim-4+ tissue-resident macrophages impair antitumor T-cell immunity [abstract 978]. Cancer Res. https://doi.org/10.1158/1538-7445.AM2019-978 (2019).

    Article  Google Scholar 

  138. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14, 1848–1850 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Lin, H. et al. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell 39, 1–14 (2021).

    Article  CAS  Google Scholar 

  141. Ko, A. et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ. 21, 92–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Veillette, A. & Chen, J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 39, 173–184 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, X. et al. Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer. Cancer Immunol. Res. 5, 363–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Li, H. et al. The beneficial role of sunitinib in tumor immune surveillance by regulating tumor PD-L1. Adv. Sci. 8, 2001596 (2020).

    Article  Google Scholar 

  145. Karasic, T. B. et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 5, 993–998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zeh, H. J. et al. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients. Clin. Cancer Res. 26, 3126–3134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Levy, J. M. et al. Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors. Cancer Discov. 4, 773–780 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McAfee, Q. et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl Acad. Sci. USA 109, 8253–8258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Rebecca, V. W. et al. A unified approach to targeting the lysosome’s degradative and growth signaling roles. Cancer Discov. 7, 1266–1283 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rebecca, V. W. et al. PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov. 9, 220–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Ma, X. H. et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin. Cancer Res. 17, 3478–3489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zou, Y. et al. The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib. J. Thorac. Oncol. 8, 693–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Kang, M. et al. Concurrent autophagy inhibition overcomes the resistance of epidermal growth factor receptor tyrosine kinase inhibitors in human bladder cancer cells. Int. J. Mol. Sci. 18, 321 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  154. Wang, W. et al. Targeting autophagy sensitizes BRAF-mutant thyroid cancer to vemurafenib. J. Clin. Endocrinol. Metab. 102, 634–643 (2017).

    Article  PubMed  Google Scholar 

  155. Kinsey, C. G. et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 620–627 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bryant, K. L. et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 25, 628–640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ma, X. H. et al. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J. Clin. Invest. 124, 1406–1417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ojha, R. et al. ER translocation of the MAPK pathway drives therapy resistance in BRAF-mutant melanoma. Cancer Discov. 9, 396–415 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Apel, A., Herr, I., Schwarz, H., Rodemann, H. P. & Mayer, A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res. 68, 1485–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Chen, X. et al. Autophagy enhanced the radioresistance of non-small cell lung cancer by regulating ROS level under hypoxia condition. Int. J. Radiat. Biol. 93, 764–770 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Huang, T. et al. MST4 phosphorylation of ATG4B regulates autophagic activity, tumorigenicity, and radioresistance in glioblastoma. Cancer Cell 32, 840–855.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Starobinets, H. et al. Antitumor adaptive immunity remains intact following inhibition of autophagy and antimalarial treatment. J. Clin. Invest. 126, 4417–4429 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Noman, M. Z. et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy. Sci. Adv. 6, eaax7881 (2020). This article demonstrates that autophagy inhibition by targeting VPS34 reprogrammes the microenvironment of melanoma and colon cancer, and checkpoint blockade in combination with VPS34 inhibition enhances anticancer efficacy and prolongs mouse survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yu, W. et al. Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy. Biomaterials 192, 128–139 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Liang, X. et al. Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res. 72, 2791–2801 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kershaw, M. H., Westwood, J. A. & Darcy, P. K. Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer 13, 525–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Poillet-Perez, L. et al. Autophagy maintains tumour growth through circulating arginine. Nature 563, 569–573 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sharonov, G. V., Serebrovskaya, E. O., Yuzhakova, D. V., Britanova, O. V. & Chudakov, D. M. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat. Rev. Immunol. 20, 294–307 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Rojas-Puentes, L. L. et al. Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases. Radiat. Oncol. 8, 209 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Briceno, E., Reyes, S. & Sotelo, J. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg. Focus 14, e3 (2003). This clinical trial is the first to evaluate the effect of CQ on patients with glioblastoma multiforme during radiotherapy and chemotherapy.

    Article  PubMed  Google Scholar 

  176. Rosenfeld, M. R. et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10, 1359–1368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hansen, A. R. et al. Pantoprazole affecting docetaxel resistance pathways via autophagy (PANDORA): phase II trial of high dose pantoprazole (autophagy inhibitor) with docetaxel in metastatic castration-resistant prostate cancer (mCRPC). Oncologist 24, 1188–1194 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Malhotra, J. et al. Phase Ib/II study of hydroxychloroquine in combination with chemotherapy in patients with metastatic non-small cell lung cancer (NSCLC). Cancer Treat. Res. Commun. 21, 100158 (2019).

    Article  PubMed  Google Scholar 

  179. Goldberg, S. B. et al. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J. Thorac. Oncol. 7, 1602–1608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Boone, B. A. et al. Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann. Surg. Oncol. 22, 4402–4410 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Haas, N. B. et al. Autophagy inhibition to augment mTOR inhibition: a phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma. Clin. Cancer Res. 25, 2080–2087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Vogl, D. T. et al. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10, 1380–1390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Vogl, D. T. et al. Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with bortezomib and dexamethasone for relapsed or refractory multiple myeloma. Clin. Cancer Res. 23, 3307–3315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brana, I. et al. A phase I trial of pantoprazole in combination with doxorubicin in patients with advanced solid tumors: evaluation of pharmacokinetics of both drugs and tissue penetration of doxorubicin. Invest. New Drugs 32, 1269–1277 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Mehnert, J. M. et al. A phase I trial of MK-2206 and hydroxychloroquine in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 84, 899–907 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Rangwala, R. et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 10, 1391–1402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rangwala, R. et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10, 1369–1379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mahalingam, D. et al. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10, 1403–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Harper, J. W., Ordureau, A. & Heo, J. M. Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19, 93–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Efeyan, A., Comb, W. C. & Sabatini, D. M. Nutrient-sensing mechanisms and pathways. Nature 517, 302–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schroeder, B. et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61, 1896–1907 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Chen, Q. et al. ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr. Biol. 29, 846–855.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Smith, M. D. et al. CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis. Dev. Cell 44, 217–232.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Grumati, P. et al. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. eLife 6, e25555 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Fumagalli, F. et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat. Cell Biol. 18, 1173–1184 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. An, H. et al. TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress. Mol. Cell 74, 891–908.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chino, H., Hatta, T., Natsume, T. & Mizushima, N. Intrinsically disordered protein TEX264 mediates ER-phagy. Mol. Cell 74, 909–921.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Cui, Y. et al. A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science 365, 53–60 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Liang, J. R., Lingeman, E., Ahmed, S. & Corn, J. E. Atlastins remodel the endoplasmic reticulum for selective autophagy. J. Cell Biol. 217, 3354–3367 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Dowdle, W. E. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wyant, G. A. et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105–109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Till, A., Lakhani, R., Burnett, S. F. & Subramani, S. Pexophagy: the selective degradation of peroxisomes. Int. J. Cell Biol. 2012, 512721 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Gibbings, D. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat. Cell Biol. 14, 1314–1321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their trainees from the Zou and Green labs, as well as collaborators for their scientific input. This work was supported in part by research grants from the US National Institutes of Health (NIH) (AI40646 and CA231620 to D.R.G., and CA217648, CA123088, CA099985, CA193136 and CA152470 to W.Z.), the NCI Cooperative Human Tissue Network (CHTN) and the NIH through the University of Michigan Rogel Cancer Center Grant (P30 CA046592).

Author information

Authors and Affiliations

Authors

Contributions

H.X., D.R.G. and W.Z. wrote the manuscript.

Corresponding authors

Correspondence to Douglas R. Green or Weiping Zou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks B. Janji, J. Lum and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Immunogenicity

The ability to provoke an immune response in humans or other animals.

Chimeric antigen receptor T cells

(CAR T cells). Cells used in a type of cancer treatment in which the patient’s T cells are modified in the laboratory to carry CAR and reinfused back into the patient to attack cancer cells recognized by CAR.

Oxidative phosphorylation

The electron transfer chain driven by substrate oxidation that is coupled to the synthesis of ATP through an electrochemical transmembrane gradient.

Autophagic flux

The measure of autophagic degradation activity.

Reactive oxygen species

(ROS). The highly reactive form of molecular oxygen formed as a by-product during the metabolism of oxygen.

Damage-associated molecular patterns

(DAMPs). Host-derived molecules that can initiate a non-infectious inflammatory response.

Epithelial–mesenchymal transition

A reversible cellular programme in which epithelial cells lose their cell polarity and cell–cell adhesion, gain migratory and invasive properties, and, finally, are transformed into mesenchymal cells.

The Cancer Genome Atlas

(TCGA). A project to catalogue genetic mutations responsible for cancer that takes advantage of genome sequencing and bioinformatics.

Senescence

A process by which cells irreversibly stop dividing and enter a state of permanent growth arrest without undergoing cell death.

Clustered regularly interspaced short palindromic repeats

(CRISPR). A family of repetitive DNA sequence used to detect and destroy DNA.

Glycolysis

The metabolic pathway that converts glucose into pyruvate independent of oxygen.

Fatty acid β-oxidation

The catabolic process by which fatty acid molecules are broken down to generate acetyl-coenzyme A (AcCoA) and utilized in the tricarboxylic acid (TCA) cycle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Green, D.R. & Zou, W. Autophagy in tumour immunity and therapy. Nat Rev Cancer 21, 281–297 (2021). https://doi.org/10.1038/s41568-021-00344-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00344-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer