Abstract
Cell division and organismal development are exquisitely orchestrated and regulated processes. The dysregulation of the molecular mechanisms underlying these processes may cause cancer, a consequence of cell-intrinsic and/or cell-extrinsic events. Cellular DNA can be damaged by spontaneous hydrolysis, reactive oxygen species, aberrant cellular metabolism or other perturbations that cause DNA damage. Moreover, several environmental factors may damage the DNA, alter cellular metabolism or affect the ability of cells to interact with their microenvironment. While some environmental factors are well established as carcinogens, there remains a large knowledge gap of others owing to the difficulty in identifying them because of the typically long interval between carcinogen exposure and cancer diagnosis. DNA damage increases in cells harbouring mutations that impair their ability to correctly repair the DNA. Tumour predisposition syndromes in which cancers arise at an accelerated rate and in different organs — the equivalent of a sensitized background — provide a unique opportunity to examine how gene–environment interactions influence cancer risk when the initiating genetic defect responsible for malignancy is known. Understanding the molecular processes that are altered by specific germline mutations, environmental exposures and related mechanisms that promote cancer will allow the design of novel and effective preventive and therapeutic strategies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).
Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).
Wu, S., Powers, S., Zhu, W. & Hannun, Y. A. Substantial contribution of extrinsic risk factors to cancer development. Nature 529, 43–47 (2016).
Wu, S., Zhu, W., Thompson, P. & Hannun, Y. A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 9, 3490 (2018).
Carbone, M., Klein, G., Gruber, J. & Wong, M. Modern criteria to establish human cancer etiology. Cancer Res. 64, 5518–5524 (2004).
Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).
Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).
Huang, K. L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370 e314 (2018).
Rahman, N. Realizing the promise of cancer predisposition genes. Nature 505, 302–308 (2014).
McGee, R. B. & Nichols, K. E. Introduction to cancer genetic susceptibility syndromes. Hematol. Am. Soc. Hematol Educ. Program 2016, 293–301 (2016).
Sondka, Z. et al. The COSMIC cancer gene census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018).
Carbone, M. et al. A mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes. Nat. Rev. Cancer 7, 147–154 (2007).
Emri, S. A. The Cappadocia mesothelioma epidemic: its influence in Turkey and abroad. Ann. Transl Med. 5, 239 (2017).
Baumann, F., Ambrosi, J. P. & Carbone, M. Asbestos is not just asbestos: an unrecognised health hazard. Lancet. Oncol. 14, 576–578 (2013).
Alpert, N., Gerwen, Mv. & Taioli, E. Epidemiology of mesothelioma in the 21st century in Europe and the United States, 40 years after restricted/banned asbestos use. Transl Lung Cancer Res. https://doi.org/10.21037/tlcr.2019.11.11 (2019).
Carbone, M. et al. Mesothelioma: scientific clues for prevention, diagnosis, and therapy. CA Cancer J. Clin. 69, 402–429 (2019).
Sluis-Cremer, G. K., Liddell, F. D., Logan, W. P. & Bezuidenhout, B. N. The mortality of amphibole miners in South Africa, 1946–80. Br. J. Ind. Med. 49, 566–575 (1992).
Carbone, M. et al. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc. Natl Acad. Sci. USA 108, 13618–13623 (2011).
Roushdy-Hammady, I., Siegel, J., Emri, S., Testa, J. R. & Carbone, M. Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet 357, 444–445 (2001).
Carbone, M. et al. BAP1 and cancer. Nat. Rev. Cancer 13, 153–159 (2013).
Carbone, M. et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J. Transl Med. 10, 179 (2012).
Testa, J. R. et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat. Genet. 43, 1022–1025 (2011).
Abdel-Rahman, M. H. et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J. Med. Genet. 48, 856–859 (2011).
Yu, M. D., Masoomian, B., Shields, J. A. & Shields, C. L. BAP1 germline mutation associated with bilateral primary uveal melanoma. Ocular Oncol. Pathol. 6, 10–14 (2020).
Farley, M. N. et al. A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol. Cancer Res. 11, 1061–1071 (2013).
Carbone, M. et al. Combined genetic and genealogic studies uncover a large BAP1 cancer syndrome kindred tracing back nine generations to a common ancestor from the 1700s. PLoS Genet. 11, e1005633 (2015).
Yoshikawa, Y., Emi, M., Nakano, T. & Gaudino, G. Mesothelioma developing in carriers of inherited genetic mutations. Transl Lung Cancer Res. 9 (Suppl. 1), S67–S76 (2019).
Haugh, A. M. et al. Genotypic and phenotypic features of BAP1 cancer syndrome: a report of 8 new families and review of cases in the literature. JAMA Dermatol. 153, 999–1006 (2017).
Walpole, S. et al. Comprehensive study of the clinical phenotype of germline BAP1 variant-carrying families worldwide. J. Natl Cancer Inst. 110, 1328–1341 (2018).
Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546, 549–553 (2017).
Napolitano, A. et al. Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma. Oncogene 35, 1996–2002 (2016).
Kadariya, Y. et al. Bap1 is a bona fide tumor suppressor: genetic evidence from mouse models carrying heterozygous germline Bap1 mutations. Cancer Res. 76, 2836–2844 (2016).
Hickson, I. D. RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3, 169–178 (2003).
Oshima, J., Sidorova, J. M. & Jr. Monnat, R. J. Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res. Rev. 33, 105–114 (2017).
Killen, M. W., Stults, D. M., Adachi, N., Hanakahi, L. & Pierce, A. J. Loss of Bloom syndrome protein destabilizes human gene cluster architecture. Hum. Mol. Genet. 18, 3417–3428 (2009).
Moser, M. J. et al. Genetic instability and hematologic disease risk in Werner syndrome patients and heterozygotes. Cancer Res. 60, 2492–2496 (2000).
Boveri, T. Zur Frage der Entstehung maligner Tumoren (Gustav Ficher, 1914).
Lauper, J. M., Krause, A., Vaughan, T. L. & Jr. Monnat, R. J. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One 8, e59709 (2013).
German, J. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet. Cytogenet. 93, 100–106 (1997).
Gruber, S. B. et al. BLM heterozygosity and the risk of colorectal cancer. Science 297, 2013 (2002).
Goss, K. H. et al. Enhanced tumor formation in mice heterozygous for Blm mutation. Science 297, 2051–2053 (2002).
Yao, Y. & Dai, W. Genomic instability and cancer. J. Carcinog. Mutagen. 5, 1000163 (2014).
Yang, H. et al. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death Dis. 6, e1786 (2015).
Gaudino, G., Xue, J. & Yang, H. How asbestos and other fibers cause mesothelioma. Translational Lung Cancer Res. 9 (Suppl. 1), S39–S46 (2020).
Kolodner, R. D. A personal historical view of DNA mismatch repair with an emphasis on eukaryotic DNA mismatch repair. DNA Repair. 38, 3–13 (2016).
Graham, V. W. J., Putnam, C. D. & Kolodner, R. D. DNA mismatch repair: mechanisms and cancer genetics. Encycl. Cancer 1, 530–538 (2019).
Giorgi, C. et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247–1251 (2010).
Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).
Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).
Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).
Yu, H. et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc. Natl Acad. Sci. USA 111, 285–290 (2014).
Giorgi, C., Bonora, M. & Pinton, P. Inside the tumor: p53 modulates calcium homeostasis. Cell Cycle 14, 933–934 (2015).
Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).
Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).
Wang, P. Y. et al. Increased oxidative metabolism in the Li-Fraumeni syndrome. N. Engl. J. Med. 368, 1027–1032 (2013).
Bononi, A. et al. Germline BAP1 mutations induce a Warburg effect. Cell Death Differ. 24, 1694–1704 (2017).
Bougeard, G. et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J. Clin. Oncol. 33, 2345–2352 (2015).
Villani, A. et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 17, 1295–1305 (2016).
Mai, P. L. et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer 122, 3673–3681 (2016).
Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).
Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).
Gonzalez, K. D. et al. High frequency of de novo mutations in Li-Fraumeni syndrome. J. Med. Genet. 46, 689–693 (2009).
Harbour, J. W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410–1413 (2010).
Yoshikawa, Y. et al. High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma. Proc. Natl Acad. Sci. USA 113, 13432–13437 (2016).
Nasu, M. et al. High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J. Thorac. Oncol. 10, 565–576 (2015).
Jin, S. et al. Comprehensive analysis of BAP1 somatic mutation in clear cell renal cell carcinoma to explore potential mechanisms in Silico. J. Cancer 9, 4108–4116 (2018).
Pena-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).
Malkin, D. Li-fraumeni syndrome. Genes Cancer 2, 475–484 (2011).
Mashtalir, N. et al. Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol. Cell 54, 392–406 (2014).
Bhattacharya, S., Hanpude, P. & Maiti, T. K. Cancer associated missense mutations in BAP1 catalytic domain induce amyloidogenic aggregation: a new insight in enzymatic inactivation. Sci. Rep. 5, 18462 (2015).
Heymann, S. et al. Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat. Oncol. 5, 104 (2010).
Ziegler, A. et al. Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776 (1994).
Marsella, J. M., Liu, B. L., Vaslet, C. A. & Kane, A. B. Susceptibility of p53-deficient mice to induction of mesothelioma by crocidolite asbestos fibers. Env. Health Perspect. 105 (Suppl. 5), 1069–1072 (1997).
De Flora, S. et al. Molecular alterations and lung tumors in p53 mutant mice exposed to cigarette smoke. Cancer Res. 63, 793–800 (2003).
Boyle, J. M. et al. Chromosome instability is a predominant trait of fibroblasts from Li-Fraumeni families. Br. J. Cancer 77, 2181–2192 (1998).
Hajkova, N. et al. Germline mutation in the TP53 gene in uveal melanoma. Sci. Rep. 8, 7618 (2018).
Jiang, W., Ananthaswamy, H. N., Muller, H. K. & Kripke, M. L. p53 protects against skin cancer induction by UV-B radiation. Oncogene 18, 4247–4253 (1999).
Ford, J. M. & Hanawalt, P. C. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc. Natl Acad. Sci. USA 92, 8876–8880 (1995).
Kemp, C. J., Wheldon, T. & Balmain, A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat. Genet. 8, 66–69 (1994).
Nutting, C. et al. A patient with 17 primary tumours and a germ line mutation in TP53: tumour induction by adjuvant therapy? Clin. Oncol. 12, 300–304 (2000).
Hwang, S. J. et al. Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. Hum. Genet. 113, 238–243 (2003).
Zhang, Z. et al. A germ-line p53 mutation accelerates pulmonary tumorigenesis: p53-independent efficacy of chemopreventive agents green tea or dexamethasone/myo-inositol and chemotherapeutic agents Taxol or Adriamycin. Cancer Res. 60, 901–907 (2000).
Krais, A. M. et al. The impact of p53 on DNA damage and metabolic activation of the environmental carcinogen benzo[a]pyrene: effects in Trp53+/+, Trp53+/− and Trp53−/− mice. Arch. Toxicol. 90, 839–851 (2016).
Tsutsui, T. et al. Aflatoxin B1-induced immortalization of cultured skin fibroblasts from a patient with Li-Fraumeni syndrome. Carcinogenesis 16, 25–34 (1995).
Cleaver, J. E., Lam, E. T. & Revet, I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Gen. 10, 756–768 (2009).
Cleaver, J. E. & Revet, I. Clinical implications of the basic defects in Cockayne syndrome and xeroderma pigmentosum and the DNA lesions responsible for cancer, neurodegeneration and aging. Mech. Ageing Dev. 129, 492–497 (2008).
DiGiovanna, J. J. & Kraemer, K. H. Shining a light on xeroderma pigmentosum. J. Invest. Dermatol. 132, 785–796 (2012).
Zheng, C. L. et al. Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep. 9, 1228–1234 (2014).
Zhang, W. R., Garrett, G. L., Arron, S. T. & Cleaver, J. E. Survey of Cockayne patients reports no skin cancers despite DNA repair deficiency. J. Amer Acad. Dermatol. 74, 1270–1272 (2016).
Reid-Bayless, K. S., Arron, S. T., Loeb, L. A., Bezrookove, V. & Cleaver, J. E. Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency. Proc. Natl Acad. Sci. USA 113, 10151–101516 (2016).
Fujiwara, Y., Ichihashi, M., Kano, Y., Goto, K. & Shimuzu, K. A new human photosensitive subject with a defect in the recovery of DNA synthesis after ultraviolet-light irradiation. J. Investig. Dermatol. 77, 256–263 (1981).
Spivak, G. & Hanawalt, P. C. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair. 5, 13–22 (2006).
Cleaver, J. E. et al. Mitochondrial reactive oxygen species are scavenged by Cockayne syndrome B protein in human fibroblasts without nuclear DNA damage. Proc. Natl Acad. Sci. USA 111, 13487–13492 (2014).
Crossley, M. P., Bocek, M. & Cimprich, K. A. R-loops as cellular regulators and genomic threats. Mol. Cell 73, 398–411 (2019).
Cleaver, J. E. Transcription coupled repair deficiency protects against human mutagenesis and carcinogenesis: personal reflections on the 50th anniversary of the discovery of xeroderma pigmentosum. DNA Repair. 58, 21–28 (2017).
Cleaver, J. E. Normal reconstruction of DNA supercoiling and chromatin structure in Cockayne syndrome cells during repair of damage from ultraviolet light. Am. J. Hum. Genet. 34, 566–575 (1982).
Tresini, M. et al. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523, 53–58 (2015).
Parris, C. H. & Kraemer, K. H. Ultraviolet-light induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal. Proc. Natl Acad. Sci. USA 90, 7260–7264 (1993).
Berg, R. J. et al. Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice. Cancer Res. 60, 2858–2863 (2000).
van Zeeland, A. A. et al. Transcription-coupled repair: impact on UV-induced mutagenesis in cultured rodent cells and mouse skin tumors. Mutat. Res. 577, 170–178 (2005).
Lynch, H. T., Snyder, C. L., Shaw, T. G., Heinen, C. D. & Hitchins, M. P. Milestones of Lynch syndrome: 1895–2015. Nat. Rev. Cancer 15, 181–194 (2015).
Jiricny, J. & Nystrom-Lahti, M. Mismatch repair defects in cancer. Curr. Opin. Genet. Dev. 10, 157–161 (2000).
Marsischky, G. T., Filosi, N., Kane, M. F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10, 407–420 (1996).
Srivatsan, A., Bowen, N. & Kolodner, R. D. Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex. J. Biol. Chem. 289, 9352–9364 (2014).
Amin, N. S., Nguyen, M. N., Oh, S. & Kolodner, R. D. exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol. Cell Biol. 21, 5142–5155 (2001).
Boland, P. M., Yurgelun, M. B. & Boland, C. R. Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. CA Cancer J. Clin. 68, 217–231 (2018).
Lynch, H. T. & de la Chapelle, A. Genetic susceptibility to non-polyposis colorectal cancer. J. Med. Genet. 36, 801–818 (1999).
Wei, W. et al. Racial differences in MLH1 and MSH2 mutation: an analysis of yellow race and white race based on the InSiGHT database. J. Bioinform Comput. Biol. 8 (Suppl. 1), 111–125 (2010).
Park, H. M. et al. Colorectal cancer incidence in 5 Asian countries by subsite: an analysis of cancer incidence in five continents (1998–2007). Cancer Epidemiol. 45, 65–70 (2016).
Diergaarde, B. et al. Environmental factors and colorectal tumor risk in individuals with hereditary nonpolyposis colorectal cancer. Clin. Gastroenterol. Hepatol. 5, 736–742 (2007).
Gingras, D. & Beliveau, R. Colorectal cancer prevention through dietary and lifestyle modifications. Cancer Microenviron. 4, 133–139 (2011).
Burn, J. et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378, 2081–2087 (2011).
Burn, J., Mathers, J. C. & Bishop, D. T. Chemoprevention in Lynch syndrome. Fam. Cancer 12, 707–718 (2013).
Niraj, J., Farkkila, A. & D’Andrea, A. D. The Fanconi anemia pathway in cancer. Annu. Rev. Cancer Biol. 3, 457–478 (2019).
Rodriguez, A. & D’Andrea, A. Fanconi anemia pathway. Curr. Biol. 27, R986–R988 (2017).
Garaycoechea, J. I. et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489, 571–575 (2012).
Langevin, F., Crossan, G. P., Rosado, I. V., Arends, M. J. & Patel, K. J. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475, 53–58 (2011).
Kutler, D. I. et al. Human papillomavirus DNA and p53 polymorphisms in squamous cell carcinomas from Fanconi anemia patients. J. Natl Cancer Inst. 95, 1718–1721 (2003).
van Zeeburg, H. J., Snijders, P. J., Joenje, H. & Brakenhoff, R. H. Re: human papillomavirus DNA and p53 polymorphisms in squamous cell carcinomas from Fanconi anemia patients. J. Natl Cancer Inst. 96, 968 (2004).
Hira, A. et al. Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood 122, 3206–3209 (2013).
Tyburczy, M. E. et al. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex. Hum. Mol. Genet. 23, 2023–2029 (2014).
Henske, E. P., Jozwiak, S., Kingswood, J. C., Sampson, J. R. & Thiele, E. A. Tuberous sclerosis complex. Nat. Rev. Dis. Prim. 2, 16035 (2016).
Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).
Yeung, R. S. et al. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc. Natl Acad. Sci. USA 91, 11413–11416 (1994).
Cook, J. D. et al. Interaction between genetic susceptibility and early-life environmental exposure determines tumor-suppressor-gene penetrance. Proc. Natl Acad. Sci. USA 102, 8644–8649 (2005).
Nickerson, M. L. et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2, 157–164 (2002).
Schmidt, L. S. & Linehan, W. M. Molecular genetics and clinical features of Birt-Hogg-Dube syndrome. Nat. Rev. Urol. 12, 558–569 (2015).
de Kock, L., Wu, M. K. & Foulkes, W. D. Ten years of DICER1 mutations: provenance, distribution, and associated phenotypes. Hum. Mutat. 40, 1939–1953 (2019).
Miniati, D. N. et al. Prenatal presentation and outcome of children with pleuropulmonary blastoma. J. Pediatr. Surg. 41, 66–71 (2006).
Kurzynska-Kokorniak, A. et al. The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res. 43, 4365–4380 (2015).
Gross, T. J. et al. A microRNA processing defect in smokers’ macrophages is linked to SUMOylation of the endonuclease DICER. J. Biol. Chem. 289, 12823–12834 (2014).
Taeubner, J. et al. Penetrance and expressivity in inherited cancer predisposing syndromes. Trends Cancer 4, 718–728 (2018).
Petljak, M. & Alexandrov, L. B. Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis 37, 531–540 (2016).
Nones, K. et al. Whole-genome sequencing reveals clinically relevant insights into the aetiology of familial breast cancers. Ann. Oncol. 30, 1071–1079 (2019).
Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017).
Castellsague, E. et al. Novel POLE pathogenic germline variant in a family with multiple primary tumors results in distinct mutational signatures. Hum. Mutat. 40, 36–41 (2019).
Polak, P. et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet. 49, 1476–1486 (2017).
Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836 (2019).
Alexandrov, L. B. et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618–622 (2016).
Wild, C. P., Scalbert, A. & Herceg, Z. Measuring the exposome: a powerful basis for evaluating environmental exposures and cancer risk. Env. Mol. Mutagen. 54, 480–499 (2013).
Nik-Zainal, S. et al. The genome as a record of environmental exposure. Mutagenesis 30, 763–770 (2015).
Herceg, Z. et al. Roadmap for investigating epigenome deregulation and environmental origins of cancer. Int. J. Cancer 142, 874–882 (2018).
Siddeek, B., Mauduit, C., Simeoni, U. & Benahmed, M. Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance. Mutat. Res. 778, 38–44 (2018).
Johansson, A. et al. Epigenome-wide association study for lifetime estrogen exposure identifies an epigenetic signature associated with breast cancer risk. Clin. Epigenetics 11, 66 (2019).
Martin, E. M. & Fry, R. C. Environmental Influences on the epigenome: exposure- associated DNA methylation in human populations. Annu. Rev. Public. Health 39, 309–333 (2018).
Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).
Degasperi, A. et al. A practical framework and online tool for mutational signature analyses show inter-tissue variation and driver dependencies. Nat. Cancer 1, 249–263 (2020).
Turnbull, C. et al. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ 361, k1687 (2018).
Elliott, P., Peakman, T. C. & Biobank, U. K. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234–244 (2008).
Manolio, T. A. et al. New models for large prospective studies: is there a better way? Am. J. Epidemiol. 175, 859–866 (2012).
Sullivan, F., McKinstry, B. & Vasishta, S. The “All of Us” research program. N. Engl. J. Med. 381, 1883–1884 (2019).
Mouse Genome Sequencing Consortium. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).
Moresco, E. M., Li, X. & Beutler, B. Going forward with genetics: recent technological advances and forward genetics in mice. Am. J. Pathol. 182, 1462–1473 (2013).
Arnold, C. N. et al. ENU-induced phenovariance in mice: inferences from 587 mutations. BMC Res. Notes 5, 577 (2012).
Wang, T. et al. Real-time resolution of point mutations that cause phenovariance in mice. Proc. Natl Acad. Sci. USA 112, E440–E449 (2015).
Mager, L. F. et al. IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. J. Clin. Invest. 125, 2579–2591 (2015).
de Vos tot Nederveen Cappel, W. H. et al. Surveillance for hereditary nonpolyposis colorectal cancer: a long-term study on 114 families. Dis. Colon. Rectum 45, 1588–1594 (2002).
Jarvinen, H. J. et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology 118, 829–834 (2000).
Schmeler, K. M. et al. Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N. Engl. J. Med. 354, 261–269 (2006).
Lynch, H. T., Snyder, C. L., Lynch, J. F., Riley, B. D. & Rubinstein, W. S. Hereditary breast-ovarian cancer at the bedside: role of the medical oncologist. J. Clin. Oncol. 21, 740–753 (2003).
Kratz, C. P. et al. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin. Cancer Res. 23, e38–e45 (2017).
Vogel, W. H. Li-Fraumeni syndrome. J. Adv. Pract. Oncol. 8, 742–746 (2017).
Pastorino, S. et al. A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other germline mutations. J. Clin. Oncol. 36, 3485–3494 (2018).
Baumann, F. et al. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis 36, 76–81 (2015).
Kobrinski, D. A., Yang, H. & Kittaneh, M. BAP1: role in carcinogenesis and clinical implications. Transl Lung Cancer Res. 9 (Suppl. 1), S60–S66 (2019).
Wang, P. Y. et al. Inhibiting mitochondrial respiration prevents cancer in a mouse model of Li-Fraumeni syndrome. J. Clin. Invest. 127, 132–136 (2017).
Achatz, M. I., Hainaut, P. & Ashton-Prolla, P. Highly prevalent TP53 mutation predisposing to many cancers in the Brazilian population: a case for newborn screening? Lancet Oncol. 10, 920–925 (2009).
Achatz, M. I. & Zambetti, G. P. The inherited p53 mutation in the Brazilian population. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a026195 (2016).
DiGiammarino, E. L. et al. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat. Struct. Biol. 9, 12–16 (2002).
Park, J. H. et al. Mouse homolog of the human TP53 R337H mutation reveals its role in tumorigenesis. Cancer Res. 78, 5375–5383 (2018).
Macedo, G. S. et al. Increased oxidative damage in carriers of the germline TP53 p.R337H mutation. PLoS One 7, e47010 (2012).
Mouw, K. W., Goldberg, M. S., Konstantinopoulos, P. A. & D’Andrea, A. D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 7, 675–693 (2017).
Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603–1616 (2010).
Craven, P. A. & DeRubertis, F. R. Effects of aspirin on 1,2-dimethylhydrazine-induced colonic carcinogenesis. Carcinogenesis 13, 541–546 (1992).
Sheng, H. et al. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J. Clin. Invest. 99, 2254–2259 (1997).
Barnes, C. J. & Lee, M. Chemoprevention of spontaneous intestinal adenomas in the adenomatous polyposis coli Min mouse model with aspirin. Gastroenterology 114, 873–877 (1998).
Beck, S. L. Effects of aspirin on colorectal cancer related to lynch syndrome. J. Adv. Pract. Oncol. 3, 395–398 (2012).
Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).
Franz, D. N. et al. Long-term use of everolimus in patients with tuberous sclerosis complex: final results from the EXIST-1 study. PLoS One 11, e0158476 (2016).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03207347 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01981525 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03448718. (2020).
Smith, A. J., Oertle, J. & Prato, D. Environmental carcinogens and the kinds of cancers they cause. Open J. Oncol. (2014).
Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).
Merlino, G. & Noonan, F. P. Modeling gene-environment interactions in malignant melanoma. Trends Mol. Med. 9, 102–108 (2003).
Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).
Panou, V. et al. Frequency of germline mutations in cancer susceptibility genes in Malignant Mesothelioma. J. Clin. Oncol. 36, 2863–2871 (2018).
Hassan, R. et al. Inherited predisposition to malignant mesothelioma and overall survival following platinum chemotherapy. Proc. Natl Acad. Sci. USA 116, 9008–9013 (2019).
Guerin, A. et al. IRF4 haploinsufficiency in a family with Whipple’s disease. eLife 7, e32340 (2018).
Boisson-Dupuis, S. et al. Tuberculosis and impaired IL-23-dependent IFN-gamma immunity in humans homozygous for a common TYK2 missense variant. Sci. Immunol. 3, eaau8714 (2018).
Cirulli, E. T. et al. Genome-wide rare variant analysis for thousands of phenotypes in over 70,000 exomes from two cohorts. Nat. Commun. 11, 542 (2020).
Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).
Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).
Hsu, P. P. & Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. Cell 134, 703–707 (2008).
Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).
Porporato, P. E., Filigheddu, N., Pedro, J. M. B., Kroemer, G. & Galluzzi, L. Mitochondrial metabolism and cancer. Cell Res. 28, 265–280 (2018).
Peel, J. B. et al. A prospective study of cardiorespiratory fitness and breast cancer mortality. Med. Sci. Sports Exerc. 41, 742–748 (2009).
LeBleu, V. S. et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 1001–1015 (2014).
Tan, A. S. et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21, 81–94 (2015).
Sullivan, L. B., Gui, D. Y. & Vander Heiden, M. G. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat. Rev. Cancer 16, 680–693 (2016).
Gottlieb, E. & Tomlinson, I. P. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5, 857–866 (2005).
Sciacovelli, M. & Frezza, C. Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radic. Biol. Med. 100, 175–181 (2016).
Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).
Sasaki, M. et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488, 656–659 (2012).
Inoue, S. et al. Mutant IDH1 downregulates ATM and alters DNA repair and sensitivity to DNA damage independent of TET2. Cancer Cell 30, 337–348 (2016).
Nowicki, S. & Gottlieb, E. Oncometabolites: tailoring our genes. FEBS J. 282, 2796–2805 (2015).
Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709–721 (2014).
Sumpter, R. Jr. et al. Fanconi anemia proteins function in mitophagy and immunity. Cell 165, 867–881 (2016).
Weinberg, C. R., Brown, K. G. & Hoel, D. G. Altitude, radiation, and mortality from cancer and heart disease. Radiat. Res. 112, 381–390 (1987).
Sung, H. J. et al. Ambient oxygen promotes tumorigenesis. PLoS One 6, e19785 (2011).
Simeonov, K. P. & Himmelstein, D. S. Lung cancer incidence decreases with elevation: evidence for oxygen as an inhaled carcinogen. PeerJ 3, e705 (2014).
Sung, H. J. et al. Mitochondrial respiration protects against oxygen-associated DNA damage. Nat. Commun. 1, 1–8 (2010).
Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).
Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug. Discov. 12, 931–947 (2013).
Acknowledgements
Funding for travel costs and lodging for the co-authors to meet in person and critically discuss and write the manuscript was provided by a generous donation from the Barry and Virginia Weinman Foundation.
Author information
Authors and Affiliations
Contributions
M.C. researched the data for the article. All authors contributed substantially to discussions of the content. All authors contributed to writing the article and to reviewing and/or editing the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
M.C. and H.Y. report funding from the US National Institute of Environmental Health Sciences (1R01ES030948-01 (M.C and H.Y.)), the US National Cancer Institute (1R01CA237235-01A1 (M.C. and H.Y.) and 1R01CA198138 (M.C.)), the US Department of Defense (CA150671 (M.C. and H.Y.)) and the University of Hawai’i Foundation through donations from Riviera United-4 a Cure (M.C. and H.Y.), the Melohn Family Endowment, Honeywell International Inc., the Germaine Hope Brennan Foundation and the Maurice and Joanna Sullivan Family Foundation (M.C.). M.C. has a patent issued entitled ‘Methods for diagnosing a predisposition to develop cancer’. M.C. and H.Y. have a patent issued entitled ‘Using anti-HMGB1 monoclonal antibody or other HMGB1 antibodies as a novel mesothelioma therapeutic strategy’ and a patent issued entitled ‘HMGB1 as a biomarker for asbestos exposure and mesothelioma early detection’. M.C. is a board-certified pathologist who provides consultation for pleural pathology, including medical–legal consultation. A.D. receives research funding from Eli Lilly and Merck KGaA (EMD Serono), has served on advisory boards for Eli Lilly, Merck KGaA (EMD Serono), Sierra Oncology, Intellia and Formation Biologics and holds equity in Ideaya Inc., Cyteir Therapeutics and Cedilla Therapeutics Inc. I.D.H. is supported by the Danish National Research Foundation (grant no. DNRF115) and by the Nordea Foundation. R.J.M. is supported by grants from the US National Cancer Institute, the US National Heart, Lung and Blood Institute and the Fanconi Anemia Research Fund.. The work of R.J.M. is funded by US National Institutes of Health award NCI P01 077852 and by research awards from the Fanconi Anemia Research Fund and the US Department of Defense Bone Marrow Failure Program. R.J.M. holds equity in bluebird bio and has performed consulting work for Flagship Pioneering. H.I.P. reports funding from the US National Cancer Institute, the US Department of Defense, the US Centers for Disease Control and Prevention, Genentech, and Belluck & Fox. R.D.K. received research support from the US National Institutes of Health (GM26017 and GM50006) and the Ludwig Institute for Cancer Research. He is an inventor on patents covering many aspects of mismatch repair genes, all of which are assigned to the Dana-Farber Cancer Institute. L.S.S. reports funding in part through US federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract HHSN261200800001E. J.H.P. is supported by US National Institute of General Medical Science and US National Cancer Institute grants and the Memorial Sloan-Kettering Cancer Center Core Grant P30 CA008748, licenses reagents through Novus Biologicals and is a consultant for ATROPOS Therapeutics. H.I.P and H.Y. received research support for the Early Detection Research Network, US National Cancer Institute (U01CA111295-08). S.T.A., B.B., A.B., W.C., J.E.C., C.M.C., W.D.F., G.G., J.L.G., E.P.H., P.M.H., T.W.M., D.M. and F.N., declare no competing interests.
Additional information
Peer review information
Nature Reviews Cancer thanks M. Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Cancer Gene Census:https://cancer.sanger.ac.uk/census
Mutagenesis protocol:http://mutagenetix.utsouthwestern.edu
Glossary
- Asbestos fibres
-
For regulatory purposes, six of ~400 mineral fibres naturally present in the environment were collectively named ‘asbestos’ and their use was prohibited or severely restricted in the past decades in the USA, Australia and western Europe. The remaining ~394 mineral fibres are not regulated and thus can and have been used and have caused human exposure and mesothelioma, among them erionite.
- Base excision repair
-
(BER). A repair system that removes single-base damage from alkylating agents or reactive oxygen species. One branch consists of a glycosylase that cleaves the base–deoxyribose bond, leaving an apurinic site that is subsequently cleaved and replaced by a small one-to-two-base patch. Formation of a longer patch branch involves the activity of CSB, XRCC1 and PARP1.
- Cancer syndromes
-
Those tumour predisposition syndromes in which close to 100% of carriers develop one or more cancers during their lifetime. Examples include Li–Fraumeni syndrome (~95% of women carriers develop cancer) and BAP1 cancer syndrome (~100% of carriers develop cancer), which are caused by heterozygous autosomal dominant mutations of the TP53 and BAP1 genes, respectively.
- DICER1
-
An endonuclease implicated in microRNA biogenesis and the specific regulation of mRNAs. This mainly cytoplasmic enzyme cleaves precursor hairpin microRNAs to produce mature microRNAs (known as 5′ microRNA and 3′ microRNA, one of which will be loaded onto the RNA-induced silencing complex (RISC), ultimately resulting in downregulation or silencing of the targeted mRNAs).
- DNA helicases
-
Enzymes that unwind the two strands of the DNA helix, a process needed for all aspects of DNA metabolism that in turn is important for DNA replication and repair.
- DNA interstrand crosslinks
-
Covalent bonds between bases on opposite strands of DNA.
- Global genome repair
-
(GGR). A branch of nucleotide excision repair that predominantly occurs in non-transcribed DNA and non-transcribed strands of expressed genes. Damage recognition involves two DNA-binding proteins, xeroderma pigmentosum group C-complementing protein (XPC) and XPE. Subsequent steps involving DNA unwinding, incision, polymerization and ligation are common to GGR and transcription-coupled repair.
- Homologous recombination
-
(HR). This process is essential for the repair of double-strand DNA breaks and consists of an exchange or replacement of a segment of parental DNA with a segment having the homologous sequence from a partner DNA.
- Homologues
-
Genes related to second genes by descent from a common ancestral DNA sequence.
- Mitochondrial respiration
-
Also referred to as oxidative phosphorylation, this is a process that occurs in mitochondria and provides the major source of ATP in aerobic organisms.
- Mitophagy
-
Autophagic removal of damaged mitochondria.
- Multiplex ligation-dependent probe amplification
-
(MLPA). A multiplex polymerase chain reaction method used to detect larger DNA deletions and copy number variations, which are often missed by next-generation sequencing and Sanger sequencing.
- Next-generation sequencing
-
(NGS). A high-throughput sequencing technique that allows rapid simultaneous sequencing of the DNA or RNA of multiple genes. Designed to detect nucleotide-level mutations, it largely replaced manual Sanger sequencing, although this is used to confirm pathogenic mutations detected by NGS.
- Non-homologous end joining
-
(NHEJ). An error-prone DNA double-strand break repair process that entails rejoining of DNA breaks without reliance on a homologous template.
- Nucleotide excision repair
-
(NER). The process by which ultraviolet light-induced DNA lesions and other large adducts, such as those induced by N-2-acetylaminofluorene or benzo[a]pyrene, are repaired.
- Orthologues
-
Genes in different species that evolved from a common ancestral gene by speciation. Usually, orthologues retain the same function in the course of evolution.
- Penetrance
-
The likelihood that a person who has a certain disease-causing mutation in a gene will show signs and symptoms of the disease.
- Spliceosomes
-
Molecular complexes involved in removing introns (intervening sequences between coding sequences) from the primary RNA transcript.
- Sumoylation
-
A process by which proteins are post-translationally modified by the covalent addition of small ubiquitin-like modifier proteins through lysine side chains, resulting in a remodelling of the surface of these proteins, thereby affecting their function in three main ways: through inhibition of the usual interaction between the target of sumoylation and another protein, through provision of a new binding surface and through conformational changes in the target protein.
- Targeted NGS
-
(t-NGS). A commercial or custom gene panel that targets the exons of specific sets of genes (for example, all tumour suppressor genes).
- Transcription-coupled repair
-
(TCR). A branch of nucleotide excision repair that predominantly occurs on the transcribed strand of expressed genes. Damage recognition involves RNA polymerase II arrest at damage in transcribed strands that is relieved by the action of CSA, CSB and UV-stimulated scaffold protein A (UVSSA). Subsequent steps involving DNA incision, polymerization and ligation are common to global genome repair and TCR.
- Tumour predisposition syndromes
-
(TPSs). Affected individuals are predisposed to benign and/or malignant tumours. Depending on the gene that is mutated, a variable fraction of mutation carriers develop one or more tumours during their lifetime. TPSs can be caused by heterozygous (autosomal dominant) or homozygous (autosomal recessive) mutations.
- Whole-exome sequencing
-
(WES). All exons in the genome are sequenced.
- Whole-genome sequencing
-
(WGS). All of the genome including introns is sequenced. Identifies both nucleotide-level deletions and large DNA deletions, but the interpretation of the data requires special expertise and the use of supercomputers that can handle the very large amount of data.
Rights and permissions
About this article
Cite this article
Carbone, M., Arron, S.T., Beutler, B. et al. Tumour predisposition and cancer syndromes as models to study gene–environment interactions. Nat Rev Cancer 20, 533–549 (2020). https://doi.org/10.1038/s41568-020-0265-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41568-020-0265-y
This article is cited by
-
The metabolism-related lncRNA signature predicts the prognosis of breast cancer patients
Scientific Reports (2024)
-
Preventive and therapeutic opportunities: targeting BAP1 and/or HMGB1 pathways to diminish the burden of mesothelioma
Journal of Translational Medicine (2023)
-
BAP1 loss induces mitotic defects in mesothelioma cells through BRCA1-dependent and independent mechanisms
Oncogene (2023)
-
BAP1 as a guardian of genome stability: implications in human cancer
Experimental & Molecular Medicine (2023)
-
Genetic analysis of familial predisposition in the pathogenesis of malignant pleural mesothelioma
Journal of Cancer Research and Clinical Oncology (2023)