Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Executable cancer models: successes and challenges

Abstract

Making decisions on how best to treat cancer patients requires the integration of different data sets, including genomic profiles, tumour histopathology, radiological images, proteomic analysis and more. This wealth of biological information calls for novel strategies to integrate such information in a meaningful, predictive and experimentally verifiable way. In this Perspective we explain how executable computational models meet this need. Such models provide a means for comprehensive data integration, can be experimentally validated, are readily interpreted both biologically and clinically, and have the potential to predict effective therapies for different cancer types and subtypes. We explain what executable models are and how they can be used to represent the dynamic biological behaviours inherent in cancer, and demonstrate how such models, when coupled with automated reasoning, facilitate our understanding of the mechanisms by which oncogenic signalling pathways regulate tumours. We explore how executable models have impacted the field of cancer research and argue that extending them to represent a tumour in a specific patient (that is, an avatar) will pave the way for improved personalized treatments and precision medicine. Finally, we highlight some of the ongoing challenges in developing executable models and stress that effective cross-disciplinary efforts are key to forward progress in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational modelling iterative cycle.
Fig. 2: Exploring cancer therapies using a computational model.
Fig. 3: Possible digital avatar for a cancer patient.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Siegal, M. L. & Bergman, A. Waddington’s canalization revisited: developmental stability and evolution. Proc. Natl Acad. Sci. USA 99, 10528–10532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gerlinger, M. et al. Cancer: evolution within a lifetime. Annu. Rev. Genet. 48, 215–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Hartman IV, J. L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Echeverria, G. V. et al. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci. Transl. Med. 11, eaav0936 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Morken, J. D., Packer, A., Everett, R. A., Nagy, J. D. & Kuang, Y. Mechanisms of resistance to intermittent androgen deprivation in patients with prostate cancer identified by a novel computational method. Cancer Res. 74, 3673–3683 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Ben-David, U., Beroukhim, R. & Golub, T. R. Genomic evolution of cancer models: perils and opportunities. Nat. Rev. Cancer 19, 97–109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morgan, P. et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat. Rev. Drug Discov. 17, 167–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Pammolli, F., Magazzini, L. & Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov. 10, 428–438 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat. Rev. Drug Discov. 10, 197–208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Beshiri, M. L. et al. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin. Cancer Res. 24, 4332–4345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, X. et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun. 9, 2983 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kersten, K., Visser, K. E., Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Villacorta-Martin, C., Craig, A. J. & Villanueva, A. Divergent evolutionary trajectories in transplanted tumor models. Nat. Genet. 49, 1565–1566 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Di Ventura, B., Lemerle, C., Michalodimitrakis, K. & Serrano, L. From in vivo to in silico biology and back. Nature 443, 527–533 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Fisher, J. & Henzinger, T. A. Executable cell biology. Nat. Biotechnol. 25, 1239–1249 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Fisher, J., Piterman, N., Hubbard, E. J. A., Stern, M. J. & Harel, D. Computational insights into Caenorhabditis elegans vulval development. Proc. Natl Acad. Sci. USA 102, 1951–1956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nusser-Stein, S. et al. Cell-cycle regulation of NOTCH signaling during C. elegans vulval development. Mol. Syst. Biol. 8, 618 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fisher, J., Piterman, N., Hajnal, A. & Henzinger, T. A. Predictive modeling of signaling crosstalk during C. elegans vulval development. PLoS Comput. Biol. 3, e92 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kirouac, D. C. et al. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors. Sci. Signal. 6, ra68–ra68 (2013).

    Article  PubMed  CAS  Google Scholar 

  29. Moignard, V. et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat. Cell Biol. 15, 363–72 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahmed, Z. et al. in Verification, Model Checking, and Abstract Interpretation (eds Bouajjani, A. & Monniaux, D.) 1–13 (Springer International, 2017).

  31. Hall, B. A., Piterman, N. & Fisher, J. in Computational Methods in Systems Biology Vol. 9859 (eds Bartocci, E., Lio, P. & Paoletti, N.) 348–350 (Springer International, 2016).

  32. Fisher, J. & Piterman, N. in A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations (eds Kulkarni, V. V, Stan, G.-B. & Raman, K.) 255–279 (Springer Netherlands, 2014).

  33. Clarke Jr, E. M., Grumberg, O. & Peled, D. A. Model Checking (MIT, 1999).

  34. Chuang, R. et al. Drug target optimization in chronic myeloid leukemia using innovative computational platform. Sci. Rep. 5, 8190 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci.USA 104, 1777–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moignard, V. et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269–76 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jolly, M. K. & Levine, H. Computational systems biology of epithelial–hybrid–mesenchymal transitions. Curr. Opin. Syst. Biol. 3, 1–6 (2017).

    Article  CAS  Google Scholar 

  38. Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7, S7 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Markowetz, F. & Spang, R. Inferring cellular networks — a review. BMC Bioinformatics 8 (Suppl 6), S5 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fisher, J., Piterman, N. & Vardi, M. Y. in FM 2011: Formal Methods: 17th International Symposium on Formal Methods, Limerick, Ireland, June 20–24, 2011, Proceedings (eds Butler, M. & Schulte, W.) 3–11 (Springer, 2011).

  41. Samaga, R., Saez-Rodriguez, J., Alexopoulos, L. G., Sorger, P. K. & Klamt, S. The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5, e1000438 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schoeberl, B., Eichler-Jonsson, C., Gilles, E. D. & Muüller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370–375 (2002).

    Article  PubMed  Google Scholar 

  43. Saez-Rodriguez, J. et al. Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5, 331 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Paterson, Y. Z. et al. A toolbox for discrete modelling of cell signalling dynamics. Integr. Biol. 10, 370–382 (2018).

    Article  Google Scholar 

  46. Pina, C. et al. Inferring rules of lineage commitment in haematopoiesis. Nat. Cell Biol. 14, 287–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Fisher, J., Henzinger, T. A., Mateescu, M. & Piterman, N. in Bounded asynchrony: concurrency for modeling cell–cell interactions in Lecture Notes on Computer Science. Formal Methods in Systems Biology (ed. Fisher, J.) 17–32 (Springer, 2008).

  48. Hall, B. A., Piterman, N., Hajnal, A. & Fisher, J. Emergent stem cell homeostasis in the C. elegans germline is revealed by hybrid modeling. Biophys. J. 109, 428–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    Article  PubMed  Google Scholar 

  50. Mandon, H., Haar, S. & Paulevé, L. in Temporal reprogramming of Boolean networks in Lecture Notes on Computer Science. Computational Methods in Systems Biology (eds Feret, J. & Koeppl, H.) 179–195 (Springer, 2017).

  51. Iwasaki, H. et al. The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev. 20, 3010–3021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Zañudo, J. G. T. & Albert, R. Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput. Biol. 11, e1004193 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Steinway, S. N. et al. Network modeling of TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and Wnt pathway activation. Cancer Res. 74, 5963–5977 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nieto, M. A., Huang, R. Y.-J., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Vahedi, G., Faryabi, B., Chamberland, J. F., Datta, A. & Dougherty, E. R. Sampling-rate-dependent probabilistic Boolean networks. J. Theor. Biol. 261, 540–547 (2009).

    Article  PubMed  Google Scholar 

  57. Sizek, H., Hamel, A., Deritei, D., Campbell, S. & Ravasz Regan, E. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput. Biol. 15, e1006402 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Auslander, N., Wolf, Y. I. & Koonin, E. V. In silico learning of tumor evolution through mutational time series. Proc. Natl Acad. Sci. USA 116, 9501–9510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fumiã, H. F. & Martins, M. L. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes. PLoS One 8, e69008 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Spencer, S. L., Berryman, M. J., García, J. A. & Abbott, D. An ordinary differential equation model for the multistep transformation to cancer. J. Theor. Biol. 231, 515–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Clarke, M. A., Woodhouse, S., Piterman, N., Hall, B. A. & Fisher, J. in Automated Reasoning for Systems Biology and Medicine (eds Lio, P. & Zuliani, P.) 133–153 (Springer, 2019).

  64. Schaub, M. A., Henzinger, T. A. & Fisher, J. Qualitative networks: a symbolic approach to analyze biological signaling networks. BMC Syst. Biol. 1, 4 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Caravagna, G. et al. Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat. Methods 15, 707–714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Swanton, C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 72, 4875–4882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun, Q.-Y. et al. Ordering of mutations in acute myeloid leukemia with partial tandem duplication of MLL (MLL-PTD). Leukemia 31, 1–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, J. K. et al. Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat. Genet. 49, 594–599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi, M., Shi, J., Zhu, Y., Yang, R. & Cho, K.-H. Network dynamics-based cancer panel stratification for systemic prediction of anticancer drug response. Nat. Commun. 8, 1940 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Chong, C. R. & Jänne, P. A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 19, 1389–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085–3096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30, 679–692 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Silverbush, D. et al. Cell-specific computational modeling of the PIM pathway in acute myeloid leukemia. Cancer Res. 77, 827–838 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Shorthouse, D. et al. Exploring the role of stromal osmoregulation in cancer and disease using executable modelling. Nat. Commun. 9, 3011 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Layek, R., Datta, A., Bittner, M. & Dougherty, E. R. Cancer therapy design based on pathway logic. Bioinformatics 27, 548–555 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. der Heyde, S. et al. Boolean ErbB network reconstructions and perturbation simulations reveal individual drug response in different breast cancer cell lines. BMC Syst. Biol. 8, 75 (2014).

    Article  PubMed  CAS  Google Scholar 

  78. Zañudo, J. G. T., Scaltriti, M. & Albert, R. A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer. Cancer Converg. 1, 5 (2017).

    Article  Google Scholar 

  79. McGranahan, N. & Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27, 15–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Bhang, H. E. C. et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21, 440–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Kreuzaler, P. et al. Heterogeneity of Myc expression in breast cancer exposes pharmacological vulnerabilities revealed through executable mechanistic modeling. Proc. Natl Acad. Sci.USA 116, 22399–22408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Hasselt, J. G. C. & van der Graaf, P. H. Towards integrative systems pharmacology models in oncology drug development. Drug Discov. Today Technol. 15, 1–8 (2015).

    Article  PubMed  Google Scholar 

  83. Kirouac, D. C. & Onsum, M. D. Using network biology to bridge pharmacokinetics and pharmacodynamics in oncology. CPT Pharmacometrics Syst. Pharmacol. 2, e71 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Grimwade, D. et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92, 2322–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Liersch, R., Müller-Tidow, C., Berdel, W. E. & Krug, U. Prognostic factors for acute myeloid leukaemia in adults — biological significance and clinical use. Br. J. Haematol. 165, 17–38 (2014).

    Article  PubMed  Google Scholar 

  86. Solin, L. J. et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J. Natl. Cancer Inst. 105, 701–710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kurian, A. W. et al. Recent trends in chemotherapy use and oncologists’ treatment recommendations for early-stage breast cancer. J. Natl. Cancer Inst. 110, 493–500 (2018).

    Article  PubMed  Google Scholar 

  88. Sparano, J. A. et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N. Engl. J. Med. 379, 111–121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02415621 (2015).

  91. Crook, J. M. et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med. 367, 895–903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00003653 (2003).

  93. Hussain, M. et al. Intermittent versus continuous androgen deprivation in prostate cancer. N. Engl. J. Med. 368, 1314–1325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00002651 (2003).

  95. West, J. B. et al. Multidrug cancer therapy in metastatic castrate-resistant prostate cancer: an evolution-based strategy. Clin. Cancer Res. 25, 4413–4421 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Enderling, H., Alfonso, J. C. L., Moros, E., Caudell, J. J. & Harrison, L. B. Integrating mathematical modeling into the roadmap for personalized adaptive radiation therapy. Trends Cancer 5, 467–474 (2019).

    Article  PubMed  Google Scholar 

  98. Sidders, B. et al. Network-based drug discovery: coupling network pharmacology with phenotypic screening for neuronal excitability. J. Mol. Biol. 430, 3005–3015 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Chindelevitch, L. et al. Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics 28, 1114–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Rodriguez-Barrueco, R. et al. Inhibition of the autocrine IL-6–JAK2–STAT3–calprotectin axis as targeted therapy for HR/HER2+ breast cancers. Genes Dev. 29, 1631–1648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02066532 (2014).

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03211988 (2014).

  104. Alvarez, M. J. et al. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nat. Genet. 50, 979–989 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Anderson, A. R. A., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Koksal, A. S. et al. in Principles of Programming Languages (POPL) (eds Giacobazzi, R. & Cousot, R.) 469 (ACM, 2013).

  107. Woodhouse, S., Piterman, N., Wintersteiger, C. M., Göttgens, B. & Fisher, J. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC Syst. Biol. 12, 59 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Dunn, S.-J., Martello, G., Yordanov, B., Emmott, S. & Smith, A. G. Defining an essential transcription factor program for naive pluripotency. Science 344, 1156–1160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fisher, J. & Woodhouse, S. Program synthesis meets deep learning for decoding regulatory networks. Curr. Opin. Syst. Biol. 4, 64–70 (2017).

    Article  Google Scholar 

  110. Fellmann, C., Gowen, B. G., Lin, P. C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16, 89–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Hofree, M., Shen, J. P., Carter, H., Gross, A. & Ideker, T. Network-based stratification of tumor mutations. Nat. Methods 10, 1108–1115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ma, J. et al. Using deep learning to model the hierarchical structure and function of a cell. Nat. Methods 15, 290–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim, J. W. et al. Decomposing oncogenic transcriptional signatures to generate maps of divergent cellular states. Cell Syst. 5, 105–118.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ashcroft, P., Michor, F. & Galla, T. Stochastic tunneling and metastable states during the somatic evolution of cancer. Genetics 199, 1213–1228 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Stites, E. C., Trampont, P. C., Ma, Z. & Ravichandran, K. S. Network analysis of oncogenic Ras activation in cancer. Science 318, 463–467 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Akhmetzhanov, A. R. et al. Modelling bistable tumour population dynamics to design effective treatment strategies. J. Theor. Biol. 474, 88–102 (2019).

    Article  PubMed  Google Scholar 

  118. Materi, W. & Wishart, D. S. Computational systems biology in drug discovery and development: methods and applications. Drug Discov. Today 12, 295–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Baker, R. E., Peña, J.-M., Jayamohan, J. & Jérusalem, A. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biol. Lett. 14, 20170660 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Johnston, M. D., Edwards, C. M., Bodmer, W. F., Maini, P. K. & Chapman, S. J. Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc. Natl Acad. Sci. USA 104, 4008–4013 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Du, W. et al. Effective combination therapies for B-cell lymphoma predicted by a virtual disease model. Cancer Res. 77, 1818–1830 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Aldridge, B. B., Burke, J. M., Lauffenburger, D. A. & Sorger, P. K. Physicochemical modelling of cell signalling pathways. Nat. Cell Biol. 8, 1195–1203 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Csajka, C. & Verotta, D. Pharmacokinetic–pharmacodynamic modelling: history and perspectives. J. Pharmacokinet. Pharmacodyn. 33, 227–279 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Gevaert, O., De Smet, F., Timmerman, D., Moreau, Y. & De Moor, B. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22, 184–190 (2006).

    Article  Google Scholar 

  125. Cruz-Ramírez, N., Acosta-Mesa, H. G., Carrillo-Calvet, H., Alonso Nava-Fernández, L. & Barrientos-Martínez, R. E. Diagnosis of breast cancer using Bayesian networks: a case study. Comput. Biol. Med. 37, 1553–1564 (2007).

    Article  PubMed  Google Scholar 

  126. Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J. & Jarvis, E. D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Gerstung, M., Baudis, M., Moch, H. & Beerenwinkel, N. Quantifying cancer progression with conjunctive Bayesian networks. Bioinformatics 25, 2809–2815 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Von Heydebreck, A., Gunawan, B. & Füzesi, L. Maximum likelihood estimation of oncogenetic tree models. Biostatistics 5, 545–556 (2004).

    Article  Google Scholar 

  129. Beerenwinkel, N., Schwarz, R. F., Gerstung, M. & Markowetz, F. Cancer evolution: mathematical models and computational inference. Syst. Biol. 64, e1–e25 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Rueda, O. M. et al. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature 567, 399–404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee, A. et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 21, 1708–1718 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Geman, D., Ochs, M., Price, N. D., Tomasetti, C. & Younes, L. An argument for mechanism-based statistical inference in cancer. Hum. Genet. 134, 479–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Halasz, M., Kholodenko, B. N., Kolch, W. & Santra, T. Integrating network reconstruction with mechanistic modeling to predict cancer therapies. Sci. Signal. 9, ra114 (2016).

    Article  PubMed  CAS  Google Scholar 

  134. Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. & Fotiadis, D. I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yu, M. K. et al. Visible machine learning for biomedicine. Cell 173, 1562–1565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Karolak, A., Markov, D. A., McCawley, L. J. & Rejniak, K. A. Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. J. R. Soc. Interface 15, 20170703 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Metzcar, J., Wang, Y., Heiland, R. & Macklin, P. A review of cell-based computational modeling in cancer biology. JCO Clin. Cancer Inform. 3, 1–13 (2019).

    Article  PubMed  Google Scholar 

  139. Macklin, P., Edgerton, M. E., Cristini, V. & Lowengrub, J. in Multiscale Modeling of Cancer (eds Cristini, V. & Lowengrub, J.) 88–122 (Cambridge Univ. Press, 2009).

  140. Giatili, S. G. & Stamatakos, G. S. A detailed numerical treatment of the boundary conditions imposed by the skull on a diffusion-reaction model of glioma tumor growth. Clinical validation aspects. Appl. Math. Comput. 218, 8779–8799 (2012).

    Google Scholar 

  141. Anderson, A. R. A. et al. Microenvironmental independence associated with tumor progression. Cancer Res. 69, 8797–8806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rejniak, K. A. & Anderson, A. R. A. Hybrid models of tumor growth. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 115–125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Osborne, J. M. et al. A hybrid approach to multi-scale modelling of cancer. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5013–5028 (2010).

    Article  CAS  Google Scholar 

  144. Powathil, G. G., Gordon, K. E., Hill, L. A. & Chaplain, M. A. J. Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model. J. Theor. Biol. 308, 1–19 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the many collaborators who have grounded the development of computational models with their experimental and clinical data. They thank G. Evan, N. Piterman, M. Vardi, B. Cook and A. Herbert for many fruitful discussions over the years. They further thank A. Herbert for critical reading of the manuscript. J.F. acknowledges funding from Cancer Research UK and The Mark Foundation for Cancer Research, and start-up funds from the University College London Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.F. conceived the idea for this article and structured the manuscript. J.F. and M.A.C. researched data for the article and wrote, reviewed and edited the manuscript. J.F. conceived the figures. J.F. and M.A.C. designed the figures.

Corresponding author

Correspondence to Jasmin Fisher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks P. Tamayo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Abstraction

A model at a certain level of description simplifying lower-level details in a principled way, preserving key properties of the system behaviour.

Adaptive therapy

The application of cancer treatment in a manner that quickly responds to changes in the disease rather than following a fixed protocol, with the goal of managing the cancer and maintaining a limited tumour burden, rather than attempting to totally eliminate the disease.

Algorithm

A step-by-step sequence of basic operations required to produce a desired result in a discrete system.

Attractors

States towards which a system tends to evolve from a wide variety of starting conditions.

Compositionality

The ability to combine separate component models into a larger overall system model.

Computer programs

Collections of instructions that perform a specific algorithm when executed by a computer.

Concurrency

The parallel execution of multiple interacting computer programs.

Continuous models

Models with an infinite number of states, which may also be called analogue models.

Discrete model

A model with a countable number of states, which represent the remembered history of the system modelled. Discrete models are to be contrasted with continuous models.

Formal verification

A method to prove or disprove the correctness of computer programs with respect to a certain formal specification or property, by treating the program as a mathematical structure and proving theorems about it.

Instruction set architecture

An abstract description of a computer processer at the level required by programmers, including those writing compilers for high-level programming languages (for example, Python).

Level of abstraction

A hierarchy of abstractions where higher levels of abstraction are placed at the top and more detailed concepts underneath.

Logic gates

A representation of a Boolean logical operation, combining binary inputs to produce a binary output based on operations such as AND, OR or XOR (exclusive OR).

Model checking

A means of checking whether a program meets a given specification using automated theorem proving (a branch of mathematical logic dealing with proving mathematical theorems by computer programs).

Modularity

The focus on keeping components of a model or a computer program in discrete units, allowing them to be flexibly put together in different combinations.

Non-determinism

The abstraction of a complex behaviour showing more than one possible output (for example, phenotype) for a given input (for example, genotype).

Phase planes

2D visualizations of the behaviour of a system of differential equations where each axis shows one variable of the equations. These are often used to aid the visualization of the long-term behaviour of these systems. Higher dimensional visualizations are referred to as a phase space. For example, the Lotka–Volterra equations model the change in predator and prey populations over time. Plotting the number of predators or prey against time would show oscillatory behaviour, but plotting prey versus predator would reveal a closed loop in the phase plane, revealing the balanced trade-off in the number of predators and prey.

Program synthesis

A technique that automatically constructs a computer program that satisfies a given high-level specification.

Search space

The set of possible states or solutions through which an algorithm must search to find the optimum solution to some problem.

Specification

A set of known behaviours that a model must be able to produce in the correct circumstances in order to be considered valid.

State machine

An abstract model of a discrete system. A state machine can only be in exactly one of a countable (often finite) number of states at any given time. The machine can change from one state to another in response to some external (input) events (input signals); the change from one state to another is called a (state) transition and may give rise to external (output) signals.

Testing

The process of checking the consistency of a program with a given specification by comparing inputs with outputs across multiple runs of the program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clarke, M.A., Fisher, J. Executable cancer models: successes and challenges. Nat Rev Cancer 20, 343–354 (2020). https://doi.org/10.1038/s41568-020-0258-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-0258-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer